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ABSTRACT Recent developments in light microscopy enable individual fluorophores to be observed in aqueous conditions.
Biological molecules, labeled with a single fluorophore, can be localized as isolated spots of light when viewed by optical micros-
copy. Total internal reflection fluorescence microscopy greatly reduces background fluorescence and allows single fluorophores
to be observed inside living cells. This advance in live-cell imaging means that the spatial and temporal dynamics of individual
molecules can be measured directly. Because of the stochastic nature of single molecule behavior a statistically meaningful
number of individual molecules must be detected and their separate trajectories in space and time stored and analyzed. Here,
we describe digital image processing methods that we have devised for automatic detection and tracking of hundreds of mol-
ecules, observed simultaneously, in vitro and within living cells. Using this technique we have measured the diffusive behavior
of pleckstrin homology domains bound to phosphoinositide phospholipids at the plasma membrane of live cultured mammalian
cells. We found that mobility of these membrane-bound protein domains is dominated by mobility of the lipid molecule to which
they are attached and is highly temperature dependent. Movement of PH domains isolated from the tail region of myosin-10 is
consistent with a simple random walk, whereas, diffusion of intact PLC-d1 shows behavior inconsistent with a simple random
walk. Movement is rapid over short timescales but much slower at longer timescales. This anomalous behavior can be
explained by movement being restricted to membrane regions of 0.7 mm diameter.

INTRODUCTION

It is now 12 years since the first convincing report of single

fluorophore imaging in aqueous solution (1). Since then,

most of the technologies used—microscopes, lasers, and

cameras—have changed rather little. However, the advent

of the green fluorescent protein (2) (GFP) and increases in

computing power (by ;100-fold) have revolutionized the

way that we study fluorescent molecules in live biological

cells. Digital image processing enables rapid, quantitative

analysis of both static images and video sequences obtained

by optical microscopy. Here, we report a single fluorophore

detection algorithm (SFDA) that can be used to identify

multiple individual fluorophores in a series of video images

obtained by total internal reflection fluorescence microscopy

(TIRFM). We also describe an automatic single particle track-

ing (ASPT) algorithm that is used to detect and track single

fluorophores moving on the cell membrane. The output data

consist of spatial and temporal trajectories collected for many

hundreds of individual molecules that are observed simul-

taneously. Further statistical analysis of these data sets enables

binding kinetics and diffusion coefficients to be derived.

Wide-field, camera-based, detection methods, using either

cooled-CCD or image-intensified cameras combined with

intense laser excitation of the specimen, enable detection of

single fluorophores. The challenge is to detect their emission

within the context of a living cell where autofluorescence and

fluorescence from out-of-focus fluorophores is significant.

Unlike camera noise, both of these sources of noise increase

with excitation power (3). So, to obtain sufficient signal/noise,

sources of background fluorescence must be minimized and

the fluorophores must be present in the nanomolar (nM) con-

centration range. This gives an average of one fluorophore per

cubic micron and if an optical sectioning technique is used,

individual fluorophores then appear as spatially separated

spots of light. The intensity distribution, or point spread func-

tion (PSF), of an individual fluorophore corresponds to an

Airey disk pattern with a characteristic fullwidth at half-

maximum height (FWHM) determined by the wavelength of

light, l, and numerical aperture, NA, of the imaging system

(given by 0.6 l/NA). The most widely used form of micros-

copy for single fluorophore studies is TIRFM (4). The non-

propagating, or evanescent, field created by TIR illumination

excites fluorophores only at the interface between the micro-

scope coverslip and the aqueous medium, leaving the rest of

the specimen unilluminated (1,5,6). This feature makes the

method ideal for studying fluorophores present at the basal

membrane of living cells or within thin membrane protru-

sions like the leading lamella (7).

In most studies published to date, records have been ana-

lyzed manually, frame by frame, to identify each individual

fluorophore (8). Such manual detection methods are prone to

observer bias and are simply impractical if many hundreds or

thousands of individual fluorophores need to be identified

and tracked in time. Here, we describe two algorithms (SFDA

and ASPT) that automatically detect individual fluorophores

in video recordings and output intensity and position data as

a function of time (trajectories) giving a much reduced data

set. Fluorophores exhibiting ‘‘blinking’’ behavior or unex-

pected fluctuations in fluorescence with time can be excluded

from final analysis. To test our methodology we generated
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model data sets using a Monte Carlo based computer

program that produced simulated video records with realistic

levels of camera noise, single fluorophore emission rate,

background fluorescence, and photobleaching. Model input

parameters could be set from our experimentally determined

values (below). This allowed us to cross-validate our

algorithms since we knew a priori where and when ‘‘single

fluorophore’’ signals were present in the data. We could then

determine the proportion of false and missing events and this

was important in validating our methodology. We also tested

the algorithms using real imaging data obtained from control,

in vitro, specimens and live mammalian cells.

We have measured the mobility of isolated pleckstrin

homology (PH) domains and full-length PLC-d1 at the plasma

membrane of live mammalian cells. PH domains bind to

phosphoinositide phosopholipids and serve to target proteins

to membrane. The PH domain structure is highly variable

between protein families but exhibits a conserved fold motif

of seven b-strands that form a b-sandwich (three of the

strands run orthogonal to the other four) and a single a-helix
that caps one end of the structure. The target phospholipid

headgroup is specified by variable loop regions that link the

b-sheets and a-helix. Using eGFP fusion protein constructs

we have investigated the membrane targeting and mobility of

different types of PH domain. PH123 isolated from myosin-

10 and full-length phospholipase C-d1 (PLC-d1), which is

involved in activating cell signaling pathways by hydroly-

sis of the phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)

headgroup to release the active molecules inositol trisphos-

phate (IP3) and diacyl glycerol (DAG). PLC-d1 binds spe-

cifically to PIP(4,5) and its enzymatic activity is thought to

be processive since multiple enzymatic turnovers arise from

each diffusional encounter with membrane (9). PLC-d1
might be expected to diffuse more slowly at regions of mem-

brane that are rich in PIP(4,5) (see Balla et al. (10)), because

lipid-lipid interactions and frequent encounters between lipid

headgroups and enzyme would cause it to dwell within the

‘‘raft’’ of substrate. As the localized region of substrate be-

came depleted the enzyme might then exhibit higher mobility.

If so, then such behavior might be revealed by tracking the

diffusive motions of individual molecules (11). In this study

we compared the diffusive behavior of PLC-d1 with that of

PH domains (PH123) isolated from myosin-10.

MATERIALS AND METHODS

Single fluorophore control samples:
in vitro experiments

For our control specimens we used a microscope flow-cell arrangement

described previously (12). Briefly, we used a precleaned 253 72 mm2 glass

microscope slide across which two 3 3 22 mm2 strips of (No.1) coverglass

were fixed 10 mm apart using 2 ml of UV curing epoxy adhesive (RS com-

ponents, Northants, UK). A 22 3 40 mm2 precleaned coverslip was glued

onto the coverglass strips, orthogonally to the slide, leaving ;10 mm of

coverslip projecting from either side. The flow-cell was exposed to UV light

until the glue was completely cured. This produced a central channel with

height of 150 mm, length 25 mm, width 10 mm, volume of 50 ml, and sur-

face area 500 mm2. The flow-cell was mounted on the inverted microscope

(see below) and solutions could be added and removed at the projecting

pieces of coverslip either side of the flow channel. The flow-cell was filled

with phosphate buffered saline (PBS) solution (pH 7.4) containing 5 mg/ml

(33 nM) polyclonal anti-GFP antibodies (Abcam, Cambridge, UK). The 50-ml

volume of solution used would therefore contain;1012 molecules, this would

provide 2000 molecules/mm2 if all of the antibodies bound to the surface. This

solution was left to incubate in the flow-cell for 5 min and after few washes

with PBS the solution was replaced with the same buffer containing 0.2–20

ng/ml (i.e., up to 0.74 nM) eGFP (Clontech, Palo Alto, CA) for 5 min.

Unbound protein was then washed out of the flow-cell by several washes with

PBS. If all of the GFPmolecules bound to the glass surface then, at the highest

concentrations used, this would give 45 molecules/mm2.

Single fluorophore observations in living cells:
in vivo experiments

To study live cells by TIRFM we used cultured human umbilical vein

endothelial cells (HUVECs) (gift of Dr. T. Carter, NIMR, London, UK),

primary mouse myoblasts (gift of Dr. M. Peckham, University of Leeds,

UK), and 3T3 mouse fibroblasts. Cells were transfected with the eGFP

fusion protein constructs (below) using Genejuice (Novagen, Merck Bio-

sciences, Nottingham, UK) following the recommended protocol (7). After

24 h, the cells were replated onto round coverslips (Ø¼ 25mm) and allowed

to settle. Eight hours later, the medium was replaced with Hank’s balanced

salt solution containing 20 mM HEPES (pH 7.4) (Sigma-Aldrich, Poole

Dorset, UK), and the coverslip was then assembled into a circular, stainless

steel, imaging chamber that held two round coverslips separated by a sili-

cone O-ring (Ø ¼ 2.5 mm, 25 mm outer diameter). The imaging chamber

was filled with Hank’s balanced salt solution containing 10% of fetal calf

serum (Sigma-Aldrich), and the assembly was then mounted on the micro-

scope. The microscope (see below) was enclosed in a temperature-controlled

Perspex box (Solent Scientific, Segensworth, UK) and Peltier cooling ele-

ments were used to cool the objective lens and imaging chamber (RS com-

ponents, Northants, UK). We found that ;10% of the cells had a suitable

level of expression for TIRF measurements such that single molecules could

be visualized as isolated, single spots. We examined recombinant PH do-

mains from myosin-10 (7) and PLC-d1 that had been fused, in-frame, with

eGFP. Both molecules possess PH domains that become targeted to the

phosphoinositide phospholipids in the plasma membrane. They bound

tightly to the plasma membrane of mouse myoblasts and showed only very

slow lateral diffusion whereas in fibroblasts and HUVECs the proteins

exhibited much higher mobility.

Single fluorophore imaging: TIRFM

The TIRFM system used for imaging is based around a Zeiss Axiovert

135 inverted microscope (Carl Zeiss, Welwyn Garden City, UK) described

earlier (13). Briefly: a blue laser beam (488 nm, 20 mW, Protera 488,

Novalux, Sunnyvale, CA) was expanded using a Galilean beam expander to

give the correct numerical aperture (far-field beam diameter of;8 mm. The

laser light was focused, using a 160-mm focal length lens, at the back focal

plane of a high numerical aperture objective lens (AlphaPlan, 1003, NA

1.45, Zeiss, Jena, Germany). A front-surface, silvered, mirror (Ø ¼ 3mm)

was used to direct the laser beam into the objective lens by positioning it

immediately below and at the extreme edge of the back aperture. An identical

mirror, placed on the opposite side of the back aperture was used to direct the

laser beam out of the microscope as it was reflected back by the TIR effect.

The average laser intensity at the specimen plane was;10 mW/mm2. Images

were collected using an image-intensified, CCD camera (GemStar, Photonic

Science, Robertsbridge, UK). Sequences of images (records) were stored di-

rectly to computer hard drive for later analysis. Throughout, intensity data
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refer to digital counts scored by our camera system. Imaging software was

written using C11 language (Borland CBuilder6, Scotts Valley, CA).

Description of SFDA and ASPT algorithms

To study the properties of membrane-bound proteins inside living cells we

devised two single fluorophore detection algorithms. Our aim has been to

minimize observer bias and enable large, single-molecule data sets to be

collected so that subsequent statistical analysis can be performed. In this

section, we describe the analytical tools that were developed and then show

how they were tested against experimental data sets obtained from in vitro

and live-cell imaging studies (see Appendix for detailed description of the

methods).

Single fluorophore detection algorithm

The single fluorophore detection algorithm is based on three characteristics

of single fluorophores: A), diffraction-limited size; B), known and constant

emission rate; and C), abrupt, single-step photobleaching. Single fluoro-

phore data sets are inherently noisy so the first stage of our detection algo-

rithm consists of spatial and temporal filtering designed to reduce the known

noise properties while retaining single fluorophore signals. The next phase

of the SFDA is to separate signals arising from single fluorophores from

noise. Single fluorophores emit a steady number of photons per second

under constant illumination before suddenly and irreversibly photobleach-

ing. So, we expect the signal to exhibit a stepwise drop in intensity to back-

ground level that is correlated among neighboring pixels (Fig. 1). Provided

the fluorophore does not move in the x-y plane during data collection, then a

temporal ‘‘edge detection’’ algorithm can be used to automate identification

of such events within a sequence of video data. The derivative of the

intensity data is computed using suitable weightings and window size (e.g.,

Prewitt or Sobel filters), extreme values (most positive and negative) for

each pixel location and the time at which the transitions occurred within

the video record are stored in so-called, ‘‘drop mask’’ and ‘‘rise mask’’ data

arrays. When these arrays are displayed as a pseudocolor image the position

of individual fluorophores appear as bright spots and individual x,y centroids
can then be calculated for each individual fluorophore using information

stored in the mask arrays to extract the original, time-series, intensity data

from the correct section of video. Individual fluorophore centroid positions

are determined by a Gaussian fitting procedure that gives a resolution of

;40 nm (limited by the number of photon counts per fluorophore image)

(14). At this point in the analysis a check is also made that the size and

intensity of the putative fluorophore conforms to the expected criteria (see A

FIGURE 1 Single fluorophore detection algorithm.

(A) Raw image data consist of a stack of x,y pixilated

images with a third dimension, t, of time. Individual

pixels represent the fluorescence intensity f(x,y,t). Each

single fluorophore image (inset) spreads over a number

of pixels and intensity needs to be integrated over this

area, S. (B) A moving kernel is used to find the average

intensity over an area, S, giving a low-pass filtered

image, g(x,y). (C) The kernel can be expanded to

include a peripheral region, S9, with negative weight-

ings to give local background correction. (D) The first
derivative in time, d(x,y,t9), of g(x,y,t) array is com-

puted using a Sobel or Prewitt filter, v(t), of length L.

(E, upper) The fluorescence intensity g(x,y,t) of an

eGFP molecule present from the beginning of the re-

cord produces a first derivative signal, d(x,y,t9), (lower
panel) using the kernal v(t) of form, v3 (solid line) or v1

(dashed line). (F, upper) eGFP arrived during the re-

cord; the lower panel again shows the first derivative

d(x,y,t9) calculated by moving the kernel v(t) through

the data; v3 (solid line), v1 (dashed line).
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and B above). A problem encountered in live-cell imaging experiments is

that background fluorescent material and cell autofluorescence produce short-

lived ‘‘false’’ events that contribute unwanted noise to the mask arrays. When

short-lived events (duration , tmin) were excluded, a proportion of ‘‘real’’

(but short-lived) events were also excluded. The number of missing real

events erroneously excluded in this way can be estimated by extrapolating the

lifetime distribution plots obtained from analysis of the long-lived events,

which we detect with more certainty, or alternatively by analysis of simulated

or modeled data sets (see below) in which we know, a priori, the noise and

signal components. Sole reliance on simulated data to test the analytical

approaches leads to circularity in the arguments, so we used both simulated

and experimental data sets to test the procedures.

The final part of the SFDA algorithm is to output information about all

detected objects including; fluorescence intensity, timing, and x-y coordi-

nates. These data are stored in a format suitable for further analysis in

statistical packages or Excel spreadsheets.

Automatic single particle tracking

Automated single particle tracking presents a different set of problems to

detection of static fluorophores (i.e., the SFDA method). The filtering and

statistical tests need to be modified to allow intensities to be tracked in space

and time. To track individual fluorophores at the plasma membrane of living

cells, video data must be acquired at high speed. This is because the lateral

diffusion coefficient (Dlat) of a protein in membrane is large compared to the

PSF of the fluorophore and its image is therefore smeared out (or blurred) by

its diffusive motions. For instance ifDlat¼ 0.5mm2/s then there will be;1.4

mm movement within 1 s. Here, we assume that raw data are collected at

sufficient speed that fluorophore movement during individual video frames

is small compared to the idealized PSF measured in control, fixed samples

(above). Our ASPT algorithm identifies locations of putative single

fluorophores within the video record then tracks their positions between

consecutive video frames. The first phase works by pattern-matching regions

of the image to the known PSF of a single fluorophore (Fig. 2). Idealized

fluorophore centroids are then stored as an array of x,y,t locations. The

second phase of the ASPT routine links object coordinates between adjacent

video frames using a nearest-neighbor algorithm. If the tracked objects move

close to each other (;FWHM) and their images coalesce, then if the result-

ing image deviates significantly from the idealized single fluorophore PSF,

both tracks will be terminated. However, if the resulting image approximates

that of a single fluorophore then only one track is terminated. Once the object

tracks have been identified, the original intensity data are used to refine our

estimate of the fluorophore centroids with subpixel resolution (as for SFDA

above). Finally, to discriminate single fluorophores from multifluorophore

clusters the original intensity data can be inspected to ensure that each object

exhibits single-step appearance and disappearance (photobleaching) and has

an average intensity similar to that of known single fluorophores measured

in our in vitro control specimens.

Simulated/modeled data sets

To test the analytical routines, simulated data sets were created that closely

resemble real experimental data in terms of noise levels and fluorophore

behaviors. Simulated data allow synthesis of different signal/noise ratios and

certain knowledge of modeled fluorophore locations. This might appear to

be a circular solution to the problem, i.e., using simulated data to test the

analysis tools. However, use of simulated data enables testing of complex,

nonlinear problems, e.g., discontinuities associated with limited kernel sizes

and thresholding methods, both of which greatly speed up computation time

but introduce nonlinearities by creating boundary conditions. The combined

effects of all these potential problems can be tested and quantified, in an

empirical way, using simulated data sets.

We modeled individual fluorophores as Gaussian intensity PSFs in which

images were created with the correct photon noise characteristics. We used a

Box-Muller algorithm (adapted from Press et al. (15)) to generate random

x-y coordinates for each modeled photon within the PSF. We also added

Gaussian noise to every pixel to mimic our camera characteristics (RMS

amplitude d). The signal/noise ratio (SNR) was defined as mean fluorophore

intensity divided by the sum of RMS background noise and RMS signal shot

noise (16). All parameters, including fluorophore position and intensity

could be controlled for every video frame that was generated. Modeled fluoro-

phores were either static or were allowed to move in the x-y plane assuming

a simple random-walk behavior.

RESULTS AND ALGORTHM TESTING

In this section, we deal first with analysis of our model data

sets (described above) then results from our in vitro control

experiments, using eGFP immobilized on GFP antibodies.

Finally, we present data from live cell imaging of cultured

myoblasts, fibroblasts, and HUVECs, each expressing eGFP-

tagged PH domains from either myosin-10 or full-length

PLC-d1.

FIGURE 2 The core operation enabling automatic single particle tracking

involves measuring the inverse variance of the raw image data with respect

to an idealized point spread function for a single fluorophore. The upper

panel (A) shows typical raw image data obtained for single GFP-tagged

proteins expressed at low levels in a myoblast cell. Note the large patch of

fluorescence, upper left part of the image. The convolution kernel is shown

in the inset (right). In the lower panel (B) the output data following the

mathematical operation (Eq. 8) are shown. Note that regions of intensity that

form a good match to the idealized single fluorophore PSF are reinforced

whereas others are not. Nearest-neighbor algorithm (inset) can be used to

link objects appearing on consecutive images. See Appendix for explana-

tion.
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Testing the SFDA algorithm using simulated
data sets

To test the SFDA on image sequences generated by the

model described above, 1000 simulated fluorophores were

uniformly distributed across the image plane at 2 mm inter-

vals (Fig. 3 A). Background noise level was increased sys-

tematically to give SNR from 4.5 to 1.6 (16,17). Simulated

data sets were analyzed using the SFDA software and the

number of ‘‘real’’ and ‘‘false’’ events detected at each signal/

noise and three detection threshold values (I¼ 1, I¼ 1.5, I¼
2) were plotted (Fig. 3 B). At SNR ¼ 2.2, and high detection

threshold value (I ¼ 1.5) 37% of the real events were

detected and 3% false events were generated. However,

when the detection threshold was lowered (I¼ 1) 80% of the

real events were scored but there was an unacceptably high

level of false events (36%). Under all conditions, dwell time

histograms gave a reliable estimate of the photobleaching

rate constant (Fig. 3 A, lower). We found our real experi-

mental data sets (see below) have a SNR between 2.5 and 4

and when we tested the SFDA using SNR in this range we

detected .95% of the real events and generated ,1% false

events. The runtime was 66 s for 200 images, 745 3 863

pixels, using a Pentium-IV-3.2 GHz, with 2 Gb RAM) i.e.,

;53 slower than ‘‘real time’’.

Testing the ASPT algorithm using simulated
data sets

The ASPT algorithm was tested using the same image se-

quences generated for SFDA testing (see previous section

and Fig. 3, A and B, for details). At SNR ¼ 3.3, we detected

FIGURE 3 To test the SFDA routine, simulated

data sets were created in which; average fluorophore

emission rate is 10,000 photons/s (500 photons/PSF/

frame), FWHM is 250 nm, photobleaching rate 1 s�1,

imaging rate 20 frames/s. Background noise was

systematically increased from 1 to 60 counts (RMS)

per pixel per frame (pixel size 85 3 85 nm). (A, left

panel, images) Data obtained in our TIRF experi-

ments for in vitro and live-cell imaging resembles

the simulated images with RMS noise of ;10–40

counts/pixel/frame (SNR ¼ 2–4). (A, graphs) Inten-

sity versus time plots closely resemble our experi-

mental data sets. The lifetime distributions extracted

from the SFDA analysis at different SNR (A, lower)
were fitted by a single exponential distribution. To

estimate the mean event lifetime the threshold, tmin,

(here set at 0.5 s; note missing bins below this value)

must be subtracted from the calculated mean of the

scored data (i.e., truemean¼mean� tmin). Themodel

valuewas 1 s and the values fromSFDAwere 1.03 s at

SNR ¼ 3.3 and 1.01 s at SNR ¼ 2.2. (B) The rate of
event detection and false event generation using the

SFDA algorithm was measured using different

threshold levels (parameter I, see Appendix for

details) as a function of SNR levels. (s) Proportion

of real events detected (threshold, I ¼ 1); (d) false

events generated expressed as proportion of the total

number of real events (I ¼ 1); (h) proportion of real

events detected at I¼ 1.5; (n) proportion of real events

detected at I ¼ 2.0. To test the ASPT routine,

simulated fluorophores were allowed to move ran-

domly with Dlat ¼ 0.1 mm2 s�1; a total of 49 fluoro-

phores were simulated with SNR ¼ 4. Images are

shown at t ¼ 0, t ¼ 5 s, and t ¼ 10 s (panels C–E).

ASPT with threshold Qmin ¼ 0.2 (Eq. 8), rmax ¼
430 nm, and nmin¼ 10was used to track these objects.

PanelF shows resultant tracks generated by theASPT

analysis. Note 77 tracks were generated from 49

fluorescent objects as broken tracks arise when

images overlap or noise prevents tracking an individ-

ual object. (G) Averaged MSD versus time lag plot

was used to calculateDlat for fluorophores detected in

panel F. The value was correct to within 1% of the

input model value. Scale bar is 5 mm.
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71% real events and generated 23% false events. At lower

signal/noise ratios (SNR ¼ 1.8), we detected 16% real events

and but generated 18% false events. Dwell-time analysis of

our scored events revealed a systematic overestimation of

the photobleaching rate, 4 s�1 (actual value ¼ 1 s�1) at low

SNR. At high SNR values (SNR ¼ 3.3) the estimated rate

was 1.1 s�1, and much closer to the true value. Analysis run-

time was 129 min (at SNR ¼ 1.8), which is 100 times slower

than the SFDA procedure.

To test ability of the ASPT routine to track fluorophores

we used the same model as above but without photobleach-

ing and allowed simulated fluorophores to move randomly in

the x-y plane (see Fig. 3, C–E) with a Dlat ¼ 0.1 mm2 s.�1

Analysis of the records by ASPT at SNR ¼ 3.3, was followed

by a least-square fit to the mean-square displacements (MSD)

versus time lag (dt), which gave an estimate for Dlat ¼ 0.101

mm2 s�1 (see Fig. 3G). However, at lower SNR¼ 2.2, several

tracks could be generated for the same object. We found that a

multitude of short tracks arises because each time the fluo-

rescence signal dropped below the detection threshold its track

was prematurely terminated. When fluorescence reached the

level above threshold in a subsequent image it initiated a new

track apparently belonging to the same object. This problem

does not affect estimates of the diffusion coefficient but does

lead to a systematic underestimation of the fluorophore lifetime.

In vitro experimental control specimens

To measure the signal-and-noise levels of our TIRFM imag-

ing system, eGFP was immobilized via anti-GFP antibody to

microscope coverslips at very low surface density. At high

laser excitation power, individual fluorescent objects were

clearly visible in the video images. Plots of raw intensity data

from background regions of interest compared to regions

(spots) of high intensity plotted as a function of time show

clear single-step photobleaching behavior (Fig. 4 A). A

histogram of the raw intensity data shows that background

noise and single fluorophore emission are readily discrim-

inated (Fig. 4 A). The SFDA and ASPT algorithm both

reliably detect individual fluorophores under these conditions.

However, it is critical to ensure that the intensities being mea-

sured arise from single fluorophores and not clusters of mul-

tiple molecules. To ensure that the single fluorescent objects

observed arise from an individual fluorophore we made serial

dilutions of eGFP and measured how the number of detected

fluorescent spots per unit area varied as a function of the con-

centration of applied eGFP in the bulk solution (Fig. 4 B). The
average SNR for eGFP bound to glass was 2.4.

Knowing the volume of solution, the concentration of

eGFP and the surface area of the microscope flow cell, the

expected surface density of bound eGFP molecules could

be calculated. By plotting the number of spots detected by

SFDA or ASPT against the expected number we could then

determine if just a single molecule was required for each

event scored by measuring the limiting gradient of the plot at

low surface densities. A log-log plot shows that the limiting

gradient is unity indicating that, at low surface densities,

each detected object corresponds to a single eGFP (Fig. 4 B).
Using the SFDA to analyze video data recorded over

many hundreds of seconds we could also measure the rate at

which the fluorescent spots (eGFP) bound to the antibody-

coated glass surface. Each new object that appeared at

the surface was scored so that the cumulative total number

of objects could be plotted against time. This allows the

FIGURE 4 (A) Individual spots of fluo-

rescence intensity caused by eGFP bound

to antibody were viewed by TIRFM (shown

as the inset image). Regions of interest

(labeled a and b) representing high and low

fluorescence areas were identified and the

intensity versus time was plotted (upper

graph, showing intensity versus time). A

histogram of the intensity distribution

measured over the first 6 s shows that the

fluorescent spot could be readily identified

from background on the basis of simple

thresholding. We found that both the SFDA

and ASPT algorithms (described in the text)

were able to readily discriminate the fluo-

rescent objects from background in images

with such high signal/noise ratio. (B) To

ensure individual molecules were being

detected we made a log-log plot of number

of spots observed against number predicted

based on the dilution factor. The limiting

gradient was unity. (C) The rate of eGFP

binding to the antibody coated surface was

measured by plotting the cumulative score

of the arrival of each new fluorescent spot

with time.

2204 Mashanov and Molloy

Biophysical Journal 92(6) 2199–2211



accumulation of new molecules binding at the surface to be

followed in time giving a half-time to saturation binding,

using our flow-cell arrangement, of 700 s (Fig. 4 C).

Detection of single fluorophores in vivo

We used the same instrument settings (camera gain; laser

power and so on) as above to study the mobility of eGFP-

tagged PH domains in live cultured mammalian cells. Using

the procedures described earlier, we viewed individual, trans-

fected cells adhered to glass coverslips using our TIR micro-

scope. In our initial observations, we found that mobility

depended greatly upon the cell type used; in mouse myoblasts,

PHdomains showedvery lowmobility (Fig. 5),whereas in 3T3

fibroblasts (Fig. 6,A andC) and HUVECs (Fig. 6H) theywere
much more mobile (fitted Dlat ¼ 0.17 mm2 s�1 for HUVECs).

Also, we found that transfection of the primary myoblasts was

much less reproducible in terms of expression levels and so it

was difficult to obtain data sets from different cells under

different conditions. So, here we report studies of different PH

domains expressed in HUVECs and 3T3 fibroblast cell types.

We visualized individual eGFP-tagged PLC-d1 bound in

at the plasma membrane of fibroblasts at 23�C (Fig. 6 A).

Individual fluorescent spots were highly mobile and we used

the ASPT analysis to detect and track individual fluoro-

phores (Fig. 6 C). To compare results obtained with ASPT

and SFDA analysis on the same sample we cooled the cells

to 3�C to inhibit the lateral mobility (Fig. 6, B, D, and F,
inset). We found that under these conditions mobility was

reduced by a much greater extent than expected from the

change in absolute temperature (e.g., from 296 to 276 K)(18).

We used both ASPT and SFDA to detect single fluorophores

(Fig. 6, D and F) and found that ability to detect single

fluorophores was similar but the average duration of measured

events was shorter using ASPT. The apparent ‘‘off rate’’ was

4.5 s�1 using ASPT, compared to 2 s�1 using SFDA (Fig. 6

F). Note that under the illumination conditions used in these

experiments, the rates are dominated by photobleaching rather

than dissociation or unbinding from the membrane.

We then measured the mobility of PLC-d1 and PH123 in

fibroblasts and HUVECs and found that the rate of diffusion

was higher in HUVECs than in fibroblasts (see Table 1).

Also, PLC-d1 diffused faster than PH123 except at long time

intervals in HUVECs (Fig. 6, G and H) where we discovered
very restricted mobility of PLC-d1. Plots of MSD versus dt
show that the apparent diffusion coefficient, proportional to

FIGURE 5 SFDA algorithm was used to detect individ-

ual eGFP-tagged PH123 molecules on myoblast plasma

membrane (TIRF microscopy, time-lapse mode, imaging

rate 0.2 s�1). (A) A sequence of 70 images, 6 3 6 mm2

shows small region of the cell membrane. Individual

eGFP-PH123 molecules appear at the membrane as iso-

lated spots of light. Molecules stayed attached at the same

position, sometimes for hundreds of seconds, and suddenly

disappear due to dissociation or photobleaching. Cross-

hairs show positions of the detected fluorophores when

they were present on image. (B) Shows a pseudocolor image

(blue-yellow-red palette) representing ‘‘drop’’ 1 ‘‘rise’’

mask image (see SFDA description for details). (C) The
same as B but pixels that had values less than a threshold

level (10 counts/pixel) were zeroed leaving bright isolated

spots for future analysis. (D) This image contains I values

(Eq. 6) calculated for every pixel selected in C. (E) Local
maximum finding was used to calculate fluorophore

position with pixel or subpixel resolution. (F) Fluorescence

intensity tracks of three eGFP-PH123 molecules detected

on record shown in panel A. Kernels (see Fig. 1, C and D)
of type, v3, were used for detection. Blue graph (upper

trace) shows the intensity of a single central pixel (of the

trace immediately below) and the three lower traces show

average intensity for three spots measured over area, S,

plotted against time (see legend to Fig. 1 and Appendix).
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the gradient of the graph, is high over short timescales but

low over longer timescales. This nonlinearity is particularly

evident at 23�C (Fig. 6 H). This phenomenon, known as

anomalous subdiffusion, is well described in the literature

(19) and indicates that PLC-d1 undergoes restricted diffusion
at the plasma membrane in HUVECs.

DISCUSSION

Two digital image processing methods, SFDA and ASPT,

have been described that enable automatic detection of indi-

vidual fluorophores within live cell and in vitro experiments

using TIRF microscopy. We developed a statistical test (see

Appendix for details) that helps separate single fluorophore

events from background noise and checked our algorithms

using modeled data, in vitro control specimens, and data

from live cell imaging experiments. Depending upon the cell

type used and experimental temperature the eGFP-tagged

proteins were either static or highly mobile.

Computing the first derivative of intensity with time over

pixel areas that cover 90% of the PSF gives a reliable means

to detect characteristic, stepwise photobleaching of single

FIGURE 6 SFDA and ASPT algorithms were used to

detect and track individual eGFP-tagged PLC-d1molecules

at 3T3 fibroblast plasma membrane (TIRF microscopy,

imaging rate 20 s�1). (A) An averaged image of the first 10

images captured at the beginning of the record made at

23�C. (B) An averaged image of the first 10 images

captured at the beginning of the record made at 3�C. (C)
ASPT algorithm was used to track individual eGFP-PLC-

d1 molecules moving on basal membrane of the cell shown

in A. Inset shows tracks in magnified region, 3 3 3 mm2.

(D) ASPT with the same parameters (Qmin¼ 1.2, rmax ¼ 5,

nmin ¼ 10) was used to track individual eGFP-PLC-

d1 molecules moving at the basal membrane of the cell

shown on B. Inset shows tracks in magnified region, 33 3

mm2. (E) Averaged MSD versus time lag (dt) plot was used

to calculate Dlat for eGFP-PLC-d1 at 23�C (solid circles)

and at 3�C (open circles). Control studies, in which eGFP

was bound to the coverslip via antibodies, gave an estimate

of positional noise under optimal imaging conditions

(triangles, see Fig. 4 for details) root MSD ¼ 75 nm.

Although the same imaging conditions were used in the

live cell studies, SNR was lower because of background

fluorescence. Consequently, accuracy of tracking of eGFP-

PLC-d1 in fibroblasts at 3�C gives a higher noise level root

MSD ¼ 200 nm. (F) SFDA and ASPT algorithms were

cross-validated on data obtained with eGFP-PLC-d1 in

fibroblasts at 3�C. The number of detected molecules was

similar (n ¼ 1259) but the ‘‘off’’ rate using ASPT was

faster (solid circles with fit to dotted line ¼ 4.5 s�1) than

that measured by SFDA (bars with fit to solid line ¼ 2

s�1). (G) eGFP-PLC-d1 (open circles, three cells, n ¼
1396) and eGFP-PH123 (solid circles, 15 cells, n ¼ 7381)

molecules were tracked in fibroblasts at 23�C, imaging rate

was 33 s�1 and MSD plotted as a function of time lag (dt)

between data points. (H) The study was repeated using

eGFP-PLC-d1 (open circles, 15 cells, n ¼ 5022) and

PH123 (solid circles, 12 cells, n ¼ 2803) in HUVECs.

MSD versus dt plots indicated both proteins moved with

random-walk behavior in 3T3 fibroblasts. However PLC-

d1 in HUVECs showed anomalous subdiffusion, or re-

stricted diffusion with an apparent compartment size of

0.7 mm (given by (3MSD)0.5).
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fluorophores in video data (SFDA core). The method ex-

ploits a combination of single fluorophore image attributes;

A), their diffraction limited size; B), intensity remains steady

until sudden photobleaching; C), or intensity suddenly in-

creases and then remains steady (sudden appearance); and

D), intensity matches known value that is measured in con-

trol studies.

The multipass nature of the SFDA algorithm presented

here dramatically reduces computation time because back-

ground regions of the image are discarded at an early phase

and the more time-consuming analysis is restricted to a much

smaller data set. Furthermore, because our analysis moves

between the processed data (masks) and original raw data

we retain all possible detail that might be present in the raw

data and can inspect the processed output by superimposing

it upon the original video images. For example this allows

detection of double or triple photobleaching events and sub-

sequent partitioning of the data into single, double, or triple

fluorophores.

The methodology was tested using simulated data and also

experimental specimens in which single fluorophores were

attached to microscope coverslips in a controlled fashion.

Experimental samples, in which eGFP was immobilized to a

glass coverslip using antibodies, showed that single fluo-

rophores can be detected reliably. Simulated data sets that

closely mimic these experiments enabled the true detection

rate and false positive rate to be quantified. Simulated data

sets were generated with a range of SNR that extend below

and beyond the SNR of our experimental data sets.

Most automatic single particle detection and localization

algorithms that have been described earlier (20–22) rely on

multistage pattern recognition algorithms to identify and

track diffraction-limited fluorescent spots with subpixel

resolution (similar to the ASPT algorithm presented here).

The published approaches require a SNR .5 whereas single

fluorophores in live cells usually give a SNR approximately

threefold lower than this. The ASPT algorithm, validated

under realistic SNR, gave reliable detection and tracking of

single fluorophores but tended to underestimate photo-

bleaching rate. There are two factors: first, when two or more

fluorophores move close together their tracks and object

lifetimes are terminated. Second, noise can cause an object to

be lost and this will also result in premature track termina-

tion. Both factors cause lifetimes to be systematically under-

estimated (i.e., off rate overestimated). The ASPT works

well at low SNR because it uses the additional criteria that

single fluorophores have constant and known level of fluo-

rescence and this improves discrimination between single

fluorophores and background noise. The ASPT algorithm

suffers from a common problem (reported by other workers)

in terms of deconvolving signals arising from overlapping

point spread functions (i.e., when fluorophore separation

approaches the Raleigh limit). However, by adjusting the

imaging and experimental conditions, ASPT can be used to

detect and track hundreds of single molecules within a single

cell simultaneously. The positional resolution (i.e., the 6SE

in estimating the mean position) depends upon the SNR

ratio, microscope mechanical drift and, under ideal imaging

conditions, is proportional to the square root of the total

number of photons collected. Positional noise under the

imaging conditions used for our live cell imaging (e.g., 33

frames per second) is 70 nm for eGFP bound via antibody

to a coverslip and 200 nm for eGFP-PLC-d bound to mem-

brane at 3�C (see Fig. 6 E). Previous reports give positional
resolution for detecting protein labeled with multiple cy5

fluorophores in the membrane of Jurkat cells of 40 nm (23).

Our studies of different cell types that transiently express

eGFP-tagged PLC-d1 and PH123 revealed different behav-

iors: First, mobility of both PLC-d1 and PH123 was very

different in the different cell types studied; PH123 domains

in mouse myoblasts were practically immobile (Dlat , 0.005

mm2/s) whereas in fibroblasts and HUVECs they exhibited

higher mobility (Table 1). This implies that in myoblasts

either the membrane viscosity is high or there must be other

barriers to free diffusion at the membrane.

We found that when temperature was reduced from 23�C
to 3�C lateral mobility of PLC-d1 in fibroblasts was greatly

inhibited. Such dependence of lipid mobility on temperature

has been reported previously and has been proposed to be

due to a liquid-gel transition (24). The phenomenon con-

veniently allowed us to cross-validate our two algorithms

(ASPT and SFDA) within the same specimen.

The most striking result was that whereas PH123 domains

showed unrestricted diffusion in HUVECs the diffusive

motion of PLC-d1 was anomalous. Nonlinearity in the MSD

versus dt plots observed for PLC-d1 can be explained in a

variety of ways: 1), physical confinement by cytoskeletal

proteins that act as mechanical barriers; 2), by presence of

different lipid phases (lipid rafts); 3), by protein crowding or

transient complexation (19). All of these physical models

result in rapid diffusion on short timescales but slower dif-

fusion on longer timescales. If we first assume the confine-

ment model then the average size of the confinement region

can be estimated from the position of the inflection in the

MSD versus dt plots and would be;0.7 mm. (Fig. 6 H). The
fact that we do not observe the same phenomenon with PH123

domains might be because they are slightly smaller and there-

fore less likely to be hindered by cytoskeletal components.

TABLE 1 Estimates of lateral diffusion coefficients derived

from MSD versus dt plots around different time lag points

Dlat mm2/s

(dt ¼ 0.15 s)

Dlat mm2/s

(dt ¼ 0.3 s)

PLC-d1 in fibroblast 3T3 0.131 6 0.005 (485) 0.114 6 0.018 (50)

PH123 in fibroblast 3T3 0.094 6 0.002 (3263) 0.059 6 0.002 (645)

PLC-d1 in HUVEC 0.212 6 0.003 (1279) 0.128 6 0.016 (100)

PH123 in HUVEC 0.187 6 0.004 (998) 0.182 6 0.011 (114)

Values were determined from the local gradients of graphs shown in Fig. 6,

G and H, around the stated dt values given as mean 6 SE (n) (measured at

23�C).
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However, the difference in molecular mass (eGFP-PLC-

d1 ¼ 113,000 Da and eGFP-PH123 ¼ 61,000 Da) indicates

that the protein radii (proportional toMw0.33) would differ by

just 20%. So we think it is unlikely that restricted diffusion of

PLC-d1 compared to free diffusion of PH123 can be ex-

plained solely by mechanical interactions between PLC-d1
and cytoskeleton. Considering point 2 (above) it may be that

PLC-d1 and PH123 partition into different lipid phases. We

know that PLC-d1 binds tightly and specifically to (PI(4,5)P2)
whereas PH123 are more promiscuous binding to (PI(3,4,5)P3)

and (PI(3,5)P2) (Dr. M. Peckham, University of Leeds,

personal communication, 2002). There is evidence that

(PI(4,5)P2) lipid distributes nonuniformly (10) and regions

rich in this lipid might therefore act as a raft structure to

which PLC-d1 associates whereas PH123 domains do not.

Finally, it has been proposed that PLC-d1 interacts with

membrane both by nonspecific electrostatic (weak) interac-

tions (9) and by specific binding to the target PI(4,5)P2 head-

group (25). When bound specifically to PI(4,5)P2, mobility

would be dominated by the lipid, whereas when bound by

weak interactions much more rapid diffusive movements of

the protein might occur. Kinetic studies of PLC-d1 show that

its enzymatic activity is greatly increased by phospholipid

and mechanistically it can be considered a processive enzyme

as it undergoes multiple enzymatic turnovers for each diffu-

sional encounter with membrane (9). At the end of each

catalytic cycle, PLC-d1 will either proceed to hydrolyze

another phosphoinositol headgroup or unbind and interact

with the membrane weakly. However, simple modeling of

this behavior shows that if the enzyme alternates between

periods of fast and slow diffusion then a plot of MSD versus

dt is linear with a gradient determined by the time-averaged

value of the two diffusion coefficients. However, if there are

localized regions of high PI(4,5)P2 concentration (26) then

the trajectory of PLC-d1 might show low mobility within

these regions (binding and unbinding at PI(4,5)P2 molecules)

and high mobility as it moves between patches localized to

membrane by weak electrostatic interactions; this can lead

to nonlinearity in MSD versus dt (27) and to transient varia-

tions in diffusion coefficient (11). We tested specifically for

evidence of transient confinement of PLD-d1 and also of

PH123 using methods devised by earlier workers (28). To do

this we ‘‘stitched together’’ all of the x,y coordinates from

all of our molecular tracks (total . 100,000 x,y pairs for

PLC-d1 and PH123) so that one molecular track followed on

from the end point of the previous track. This enabled us

to test for transient confinements either for an individual

molecule within the data set or for periods of time within an

individual molecular track. However, we found no statisti-

cally significant changes in diffusive motion (as defined by

Simson et al. (28)) and the pooled PH123 data set appeared

similar in nature to the PLC-d1 set.

The analytical methods ASPT and SFDA were validated

for detection of single-molecule data sets and should prove

useful for studies in cell biology as they remove bias of

manual detection and tracking methods. Fast runtimes mean

that data sets can be analyzed within minutes so results can

be viewed during the course of an experiment. An ability to

gather large data sets is critical to single-molecule analysis.

Analysis of data sets from live-cell imaging allows tests

of specific molecular mechanisms in cell biology such as

understanding the diffusive behavior of membrane-bound

proteins and of receptor-ligand interactions. To extend this

study and increase our understanding of the enzymology of

PLC-d1 it would be very advantageous to obtain simulta-

neous data of phosphatitidyl-inositol 4,5-bisphosphate head-

groups interacting with the individual PLC-d1.

APPENDIX

Single fluorophore detection algorithm

We assume that video data consist of a sequence of pixilated images

obtained using continuous or time-lapse imaging. The intensity at a given x,y

pixel coordinate varies as a function of time, t, f(x,y,t) and at the high mag-

nifications used, individual fluorophores give a Gaussian-shaped intensity

profile in the x-y plane that extends over a number of pixels (Fig. 1 A).

Fluorescence intensity recorded on these pixels will change in a correlated

way when a fluorescent object appears or disappears on the image. Camera

noise has a high spatial frequency and adjacent pixels are affected in an

uncorrelated way. This means that low-pass or smoothing filters (29,30) can

be applied to reduce noise. Low-pass filtering can be implemented either

using Fourier methods, or by local averaging. We employed an averaging

method that gives a resulting pixel intensity g(x,y) corresponding to the local

mean of pixels in a surrounding area, S. The dimensions of S approximate

the size of a single fluorophore image, which has a diffraction-limited PSF of

known size. Assuming that the image pixels are square, S should have equal

dimensions in the x-y plane and for computational ease, should be set to the

nearest odd number (3, 5, 7. . .) of pixels that satisfy the PSF size re-

quirement. For example, our imaging system gives a diffraction-limited PSF

with FWHM;300 nm at the object plane, this corresponds to 3 linear pixels

at the imaging plane. So, an area, S, of 53 5 pixels is used to capture.90%

of the intensity emanating from a single fluorophore (i.e. about twice the

FWHM). The averaging function can be expressed as Eq. 1.

gðx; yÞ ¼ 1

S
2 +

y1ðS�1Þ=2

y�ðS�1Þ=2
+

x1ðS�1Þ=2

x1ðS�1Þ=2
f ðx; yÞ: (1)

The intensity distribution produced by an ideal single fluorophore is the

same as the PSF of the imaging system and this can be directly measured

using control specimens. Using a template or kernel that matches the known

PSF the pattern can be identified in the images. We experimented with

different arbitrary kernel functions, w(i,j), in an effort to preserve intensity

corresponding to a single fluorophore but reduce camera noise. The kernel

shown in Fig. 1 B gave the best balance between filtering characteristics and

computational speed. The kernel operation computes the normalized product

of f(x,y) and w(i,j), where, N, is the normalization factor and g(x,y) is the out-

put value. The operation is repeated over all pixels in the image (see Eq. 2):

gðx; yÞ ¼ 1

N
+

y1ðS�1Þ=2

y�ðS�1Þ=2
+

x1ðS�1Þ=2

x�ðS�1Þ=2
½f ðx; yÞ3wði; jÞ�: (2)

In real-life imaging applications, noise of low spatial and temporal fre-

quency is also a problem. This arises from uneven spatial illumination of the

specimen, temporal variation in the background signal (e.g., photobleaching

of cell autofluorescence), or spatiotemporal fluctuations produced by large

fluorescent objects drifting across the field of view (see, e.g., Fig. 6 A). To
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correct for these less well-characterized sources of noise, average fluores-

cence in an area, S9, immediately surrounding the area, S, (centered at x,y)

was subtracted. The kernel shown in Fig. 1 C performs the combined

operation of averaging within the area S together with local background

subtraction using the immediate surrounding region S9. The result of this

operation should give unity gain, band-pass spatial filtering. Further temporal

normalization can give dynamic black-level restoration. Modern personal

computers perform floating-point arithmetic with sufficient speed to make this

type of filter suitable for large video data records. For example, our data

records are of the order 2 Gb; consisting of ;1000 frames at 1000 3 1000

pixels, digitized at 12-bit resolution. The filtering operations require a few

minutes to complete.

The next phase of the SFDA is to specifically identify single fluorophore

signals from other signals, including those arising from clusters of multiple

fluorophores. We know that a single fluorophore will emit a steady number

of photons per second under constant illumination before it suddenly and

irreversibly photobleaches. So, we expect the signal to exhibit a stepwise

drop in intensity to background level that is correlated amongst pixels in the

area S, (Fig.1, E and F, (upper) show typical experimental observations).

Provided the fluorophore does not move in the x-y plane during data col-

lection, then a temporal ‘‘edge detection’’ algorithm can be used to automate

identification of such events in a sequence of video data. The best approach

is to compute the derivative of the intensity data for each pixel in time.

However, because the derivative is very sensitive to noise (29) it should be

computed after the filtering operation. Different weightings can be used

(e.g., Prewitt or Sobel filters) and window size (measured as the number of

frames, L) can be scaled to suit the background noise characteristics. The

optimized kernel, v(t), used for our data records is shown in Fig. 1 D. This

was used to find the local derivative of intensity data at pixel, g(x,y,t), from

the immediately preceding and subsequent pixel data. The computational

operation is given in Eq. 3.

dðx; y; t9Þ ¼ +
L

t

½gðx; y; tÞ3 vðtÞ�: (3)

The kernel v(t) of length, L, is moved along the time axis to give d(x,y,t9) for
pixels in the resulting three-dimensional image. Positive d-values represent

sudden drops and negative values sudden rises in pixel intensity (Fig. 1, E
and F (lower)). The most positive value of d(x,y,t9) calculated in area around
every pixel(x,y) is stored in so-called ‘‘drop mask’’, dd(x,y), which has the

sizes of original image f (e.g., Fig. 5 B). The most negative value of d(x,y,t9)
is stored in the corresponding position of so-called ‘‘rise mask’’, dr(x,y).
These values are stored together with the time at which these transitions

occur. The dd and dr arrays can be visualized by representing values on a

pseudocolor intensity scale (please note that dr values should be inversed to

show absolute values). This reveals localized spots with the same shape and

size as the single fluorophore intensities in the original intensity data records,

f(x,y) (e.g., Fig. 5 B). However, the data represented in this way have a much

higher signal/noise ratio and can be readily thresholded to yield a mask

representing the (x,y,t) coordinates at which individual fluorophores appear

and disappear (Fig. 5 C). Fluorophores that appear during a record can

therefore be separated from those that were present right from the very start

of the record (see Fig. 1, E and F). Furthermore, by using the unthresholded

‘‘drop’’ and ‘‘rise’’ masks, d(x,y), the location of the central pixel can be

computed either by finding the local maximum value or by more sophisticated

centroid fitting to give subpixel resolution localization (22,31) (Fig. 5 E).
Knowing the x,y centroid of each individual fluorophore the original

time-series intensity data averaged over its occupied area, S, (i.e., g(x,y)) is

then extracted from the original video record. Intensity data can be corrected

for local background variation by subtracting intensity data from the

surrounding region S9 (as described earlier). To perform further statistical

testing of the data it is useful to calculate the variance (v) of the signal during

intervals of high (vhigh) and low (vlow) fluorescence (Eqs. 4 and 5). This

analysis allows one to test if the background intensity (glow) and putative

fluorophore signal (ghigh) are statistically significantly different.

vhighðx; yÞ ¼ 1

thigh � 1
+
thigh

½gðx; y; tÞ � ghighðx; yÞ�2 (4)

vlowðx; yÞ ¼ 1

tlow � 1
+
tlow

½gðx; y; tÞ � glowðx; yÞ�2: (5)

The calculated ghigh(x,y), glow(x,y), vhigh(x,y), and vlow(x,y) values give a

statistical measure of the SNR (16), I, and this can be set as a thresholding

parameter to discriminate between real and false objects (Fig. 5D and Eq. 6):

Iðx; yÞ ¼ ghighðx; yÞ � glowðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vhighðx; yÞ1 vlowðx; yÞ

p : (6)

Because I(x,y) measures the change in signal level relative to the combined

background and signal variances its value gives a more meaningful estimate

of signal/noise than if background noise level was considered alone. We

found a common problem encountered in live-cell imaging experiments is

that discrete background fluorescent material and cell autofluorescence can

produce short-lived ‘‘false’’ events that contribute additional noise. To deal

with this problem, events lasting less than a minimum duration, tmin, were

excluded. A consequence of this is that a proportion of ‘‘real’’ (but short-

lived) events will also be excluded, along with the false events. The number

of missing real events that are erroneously excluded because they last,tmin

can be estimated by extrapolating the lifetime distribution plots obtained

from analysis of the long-lived events (data not shown), which we detect

with more certainty, or alternatively by analysis of simulated or modeled

data sets (see Results section above) in which we know a priori what is noise

and what is signal. Clearly, relying solely on simulated data sets can lead to

circularity in the arguments, so we have used both approaches.

The final part of the SFDA algorithm is to output information about all of

the detected objects (whose I value is above a certain threshold, e.g., 95%

certainty) including all the raw data; fluorescence intensity, timing, and x,y
coordinates. This is stored in an output format suitable for further analysis in

statistical packages or Excel spreadsheets.

Automatic single particle tracking

The first phase of the ASPT works by pattern-matching regions of the image

to the known PSF of a single fluorophore. The software compares the area

around every pixel with a kernel composed of a two-dimensional represen-

tation of the idealized single fluorophore PSF. The idealized kernel, w(i,j), is

constructed from real data, obtained from the averaged signal produced by a

single fluorophore or, is generated from a Gaussian function (Eq. 7) that

approximates the PSF using d determined by averaging the images of real

single fluorophores (Fig. 2 A, inset).

wði; jÞ ¼ 1

2pd
2 e

�i
2 1 j

2

2d
2

� �
: (7)

The local mean-squared deviation to this test kernel (scaled to its best-fit

amplitude) was calculated for every pixel (Eq. 8). We found that the kernel

size (e.g., test area) should be;33 the PSF, FWHM size; in our case this was

113 11 pixels (;13 1mm). Each pixel in the image is therefore tested for its

goodness-to-fit to an idealized fluorophore centroid. This gives a new image

q(x,y) in which every pixel intensity value is now set to the inverse mean-

squared deviation to an idealized single fluorophore image (see Fig. 2 B)

qðx; yÞ ¼ gðx; yÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

+
y1 ðS�1Þ=2

y�ðS�1Þ=2
+

x1 ðS�1Þ=2

x�ðS�1Þ=2
½f ðx; yÞ � wði; jÞ�2

 !
=N

vuut :

(8)

By thresholding the q(x,y) data (Qmin), a list of identified objects can then be

stored. The procedure is then repeated for all images in the video sequence.
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The second phase of the ASPT routine links object coordinates in

adjacent video frames using a nearest-neighbor algorithm. Essentially, each

identified object is linked to an object on the adjacent (i.e., subsequent or

preceding) frame on the basis of its being the nearest new x,y coordinate. A
maximum displacement of radius, rmax, limits the range of possible

movement between two observation points. Two different methods can be

used to find the nearest neighbor: 1), Pixels are searched within a radius,

rmax, around the current x,y coordinate on the current image frame (Fig. 2 B,
inset). The closest object found on the following frame is linked to the

current object. If no object is found, then the object track is terminated. 2),

The distances between all objects on adjacent frames is used to identify the

closest objects between frames; if the distance exceeds rmax, then the track is

terminated.

It is important to adjust imaging conditions so that the average distance

between nearest fluorescent molecules within a single frame is significantly

larger than rmax. This is achieved by increasing the imaging rate or by

choosing specimens that have fewer fluorescent objects per unit area. The

second nearest-neighbor algorithm works much faster than the first one if the

density of objects is low and rmax is big. For example: if we have 10–20

objects per 100 3 100 pixels area and predicted r is equal to 10–12 pixels.

However, if we have 100–200 objects per 1003 100 pixels area and rmax is

equal to 1–2 pixels then the first method is significantly faster.

Occasionally, objects ‘‘drop out’’ from one or more adjacent frames and

then reappear, presumably due to fluorophore blinking and this gives rise to

‘‘orphan’’ tracks. These tracks can be manually restored in later analysis but

were usually discarded on the basis that a valid track must contain more than

some minimal number of observation points (nmin). We found that setting

nmin ¼ 10 data points, worked well to reduce the number of ‘‘false’’ tracks

caused by noise. During the first pass of the ASPT algorithm fluorophores

are identified on the basis of their size, shape, and intensity (Eq. 8). During

the second pass, a nearest-neighbor tracking procedure generates the x,y,t

coordinates of each fluorophore track. The original intensity data, f(x,y,t), are

then used to refine estimates of fluorophore positions with subpixel res-

olution. This is done in the same way as for the SFDA routine (described

above) (31). Finally, to discriminate between single fluorophores and small

multifluorophore clusters (with the same limiting PSF) the original intensity

data are inspected to ensure that each object exhibits single-step appearance

and disappearance (photobleaching) and has an average intensity similar

to that of known single fluorophores measured in our in vitro control

specimens.
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