Glycoprotein 5 of porcine reproductive and respiratory syndrome virus strain SD16 inhibits viral replication and causes G2/M cell cycle arrest, but does not induce cellular apoptosis in Marc-145 cells

Yang Mua,b, Liangliang Lia,b, Beibei Zhanga,b, Baicheng Huanga,b, Jiming Gaoa,b, Xiangpeng Wanga,b, Chengbao Wanga,b, Shuqi Xiaoa,b, Qin Zhaoa,b, Yani Suna,b, Gaiping Zhanga,c, Julian A. Hiscoxa,d, En-Min Zhoua,b,*

a Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A\&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
b Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture of the People\textquotesingle s Republic of China, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
c College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
d Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK

* Corresponding author at: Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A\&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.

E-mail addresses: muyang@nwuaf.edu.cn (Y. Mu), lifeiyang2007@126.com (L. Li), diana851218@163.com (B. Zhang), hhcbf228@163.com (B. Huang), jiminggao2006@163.com (J. Gao), wangxiangpeng2003@126.com (X. Wang), wangchengbao126.com (C. Wang), shqxiao@163.com (S. Xiao), qinzhaow2004@sina.com (Q. Zhao), yanisun_2005@sina.com (Y. Sun), Zhanggaiping2003@yahoo.com.cn (G. Zhang), julian.hiscox@liverpool.ac.uk (J.A. Hiscox), zhouem@nwuaf.edu.cn (E.-M. Zhou).

\begin{abstract}
Cell apoptosis is common after infection with porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV GP5 has been reported to induce cell apoptosis. To further understand the role of GP5 in PRRSV induced cell apoptosis, we established Marc-145 cell lines stably expressing full-length GP5, GP5\textsubscript{84-96} (aa 84-96 deletion), and GP5\textsubscript{97-119} (aa 97-119 deletion). Cell proliferation, cell cycle progression, cell apoptosis and virus replication in these cell lines were evaluated. Neither truncated nor full-length GP5 induced cell apoptosis in Marc-145 cells. However, GP5\textsubscript{84-96} inhibited the replication of PRRSV in Marc-145 cells through induction of IFN-\beta. These findings suggest that PRRSV GP5 is not responsible for inducing cell apoptosis in Marc-145 cells under these experimental conditions; however it has other important roles in virus/host cell biology.

© 2015 Elsevier Inc. All rights reserved.
\end{abstract}

\section*{Introduction}

Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of porcine reproductive and respiratory syndrome (PRS), which has become one of the most economically significant swine diseases worldwide. PRRSV is an enveloped, positive-sense, single-stranded RNA virus. It belongs to the family Arteriviridae, which also includes equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV) (Snijder and Meulenberg, 1998). PRRSV is further classified into two distinct genotypes, North American and European types, represented by the prototypes VR-2332 (Collins et al., 1992) and Lelystad virus (LV) (Wensvoort et al., 1991), respectively. In recent years, highly pathogenic PRRSV strains belonging to the North American genotype have emerged in China (Tian et al., 2007; Wang et al., 2012a).

The PRRSV genome is approximately 15 kb in length and contains 10 open reading frames (ORFs). ORF1a and ORF1b encode polyproteins that are processed into 14 non-structural proteins (nsp) by viral proteases (Fang and Snijder, 2010). ORF2a, ORF3 and ORF4 encode the glycosylated membrane associated minor structural proteins GP (2a), GP3 and GP4, respectively (Music and Gagnon, 2010). ORF2b encodes 2b protein, a non-glycosylated structural protein which is virion associated and the principal product of ORF2 (Wu et al., 2001). ORF5, ORF6 and ORF7 encode three major structural proteins, GP5, M and N protein, respectively, GP5a, referred to as ORF5a protein, is a novel structural protein encoded by an alternative ORF of the subgenomic mRNA encoding GP5 and is incorporated into the virion (Firth et al., 2011; Johnson et al., 2011).
PRRSV has been reported to induce cell apoptosis both in vivo and in vitro (Choi and Chae, 2002; Kim et al., 2002; Lee and Kleiboeker, 2007; Miller and Fox, 2004; Sirinarumitr et al., 1998; Sur et al., 1998). GP5 was reported to be responsible for inducing cell apoptosis in BSC-40 cells (Fernandez et al., 2002; Suarez et al., 1998). In contrast, Lee et al. (2004) found that Hela cells stably expressing GP5 did not show evidence of apoptotic cell death and they speculated that the difference might be due to a histidine tag and an antigenic tag placed in the N-terminal of GP5 fusion constructs. Consistent with this report, Ma et al. (2013) demonstrated that none of the PRRSV structural proteins, including GP5, had the potential to cause apoptosis in Marc-145 cells, one of the few cell lines permissive for PRRSV. Rather, non-structural protein (nsp) 2 and nsp4 played causative roles in PRRSV-induced apoptosis in Marc-145 cells. Nsp2 was also shown to accelerate PRRSV replication in Marc-145 cells (Wang et al., 2012b). Thus, the definitive role of GP5 in PRRSV induced cell apoptosis remains largely unknown.

GP5 is approximately 200 amino acids (aa) with an apparent molecular mass of 25 kDa (Dea et al., 2000; Gagnon et al., 2003). The protein consists of three transmembrane domains (TMs) and a hydrophilic C terminus of approximately 70 amino acids (Dokland, 2010; Thaa et al., 2013; Wissink et al., 2012) and plays critical roles in virus assembly, invasion and immune response of PRRSV (Liu et al., 2013; Plagemann, 2004a; Van Breedam et al., 2010; Wissink et al., 2005). A sequence, SHLQYNL, in the first ectodomain of VR2332 was found to be the primary GP5 neutralization epitope and the substitutions of 42It oTa n d38HL to TY blocked the recognition of antibodies to this epitope (Plagemann, 2004b).

Fernandez et al. (2002) suggested that the first 119 amino acids constituted a region capable of fully inducing apoptosis. In the present study, three recombinant plasmids, designated pPB-GP5 (full-length GP5), pPB-GP5Δ97-119 (truncated GP5 with a deletion of aa 97-119), and pPB-GP5Δ84-96 (truncated GP5 with a deletion of aa 84-96), were constructed and transfected into Marc-145 cells to generate the corresponding Marc-145-GP5, Marc-145-GP5Δ97-119 and Marc-145-GP5Δ84-96 cell lines (Fig. 1). The selected deletion region of aa 84-119 covers the second ectodomain region of GP5 in which aa 90-119 was included. The cell proliferation, cell cycle progression, cell apoptosis and PRRSV replication in these cells were analyzed. Cellular apoptosis assays indicated that expression of either full-length GP5 or truncated GP5s of PRRSV strain SD16 in Marc-145 cells was incapable of inducing cell apoptosis. Stable expression of full-length GP5 or GP5Δ97-119 had no effect on cell proliferation and cell cycle progression. However, expression of GP5Δ84-96 inhibited Marc-145 cells growth by inducing cell cycle arrest in the G2/M phase. Viral replication was reduced in Marc-145-GP5Δ84-96 cells infected with PRRSV and this corresponded with increased interferon (IFN) expression. These findings provided novel information regarding the role of PRRSV GP5 in PRRSV pathogenesis.

Results

Generation, characterization and validation of GP5, GP5Δ84-96 and GP5Δ97-119 stably expressing cell lines

Marc-145 cells were co-transfected with the donor plasmids pPB-GP5, pPB-GP5Δ84-96, pPB-GP5Δ97-119, or pPB and the helper plasmid, then the transfected cells were screened and cloned. The positive recombinant cell lines were obtained after four weeks puromycin selection and three times subcloning. These cells showed epithelial-like morphology (Fig. 2A) and the specific RT-PCR products were observed from Marc-145-GP5 (603 bp), Marc-145-GP5Δ84-96 (564 bp), and Marc-145-GP5Δ97-119 (534 bp) cells, while no PCR product was observed from Marc-145-GFP cells (Fig. 2B). The protein expression levels of GP5, GP5Δ84-96 and GP5Δ97-119 in their designated cell lines were confirmed by Western blot (Fig. 2C). The Western blot results showed two bands which are consistent with what would be expected for the different glycosylated forms of GP5 (Dea et al., 2000; Gagnon et al., 2003). Confocal microscopy indicated that GP5 and both truncated variations of GP5 localized mainly in the cytoplasm of the cells (date not shown). These results suggested that ORF5 and both truncated forms of ORF5 were stably integrated into genome of Marc-145 cells and subsequently expressed within the cells as a stable protein.

Cell proliferation is slowed in Marc-145-GP5Δ97-119 cells

Growth of Marc-145-GP5, Marc-145-GP5Δ84-96 and Marc-145-GFP cell lines was similar to that of their parental Marc-145 cell line as shown in Fig. 3A and cell proliferation increased rapidly at 48–96 h. However, Marc-145-GP5Δ97-119 cells proliferated significantly slowly compared to Marc-145 cell line (p < 0.05). This was further confirmed by the population doubling time (PDT) of those cell lines. There was no difference in PDT of Marc-145-GP5, Marc-145-GP5Δ84-96, Marc-145-GFP and Marc-145 at 48 h, 72 h, 96 h, and 120 h, but PDT of Marc-145-GP5Δ97-119 increased significantly at 72 h, 96 h, and 120 h (Fig. 3B). Overall, Marc-145-GP5Δ97-119 displayed slower proliferation activity. Each cell line was cultured for 60 passages in the absence of puromycin without obvious changes to the protein expression levels (data not shown).

Expression of GP5Δ97-119 protein induces cell cycle arrest at the G2/M phase

The possible reason of the growth retardation of Marc-145-GP5Δ97-119 cells was examined by flow cytometry analysis. The results showed that the G2/M phase cell numbers of Marc-145-GP5Δ97-119 cells were significantly higher than those of other cell lines (Fig. 4).

Fig. 1. Predicted PRRSV SD16 GP5 transmembrane structure and plasmid construction. (A) The transmembrane regions of PRRSV SD16 GP5 were predicted according to its full length sequence. The amino acid sequences are divided into a signal peptide region (aa 1 to 32), and the mature chain region (aa 33 to 200). The mature chain contains three transmembrane (TM) elements (TM1 from aa 64 to 80, TM2 from aa 82 to 88, and TM3 from aa 109 to 124). (B) The constructed plasmids that express GP5 or truncated GP5s of PRRSV strain SD16 were amplified from full length ORF5 fragment and then fusions of A and B, or C and D were amplified using PCR. Recombinant plasmids, pPB-GP5 (expressing the full length GP5 of PRRSV SD16), pPB-GP5Δ84-96 (expressing truncated GP5 with a deletion of aa 84-96), and pPB-GP5Δ97-119 (expressing truncated GP5 with a deletion of aa 97-119), were constructed by inserting the target gene fragments into the PB transposon vector. The blank areas represent the deleted segments.
Expression of GP5 or truncated GP5 of PRRSV strain SD16 does not induce cell apoptosis

The apoptotic indexes (AI) of Marc-145-GP5, Marc-145-GP5Δ84-96, Marc-145-GP5Δ97-119, and Marc-145-GFP cells were calculated according to the ratio between the expression of Bax and Bcl-2. As shown in Fig. 5A, in Marc-145 cells infected with PRRSV SD16 at 1 MOI, the apoptotic indexes were 0.37 ± 0.03 at 24 h, 1.36 ± 0.03 at 48 h, and 2.96 ± 0.09 at 72 h postinfection. The apoptotic indexes for Marc-145-GP5, Marc-145-GP5Δ84-96, Marc-145-GP5Δ97-119, and Marc-145-GFP cells after 24 h in culture were 0.71 ± 0.06, 0.70 ± 0.04, 0.91 ± 0.01, and 0.70 ± 0.17, respectively. All cell lines showed a decrease in apoptotic index compared to control cells. Although the apoptotic indexes of all cell lines changed to varying degrees when continuing cell culture to 72 h, Marc-145 cells infected with PRRSV SD16 were the only cells to show a significant increase in apoptotic index. To further confirm whether stably expressed GP5 or truncated GP5 induces cell apoptosis, the cleaved caspase-3 was detected by Western blot. The cleaved caspase-3 (approximately 17 kDa) was only detected in Marc-145 cells infected with PRRSV SD16 but not from un-infected Marc-145, Marc-145-GP5, Marc-145-GP5Δ84-96, Marc-145-GP5Δ97-119, or Marc-145-GFP cell lines cultured to 72 h (Fig. 5B). Additionally, DNA degradation into oligonucleotide fragments showing cell apoptosis was detected by agarose gel electrophoresis. The results revealed that DNA fragmentation was observed only in Marc-145 cells infected with PRRSV SD16, but not in other cell lines (Fig. 5C). Furthermore, when the cell lines were treated with the Apoptosis Inducers (Beyotime, China) or infected with PRRSV SD16, the cleaved caspase-3 was detected from all cell lines which indicated these cell lines were equally susceptible (Figs. 5D and S3). Together, these data indicate that the expression of GP5 or truncated GP5 of PRRSV strain SD16 did not induce cell apoptosis in Marc-145 cells.

Expression of GP5 or truncated GP5 of PRRSV strain SD16 does not induce cell apoptosis

The apoptotic indexes (AI) of Marc-145-GP5, Marc-145-GP5Δ84-96, Marc-145-GP5Δ97-119, and Marc-145-GFP were calculated according to the ratio between the expression of Bax and Bcl-2. As shown in Fig. 5A, in Marc-145 cells infected with PRRSV SD16 at 1 MOI, the apoptotic indexes were 0.37 ± 0.03 at 24 h, 1.36 ± 0.03 at 48 h, and 2.96 ± 0.09 at 72 h postinfection. The apoptotic indexes for Marc-145-GP5, Marc-145-GP5Δ84-96, Marc-145-GP5Δ97-119, and Marc-145-GFP cells after 24 h in culture were 0.71 ± 0.06, 0.70 ± 0.04, 0.91 ± 0.01, and 0.70 ± 0.17, respectively. All cell lines showed a decrease in apoptotic index compared to control cells. Although the apoptotic indexes of all cell lines changed to varying degrees when continuing cell culture to 72 h, Marc-145 cells infected with PRRSV SD16 were the only cells to show a significant increase in apoptotic index. To further confirm whether stably expressed GP5 or truncated GP5 induces cell apoptosis, the cleaved caspase-3 was detected by Western blot. The cleaved caspase-3 (approximately 17 kDa) was only detected in Marc-145 cells infected with PRRSV SD16 at 1 MOI but not from un-infected Marc-145, Marc-145-GP5, Marc-145-GP5Δ84-96, Marc-145-GP5Δ97-119, or Marc-145-GFP cell lines cultured to 72 h (Fig. 5B). Additionally, DNA degradation into oligonucleotide fragments showing cell apoptosis was detected by agarose gel electrophoresis. The results revealed that DNA fragmentation was observed only in Marc-145 cells infected with PRRSV SD16, but not in other cell lines (Fig. 5C). Furthermore, when the cell lines were treated with the Apoptosis Inducers (Beyotime, China) or infected with PRRSV SD16, the cleaved caspase-3 was detected from all cell lines which indicated these cell lines were equally susceptible (Figs. 5D and S3). Together, these data indicate that the expression of GP5 or truncated GP5 of PRRSV strain SD16 did not induce cell apoptosis in Marc-145 cells.
Expression of GP5\(^{Δ84-96}\) inhibits PRRSV replication in Marc-145 cells

To determine the influence of GP5 or truncated GP5 expression on PRRSV replication, all cell lines were infected with PRRSV strain SD16 at 1 MOI and cells were collected at 24 h, 36 h, 48 h, 60 h and 72 h after infection. PRRSV N gene copy numbers in each cell line were quantified using qRT-PCR. The N gene copy numbers in Marc-145-GP5\(^{Δ84-96}\) cells decreased significantly from 24 h to 72 h in comparison to those in Marc-145 cells \((p < 0.001, \text{Table 2})\). In addition, PRRSV replication was lower in Marc-145-GP5\(^{Δ84-96}\) cells at all time points assessed than that in other cell lines by measuring virus titers in the cell culture supernatant. At 36 h post-infection, the virus titer in Marc-145-GP5\(^{Δ84-96}\) cells was significantly lower than that in other cell lines (\(p < 0.05\)).

\[G0/G1: \text{G2/M:} \]
Marc-145 cells was $10^6.21$ TCID$_{50}$/mL, but in Marc-145-GP5$^{Δ84-96}$ cells it was only $10^3.92$ TCID$_{50}$/mL (Table 2).

Western blot analysis of the abundance of the N protein at 36 h post-infection showed that the level of N protein expression was lower in Marc-145-GP5$^{Δ84-96}$ than that in other cell lines with α-tubulin expression remained constant (Fig. 6). The observation of CPE and an IFA analysis of the PSSRV N protein expression at 36 h post-infection also supported that PRRSV replication was inhibited in Marc-145-GP5$^{Δ84-96}$ cells (Fig. S1).

Expression of GP5$^{Δ84-96}$ inhibits the replication of several PRRSV strains in Marc-145 cells

To determine whether the inhibition of PRRSV replication in Marc-145 GP5$^{Δ84-96}$ cells is strain specific, these cells were further infected with PRRSV strains VR-2332 and JXA1. The appearance of CPE and the results of IFA for N protein expression at 36 h post-infection indicated that the replication of these PRRSV strains was also inhibited to some degree in Marc-145-GP5$^{Δ84-96}$ cell line (Fig. S2A). However, only the replication of SD16 was inhibited significantly (4.13 ± 0.10 in Marc-145-GP5$^{Δ84-96}$ VS 5.29 ± 0.26 in Marc-145-GFP, $p=0.0039$), shown by detection of virus titers in the supernatant at 48 h post-infection (Fig. S2B).

Expression of GP5$^{Δ84-96}$ induces interferon expression in Marc-145 cells

The relative expression of IFN-α, β and γ was quantified with qRT-PCR using the 2$^{-ΔΔCt}$ method. The results showed a 2-fold increase of IFN-β mRNA expression levels in Marc-145-GP5$^{Δ84-96}$ cells than that in Marc-145 cells (Fig. 7A). However, after infected with PRRSV SD16 for 48 h, the relative mRNA expression levels of IFN-α and IFN-β were increased 3-fold and 148-fold, respectively, in Marc-145-GP5$^{Δ84-96}$ than that in Marc-145 cells (Fig. 7B). The increase of IFN-β mRNA levels was also detected in Marc-145-GP5$^{Δ84-96}$ cells infected with PRRSV strains VR-2332 or JXA1 (Fig. 7C). Collectively, these data suggest that IFN-α and IFN-β up-regulation may be responsible for the inhibition of replication of PRRSV in Marc-145 GP5$^{Δ84-96}$ cells.

Discussion

The underlying mechanism of PRRSV infection is poorly understood. In this study, we investigated the role of PRRSV GP5 and truncated GP5 with aa 84-96 and aa 97-119 deletion in cell apoptosis, cell cycle progression, and PRRSV proliferation. Our results demonstrated that PRRSV strain SD16 GP5 or truncated GP5s could not induce apoptosis in Marc-145 cells. Additionally, we confirmed that PRRSV GP5 plays a positive role in PRRSV replication, and further study showed that the intracellular region of aa 84-96 in GP5 was important for virus infection.

Increasing amounts of evidence indicate that viral infection and the expression of viral proteins cause the host cell to arrest at certain phase to create a favorable environment for viral replication and progeny virus production (Dove et al., 2006; Xu et al., 2005; Zhao and Elder, 2005). Avian reovirus (ARV) infection and ARV p17 transfection resulted in the accumulation of infected and/or transfected cells in the G2/M phase of the cell cycle (Chulu et al., 2010). HIV Vpr protein induces cell cycle arrest in the G2/M phase and is thought to benefit viral proliferation by providing an optimized cellular environment and a blockade against the host immune responses (Li et al., 2010). In this research, the overall growth kinetics of Marc-145-GP5, Marc-145-GP5$^{Δ84-96}$ and Marc-145-GP5cell lines were similar to that of their parental Marc-145 cells; however, Marc-145-GP5$^{Δ97-119}$ cells proliferated more slowly than the other cell lines with the fact that Marc-145-GP5$^{Δ97-119}$ cell line had significantly more cells in the G2/M phase compared to the Marc-145 and Marc-145-GFP cell lines. These results indicate that the slower proliferation of Marc-145-GP5$^{Δ97-119}$ is caused by inducing cell cycle arrest at the G2/M phase.

Apoptosis has been proposed as an immediate host defense response upon viral infections, or it may serve as a viral pathogenic strategy to maximize virus progeny. PRRSV infection can induce cell apoptosis in alveolar macrophages, porcine intravascular monocytes, lymphocytes and testicular germ cells of infected pigs, which corresponds to a sharp reduction in these cell numbers in PRRSV positive swine (Costers et al., 2008; Gomez-Laguna et al., 2013; Sirinarumitr et al., 1998; Suarez, 2000; Sur et al., 1997). Using GP5 expressed by a recombinant vaccinia virus, GP5 was reported to be responsible for apoptosis induced by PRRSV infection (Fernandez et al., 2002; Suarez et al., 1996). However, these findings have not been supported by subsequent work. Lee et al. (2004) showed that GP5 could not induce apoptosis, and speculated that the difference might be due to a histidine tag and an antigenic tag placed in the N-terminal of GP5 fusion constructs. Using pcDNA3.1(+) vector to transfect Marc-145 cells, it was found that none of the PRRSV structural proteins, including GP5, had the potential to cause apoptosis (Ma et al., 2013). In our study, Piggylac™ Transposon Vector System in which the exogenous genes expressed in the transposed cells are independent was used (Wang et al., 2013). Our findings were consistent with that of Lee et al. (2004) and Ma et al. (2013), showing that full length or truncated GP5 does not cause apoptosis when stably expressed in Marc-145 cells.

Bcl-2 is an important proto-oncogene which was the first gene implicated in the regulation of apoptosis. Its protein is able to prevent apoptosis, facilitating cell survival independent of promoting cell division. Bax (Bcl2-associated X protein) is the most characterized death-promoting member of the Bcl-2 family. Apoptosis tendency can be estimated by an apoptotic index (AI) which can be represented by the ratio between Bax/Bcl-2 expression (Amaral et al., 2011; Salakou et al., 2007). Samples with AI higher than 1 were regarded as having higher apoptotic activity than samples exhibiting an AI lower than 1. In this study, although the apoptotic indices of the cell lines changed to varying degrees when continuing culture to 72 h, the only significant increase was in Marc-145 cells infected with PRRSV SD16 (Fig. 5A). This suggested that PRRSV infection induced an apoptotic tendency in Marc-145 cells, but stable expression of PRRSV GP5 or truncated GP5s in Marc-145 cells alone did not induce this tendency.

PRRSV has been reported to induce apoptosis through caspase-mediated pathways (Lee and Kleiboeker, 2007). Signal cascades activated by the extrinsic and intrinsic pathways converge on caspase-3 which is one of the executioner caspses. Our study confirmed that cleaved caspase-3 could not be detected in Marc-145, Marc-145-GP5, Marc-145-GP5$^{Δ84-96}$, Marc-145-GP5$^{Δ97-119}$ and Marc-145-GFP cells at time points up to 72 h in culture (Fig. 5B). Electrophoresis results also revealed that no typical changes in DNA fragmentation were observed in the lanes of Marc-145, Marc-145-GP5, Marc-145-GP5$^{Δ84-96}$, Marc-145-GP5$^{Δ97-119}$, and Marc-145-GFP cells, showing that GP5 and truncated GP5s could not induce the
degradation of DNA into fragments (Fig. 5C). However, Marc-145 cells infected with PRRSV SD16 did exhibit DNA fragmentation. When those cell lines were treated with Apoptosis Inducer for 18 h, the cleaved caspase-3 was detected from all cell lines indicating that insertion of the vector system gene did not affect the apoptotic system of the cell lines (Fig. 5D). When these cell lines were infected with PRRSV SD16 strain at 1 MOI for 60 h, the cleaved caspase-3 was increased in Marc-145-GP5Δ84-96 (Fig. S3), which may be due to that GP5Δ84-96 expression inhibited PRRSV replication and after 60 h infection, more cells were in apoptosis; in contrast, most cells of other cell lines had died. This collective data suggests that expression of PRRSV strain SD16 GP5 or truncated GP5s does not induce apoptosis in Marc-145 cells.

GP5 plays critical roles in the assembly, invasion and immune response of the PRRSV particle (Liu et al., 2013; Wissink et al., 2005). Using our GP5 expressing Marc-145 cell lines, we investigated possible changes in virus replication. PRRSV N gene copy numbers in Marc-145-GP5Δ84-96 decreased significantly compared to Marc-145 cells at all-time points analyzed. The viral titers demonstrated that PRRSV replicated more slowly in Marc-145-GP5Δ84-96 at all-time points, and more rapidly in Marc-145-GP5Δ97-119, compared to control cells at early stages after PRRSV infection (Table 2). Western blot analysis showed that N protein expression increased in Marc-145-GP5 and decreased in Marc-145-GP5Δ84-96 at 36 h post-infection (Fig. 6). The appearance of specific CPEs, and IFA analysis of N protein expression at 36 h post-infection, further confirmed that PRRSV SD16 replication was inhibited in Marc-145-GP5Δ84-96 cells (Figs. S1 and S2). When Marc-145-GP5Δ84-96 cells were infected with PRRSV VR-2332, or JXA1, the appearance of CPE, and IFA analysis of N protein expression at 36 h post-infection (Fig. S2B), again indicated that expression of GP5Δ84-96 could inhibit PRRSV replication in a non-strain specific manner.

The region consisting of aa 84-119 includes the second extracellular region and parts of the intracellular region of GP5 (Fig. 1). Dea et al. (2000) shows that GP5 possesses two to four potential N-linked glycosylation sites that are located in a small ectodomain, and Wei et al. (2012) found that N-linked glycosylation of GP5 was critically important for virus replication in vivo. In our Marc-145-GP5Δ84-96 cell line, PRRSV replication was inhibited significantly, but in our Marc-145-GP5Δ97-119 cell line, the influence on PRRSV replication was not obvious (Table 2). We speculate that there are some key sites in the region of aa 84-119 specifically that have an important influence on virus replication. Further studies are needed to elucidate this problem.

Previous studies have demonstrated that IFN-α, β and γ have an antiviral effect against PRRSV (Bautista and Molitor, 1999; Luo et al., 2011; Overend et al., 2007; Yang et al., 2013). Consistent with
this, in the present study, a 2-fold increase of IFN-β mRNA expression was observed in Marc-145-GP5Δ84-96 cells (Fig. 7A) and after PRRSV strain SD16 infection IFN-α and IFN-β expression levels were increased 3-fold and 48-fold, respectively (Fig. 7B). This effect was not specific to viral strain and was replicated following infection with VR-2332 or JX1. In each case, interferon expression, especially IFN-β expression, was up-regulated significantly (Fig. 7C). These findings suggest that stable expression of GP5Δ84-96 may inhibit PRRSV replication by up-regulating interferon. However, more studies are required to further examine the induction of cytokines and their role in PRRSV replication in Marc-145-GP5Δ84-96 cells.

In summary, our results show that the stable expression of GP5 or truncated GP5s (GP5Δ84-96 or GP5Δ97-119) of PRRSV strain SD16 did not induce apoptosis in Marc-145 cells. However, each truncated form of GP5 was shown to have unique effects on Marc-145 cells. Stable expression of PRRSV GP5Δ97-119 inhibits Marc-145 cell growth by inducing cell cycle arrest at G2/M phase. Expression of GP5Δ84-96 can inhibit replication of multiple strains of PRRSV in Marc-145 cells. This inhibition may be induced by up-regulating interferons, particularly IFN-β. This study provides novel insight into the function of the PRRSV GP5 protein which will be helpful for further understanding the molecular mechanisms of PRRSV pathogenesis.

Materials and methods

Cell lines, viruses and antibodies

Marc-145 cells were purchased from the China Center for Type Culture Collection (CCTCC) and cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with high glucose (Life Technologies Corporation, USA) supplemented with 10% fetal bovine serum (FBS) (Gibco BRL, USA) and 1% antibiotics-antimycotic (Life Technologies Corporation, USA). The PRRSV strains used were VR-2332 (GenBank: EF536003.1) and two highly pathogenic PRRSV isolates of SD16 (GenBank: JX087437.1) and JK1 (GenBank: EF112445.1). These viruses were propagated and titrated in Marc-145 cells. A monoclonal anti-PRRSV nucleocapsid (N) antibody 6D10, anti-GP5 mouse serum and anti-PRRSV swine serum were prepared in our laboratory. Anti-α-tubulin antibody was purchased from Sigma-Aldrich (St. Louis, MO). Horse-radish peroxidase (HRP)-conjugated goat anti-mouse IgG, HRP-conjugated goat anti-rabbit IgG, Texas Red-afﬁnityPure goat anti-mouse IgG (H + L) were purchased from Jackson ImmunoResearch (West Grove, PA). Total RNA was extracted from PRRSV SD16 using High Pure Viral RNA Kit (Roche, Swit.) and the full length ORF5 fragment was amplified (primers are listed in Table 1). As shown in Fig. 1B, fragments A, B, C and D were amplified from full length ORF5 fragment and then fusions of A and B, C and D were amplified using overlap PCR. Three recombinant plasmids, pPB-GP5 (expressing full length GP5 of PRRSV SD16), pPB-GP5Δ84-96 (expressing a truncated GP5 with a deletion of aa 84-96), and pPB-GP5Δ97-119 (expressing a truncated GP5 with a deletion of aa 97-119), were constructed by inserting the targeted gene fragments into the site between EcoR I and BamH I restriction enzyme sites of a PB transposon vector of PiggyBac Transposon System Vectors (System Biosciences, USA) and confirmed by sequence analysis (Sangon Biotech, China).

Plasmid construction

Materials and methods

Generation of Marc-145 cell lines stably expressing GP5 or truncated GP5

The piggyBacTM Transposon vector system (System Biosciences, USA) was applied to generate cell lines stably expressing GP5, GP5Δ84-96, GP5Δ97-119 or GFP in Marc-145 cells as described previously (Wang et al., 2013). Briefly, one day before transfection, Marc-145 cells were seeded in 6-well plates at a density of 2 × 10^5 cells/well. When cells reached 80% confluence, they were co-transfected with the donor plasmid and the helper plasmid using X-treme GENE HP DNA Transfection Reagent (Roche, Switzerland,) according to the manufacturer’s instructions. Green fluorescence was observed at 24 h posttransfection. Transfected cells were cultured in fresh medium in the presence of puromycin (Merck, USA) at a concentration of 10 μg/mL for 48 h. Puromycin-selective medium was then replaced every second day. Puromycin-resistant and GFP-positive cell clones appeared after 10 days of puromycin selection. The single cell colonies were sub-cloned and saved as cell stocks. Cell clones were cultured in growth medium in the absence of puromycin to evaluate the stability of exogenous gene expression. This procedure was used to produce the four cell lines, (Marc-145-GP5, Marc-145-GP5Δ84-96, Marc-145-GP5Δ97-119, and Marc-145-GFP), which were used along with Marc-145 control cells in the following studies.

RT-PCR analysis

Transposed Marc-145-GP5, Marc-145-GP5Δ84-96, Marc-145-GP5Δ97-119 and Marc-145-GFP cell lines were examined by RT-PCR to determine the presence of the full length or truncated ORF5 gene as follows. 5 × 10^5 cells were collected and total RNA was extracted using RNAiso plus (Takara, Japan). RT-PCR was performed using 1 μg RNA and M-MLV reverse transcriptase (Takara, Japan) with GP5-F and GP5-R primers (Table 1) and analyzed on 1% agarose gel.

Western blot analysis

All recombinant cell lines were harvested and treated with NP40 lysis buffer (Beyotime, China), and then protein concentrations were determined using the Pierce BCA protein assay kit (Thermo, USA). Equal protein concentrations were loaded and electrophoresed on 12%
SDS-PAGE and then transferred to PVDF membranes (Millipore, USA) using BIO-RAD Mini Trans-blot. The membranes were blocked with 5% non-fat dry milk and then incubated with indicated primary antibodies overnight at 4 °C, followed by HRP-conjugated secondary antibodies. α-tubulin was used as a loading control. The protein bands were visualized using diaminobenzidine (DAB) as the substrate (Tiangen, China).

Confocal microscope analysis

The cells were seeded on slides at a density of 1 × 10^6 cells/slide and cultured 24 h, then fixed with 4% paraformaldehyde for 10 min at room temperature (RT), then washed with PBS and permeabilized with 0.3% triton X-100/PBS for 3 min, washed and then blocked with 5% Bovine Serum Albumin (BSA) in PBS. After washing, the cells were incubated with swine anti-PRRSV serum for 1 h at 37 °C, washed with PBS, and incubated with Texas Red-α-filNiPure goat anti-swine IgG (H+L). Finally, cells were counterstained with 4’, 6-diamidino-2-phenylindole dihydrochloride (DAPI, Sigma), and visualized using confocal microscopy (Nikon A1R, Japan).

Indirect immunofluorescent assay (IFA)

The cells were seeded in 24-well plates and infected with PRRSV at a multiplicity of infection of 1 (1 MOI). Cytopathic effects (CPE) were observed daily as a qualitative measure of infection. Thirty-six hours following PRRSV infection, the cells were fixed with 4% paraformaldehyde for 10 min at RT, then washed with PBS and permeabilized with 0.3% triton X-100/PBS for 3 min, washed and then blocked with 5% BSA/PBS. After washing, the cells were incubated with anti-PRRSV nucleocapsid monoclonal antibody GP5 (RT) and then incubated with PRRSV. The nuclei were stained with DAPI (1 μg/mL RNase A, and 0.1% Triton X-100), then incubated at 4 °C for 30 min. The nuclear DNA content was analyzed by flow cytometry (Beckman Coulter Cytomics Altra, USA).

Analysis of PRRSV replication in Marc-145 cell lines

The cells were seeded in 24-well plates at a density of 5 × 10^4 cells/well, and cultured to reach approximately 80% confluence. PRRSV strains SD16, VR-2332, or JXA1 were used to infect the cells at a multiplicity of infection (MOI) of 1. Viral titers were determined in each of the 5 Marc-145 cell lines using 10-fold serial dilutions. The 50% tissue culture infective dose (TCID50/mL) was calculated using the Reed–Muench method. Total RNA was extracted from collected cells and the PRRSV N gene copies and relative expression levels of IFN-α, IFN-β and IFN-γ were quantified using qRT-PCR.

To quantify PRRSV N gene copies by qRT-PCR, a 144 bp fragment of PRRSV N gene was amplified using primers ORF7-F and ORF7-R (Table 1), the purified PCR product was then cloned into pMD18-T vector (Takara, Japan) and the concentration of plasmid DNA was measured using a multi-volume spectrophotometer system (BioTek Epoch-Tak3, USA). PRRSV viral genomic copy numbers were quantified against a standard curve constructed using serial dilutions of plasmid DNA standards. PRRSV N protein expression levels at 36 h post-infection were detected by IFA and Western blot.

Statistical analysis

Data were expressed as mean ± standard deviation (SD). GraphPad prism 5 was used for statistical analysis. Comparisons between groups were considered statistically significant at p < 0.05. Apoptosis Index (AI) was calculated by the ratio of Bax/Bcl-2 expression.

Authors’ contributions

YM and EMZ conceived and designed the study. YM and LLL executed the majority of the experiments unless otherwise noted. BBZ and XPW constructed the plasmids. BCH and JMG aided in FCAs analysis. CBW, SQX, QZ and YNS participated in PRRSV replication analysis. YM and LLL drafted the manuscript. GPZ, JAH and EMZ revised the manuscript. All authors critically reviewed the manuscript and provided final approval.

Supplementary data associated with this article can be found in Appendix A.

This study was supported by grants from the National Natural Science Foundation of China (No. 31201083), and the Fundamental Research Funds for the Central Universities (2014YB010), awarded to YM, and the National High-Tech R&D Program of China (No. 2011AA10A208) to EMZ.

References

Significant differences versus Marc-145 time-matched control cells are indicated as follows.

* Data represent mean ± SD, n = 3.

p < 0.05.

** p < 0.01.

*** p < 0.001.

Acknowledgments

Yang, Q., Cao, L., Si, J., Sun, Y., Liu, J., Cao, L., Feng, W.H., 2013. Inhibition of porcine reproductive and respiratory syndrome virus replication by flavaspidic acid AB. Antiviral Res. 97, 66–73.
