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Let E be a real Banach space, and let I denote the identity. Recall that an 
an operator A C E x E with domain D(A) and range R(A) is said to be m-accre- 
tive if li(1 + r/l) = E and 1 x1 - x2 [ < / X, - 3c2 + r(y, - y.J for ally, E Axi , 
i = 1, 2, and Y > 0. Let Jt = (I + t&l, t > 0, be the resolvent of A, and 
assume that 0 E R(A). It is known that if E is a Hilbert space, then for each x 
in E, the strong lim t+m Jtx exists and belongs to A-lo. Although this result 
was extended to a restricted class of Banach spaces in [13, 151, it has remained an 
open question whether it is true in, say, the LP spaces, 1 <p < CD, p # 2. In 
the present paper, we provide an affirmative answer to this problem (Theorem 1). 
This positive solution is of special interest because it leads to strong convergence 
results for several explicit and implicit iterative methods (Corollary 2, Theorems 
2 and 3). A similar argument yields a new result on the asymptotic behavior of 
solutions of a certain evolution equation (Theorem 4). Finally, we solve another 
open problem by showing that the strong lim,+, J,.x also exists in, say, all Lp 
spaces, 1 <p < co (Theorem 5). This has been known so far only in Hilbert 
space (and in smooth finite-dimensional &aces). In addition, we identify the 
limits obtained, and point out that our results cannot be extended to all Banach 
spaces. 

THEOREM 1. Let E be a uniformly smooth Banach space, and let A C E x E 
be m-accretive. If  0 E R(A), then for each x in E the strong lim,,, Jtx exists and 
belongs to A-lo. 

Proof. Fix a point x in E and a positive Y. Let C be a bounded closed convex 
separable subset of E that contains x and is invariant under J,. . Let t, - co, 
x, = Jtnx, and y, = (X - xn)/tn . Since A-l0 is nonempty, {x,} is bounded. We 
also have 1 Jpn - x, 1 < r 1 yn I + 0. By [22, Lemma 1.11, there is a sub- 
sequence (x~,} of {xn} such that f(z) = lim,,, / x,,, - z / exists for all x in C. 
Since f  is continuous and convex, it attains its infimum over C. Let 
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K --= {u E C:f(u) = inf{f( z . .a E C>}. If  u E K, thenf(J,u) = lim,-, .Y,!~ - Jru / ). 
:= lim,_, 1 Jr.xnn. - JTu 1 < lim,,, x,,. - u -f(u), so that K is invariant 
under Jr . It is also bounded, closed, and convex. Since weakly compact convex 
subsets of E have the fixed-point property for nonexpansive mappings [2], K 

contains a fixed point of J,. . Denote such a fixed point by V, and let J be the 
duality map of E. Since n E 4~~0, we have, on the one hand, (x, - X, J(x, - v)) 
,( 0 for all n. Since v  E K, we have, on the other hand, 

[22, Lemma 1.2; I]. Therefore (r,,;} converges strongly to V. Finally, assume that 
the strong lim,,, .xnk =: z?r and that the strong lim,,,_, .xD, = ‘ua . Then 
(nr - X, J(vl - ~a)) < 0, (oa ~ 3, J(v2 - ni)) < 0, and vi = Z~ . This com- 
pletes the proof. 

Remark 1. The assumptions on E can be weakened: instead of assuming 
that E is uniformly smooth (equivalently, E* is uniformly convex), we could have 
assumed that E is reflexive with a uniformly Gateaux differentiable norm, and 
that every weakly compact convex subset of E has the fixed-point property for 
nonexpansive mappings. But the result is not true in all Banach spaces, even if A 

is linear [18, p. 3211. We can also replace the assumption that A is m-accretive 
with the assumption that cl(D(A)), the closure of D(A), is convex, and that 
A satisfies the range condition: R(I 1. rA) r> cl(D(A)) for all r > 0. 

Remark 2. If  we denote the strong lim,_, Jtx by Px, then P: E + AmlO is 

the unique sunny nonexpansive retraction of E onto A-10. 

Remark 3. If  A is linear, then J*Y ~= (l/t) s; e ~‘!“S(Y) x dr, where S is the 
semigroup generated by -A. Hence the result follows in this case (in all reflexive 
spaces) from the mean ergodic theorem. In the nonlinear case, this representa- 
tion is no longer valid. We do know [16, 191, however, that if E is uniformly 
convex with a FrCchet differentiable norm, then the integral converges weakly 

asf+cotoazeroofA. 

Remark 4. If  A is zero free, then lim,,, ~ J,x 1 = Q.I for each x in 
E [23]. 

Remark 5. If  A is m-accretive and A-l is bounded, then I - Jr is unbounded 
on unbounded subsets of E. Therefore Jr has a fixed point and 0 E R(A). 

COROLLARY 1. Let C be a closed convex subset of a un;formly smooth Banach 
space L?, and let T: C + C be a nonexpansive mapping with a fixed point. Let x 
belong to C. DeJize for each 0 s: k --; 1 a p&t No in C by xI; --: kT.x,< + (I - k) s. 
The?z the strong lim+, xii exists and is a jxed psint of T. 
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Consider now the iteration 

x,+~ = (1 - k,) x0 + k,Tx, . (1) 

Corollary 1 implies that [I 1, Theorem 3. I] is valid in all uniformly smooth 
Banach spaces: 

COROLLARY 2. In the setting of Corollary I, let {x11> be de$ned by (1) with 
k, = 1 - (n + 2)~“, where 0 < a < 1. Then {xn} converges strongly to a fixed 
point of T. 

This provides a partial positive answer to Problem 6 of [ 121. The Hilbert 

space case is due to Halpern [8] (see also [9]). 
Returning to accretive operators A, we consider the implicit scheme 

where {h,} and { pn) are positive sequences such that { pV1} decreases to 0, Cz==, 
p,h, = co, and limn+a(p,_i/p, - l)/(pnhn) = 0, and the explicit scheme 

.~nil~%L - h&h + PP,), (3) 

where, in addition, lim,,, ,Q(h,)/pn = 0 (/3 is defined on p. 89 of [17]). We denote 
((1 - h&J x, - x,+Jh, by yn E Ax, . In the Hilbert space case, (3) was 
studied in [3, 51. 

Theorem 1 implies that [18, Theorem l] and [20, Theorem 41 are valid in all 
uniformly smooth spaces: 

THEOREM 2. Let E be a uniformb smooth Banach space, and let A C E x .E 
be m-accretive. If 0 E R(A), then the sequence {xn} dej%ed by (2) converges strongly 
to a zero of -4. 

THEOREM 3. Let E be a uniformly smooth Banach space, and let A C E x E be 
m-accretive with 0 E R(A). If {xn} can be defined by (3), and {xn} and (y,} remain 
bounded, then {x,} converges strongtv to a zero of A. 

It is clear that other results (e.g., those of [7, 21, lo]) can also be improved. 
Let A C E x E be an m-accretive operator, g: [0, co) ---f [0, cc) a non- 

increasing function of class Cl such that lim,,, g(t) = 0 and 

\= g(t) dt = 03, XEE, and X”E D(A). 
‘0 
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Consider the following initial-value problem: 

The method of proof of Theorem I, when combined with that of [17, Theorem 
1 .I], yields the following new result. 

THEOREM 4. Let E be uniformly smooth, and let u: [0, a~) -+ E be the strong 
soktion of (4). I f  0 E R(A), then the strong lim,,, u(t) exists and bebngs to A-10. 

Proof. Let Y > 0, and let C be a bounded closed convex separable subset of 
E that contains x and is invariant under JT . Let t, + co and x, = u(tJ. There 
is a subsequence {xn,} of {xn} such that f (a) = lim,,, 1 x,~ - z ) exists for all .s 
in C. Since lim,,, 11 Au(t)11 = 0 and / X, - Jrxn / < r Ij Ax, 11 , the argument 
used in the proof of Theorem 1 shows f attains its infimum over C at a point w in 
APO. By the proof of [17, Theorem 1.11, lim sup,,,(x, - x, J(xn - y)) < 0 

for all y  in A-lo. The result now follows because we also have lim sup&x - V, 

Jhk - 4) G 0. 
For the Hilbert space case see Browder [4, p. 1741. The strong lim,,, u(t) =z 

Px, where P: E + A-l0 is again the unique sunny nonexpansive retraction of 

E onto A-lo. 
It follows that the doubly iterative procedure presented in [17] works in all 

uniformly smooth spaces. 
We now turn to the behavior of the resolvent J,. when Y -+ 0. 

THEOREM 5. Let E be a Banach space that is both uniformly convex and 

untformly smooth. If A C E x E is m-accretive, then for each x in E the strong 
lim,,, JTx exists. 

Proof. Fix a point x in E. Since E is uniformly convex, cl(I)(A)) is a non- 

expansive retract of E [15, p. 3821. Let R: E-t cl(D(A)) be a nonexpansive 
retraction. Let C be a bounded closed convex separable subset of E that contains 
x and is invariant under R. Let Y, - 0 and x, = Jr-x. Since {x~} remains 

bounded as r, -+ 0, there is a subsequence {xn,> of {xn} such that f  (.z) = 

lim,,, I xnk - z 1 exists for all z in C. Let f attain its infimum over C at U E C. 

We have f(Ru) = lim,,, / x,~ - Ru 1 = lim,,, 1 Rx, - Ru 1 < 

I&,, I xnk - u 1 = f  (u). Therefore f  attains its infimum over C at ZI = Ru. 
Hence lim SUP&X - v, J(xnk - v)) < 0. On the other hand, (X - X, - 

(y - JT,y), J(xn - J,,y)) b 0 for all n, so that lim WL,(X, - x, J(x, - Y)) 

< 0 for ally in cl(L)(A)). It follows that {x,~> converges strongly to ~1. If  x,~ -+ vu1 
and x,% -+ v, , then (x - z’r , J(q - r+J) > 0, (x - v2 , J(n2 - uJ) > 0, and 
zlr = 21~. The proof is complete. 
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This is the first result of its kind for non-Hilbert infinite-dimensional Banach 
spaces. The Hilbert space case in well known [6, p. 3881. For weak convergence 
results outside Hilbert space see [14, p. 288; 15, p. 3831. 

Remark 6. If  we denote the strong lim,,, JVx by Qx, then Q: E -+ cl(D(A)) 
is the unique sunny nonexpansive retraction of E onto cl(D(A)). 

Remark 1. The assumptions on E can be relaxed: it suffices to assume that 
E has a uniformly Gateaux differentiable norm and that its dual E* has a FrCchet 
differentiable norm. But the result is not true in all Banach spaces (see the last 
example of [22]). 

Remark 8. We emphasize that the known Hilbert space proofs of Theorems 
1, 4, and 5 do not extend to LP, p # 2. 

We conclude with a new result on the exponential formula. 

COROLLARY 3. In the setting of Theorem 5, let S be the semigroup generated by 
-A, and let Q: E -+ cl(D(A)) be the unique sunny nonexpansive retraction of E 
onto cl(D(A)). Then lim,,, J&x = S(t) Qx for all x in E and t > 0. 

Note added In proof. 1. Let E be a reflexive Banach space with a uniformly GBteaux 
differentiable norm. Theorem 1 is also true if, in addition, E is strictly convex, or if the 
metric projection on every closed convex subset of E is upper semicontinuous. 

2. The idea of the present paper has led to a “dual” nonlinear ergodic theorem in 

Banach spaces and to a new short proof of the nonlinear mean ergodic theorem in Hilbert 
space. See the paper by R. E. Bruck and the author entitled “Accretive Operators, 

Banach Limits, and Dual Ergodic Theorems.” 

3. Combining Corollary 1 of the present paper with Theorem 2 of the paper by R. 

Haydon, E. Odell, and Y. Sternfeld entitled “A Fixed Point Theorem for a Class of 
Star-Shaped Sets in c0 ,‘I we obtain the following result: Let C, be a closed subset of a 
Banach space E, , and let C, be a bounded closed convex subset of a uniformly smooth 
Banach space E, If C, has the fixed point property for nonexpansive mappings, then 
so does the subset C, @ C, of (E, @ E,), 

4. Let E be a Banach space, and let A C E x E be an accretive operator that satisfies 
the range condition. Assume either that E is (UG) and E* is (F), or that E is uniformly 
convex. Then for each x in cl(D(A)), limt+r /*x/t = --z’, where ZI is the point of least 
norm in cl(R(A)). For this and related results see our papers entitled “A Solution to a 
Problem on the Asymptotic Behavior of Nonexpansive Mappings and Semigroups,” 

Pmt. ]aparz Acad., in press, and “On the Asymptotic Behavior of Nonlinear Semigroups 
and the Range of Accretive Operators.” 
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