On Schauder's Fixed Point Theorem and Forced Second-Order Nonlinear Oscillations*

A. C. Lazer

Department of Mathematics, Case-Western Reserve University Cleveland, Ohio 44106

Submitted by J. P. LaSalle

Let \(e(t) \) be continuous, periodic with period \(T > 0 \), and have mean zero. In this note we will show that for any number \(c \) the differential equation

\[
\ddot{x} + c\dot{x} + g(x) = e(t)
\]

has a \(T \)-periodic solution provided that \(g \) is continuous, \(xg(x) \geq 0 \) for \(|x| \) sufficiently large, and \(g(x)/x \to 0 \) as \(|x| \to \infty \). Our proof makes use of what appears to be a new method of applying the Schauder fixed point theorem to establish the existence of periodic solutions of nonlinear differential equations. In a future paper we hope to be able to formulate this method in a general setting and thereby establish the existence of periodic solutions of more general nonlinear differential equations.

For brevity we introduce some notation. \(P \) will denote the set of real-valued continuous functions with period \(T \). \(Q \) will denote the set of function \(f \) with

\[
\int_{0}^{T} f(s) \, ds = 0.
\]

If \(f \in P \), \(\|f\| \) will denote \(\max |f(t)| \).

For ease in proving the first part of our main result, we state three easily established lemmas.

Lemma 1. If \(f \in Q \) and \(I(f)(t) = \int_{0}^{t} f(s) \, ds \), then \(I(f) \in P \) and

\[
\|I(f)\| \leq T/2 \|f\|.
\]

Lemma 2. If \(F \in P \) and \(G(F)(t) = \left[e^{T} - 1 \right]^{-1} \int_{t}^{T} e^{-T-s} F(s) \, ds \), then \(G(F) \in P \), \(\|G(F)\| \leq \|F\| \), and \(G(F) \) is a solution of the differential equation

\[
\ddot{x} + c\dot{x} = F(t).
\]

From Lemmas 1 and 2 we obtain:

* The author wishes to acknowledge the partial support of the National Science Foundation under Grant No. GP 7447.
LEMMA 3. If \(f \in Q \) and \(H(f) \equiv G(I(f)) \), then \(H(f) \in P \),
\[
\|H(f)\| \leq \|I(f)\| \leq (T/2)\|f\|.
\]

THEOREM. Let \(e \in Q \). If \(g \) is continuous, if
\[
g(x)/x \rightarrow 0 \text{ as } |x| \rightarrow \infty,
\]
and if there exists a number \(b \) such that
\[
xg(x) > 0 \text{ for } |x| > b,
\]
then for any number \(c \) the differential equation
\[
\dot{x} + cx + g(x) = e(t)
\]
has at least one \(T \)-periodic solution.

PROOF: Case I. \(c \neq 0 \).

In this case it suffices to consider \(c = 1 \) for under the change of independent variable \(s = ct \), the equation takes the form \(x'' + x' + h(x) = E(s) \),
\[
' = (d/ds) \quad \text{where} \quad h(x) = g(x)/c^2, \quad E(s) = e(s/c)/c^2,
\]
so that \(h(x)x > 0 \) for \(|x| > b \), \(h(x)/x \rightarrow 0 \) as \(|x| \rightarrow \infty \), and \(E(s + S) = E(s) \), \(\int_S^N E(v) \, dv = 0 \), if \(S = |c| \cdot T \).

We note that the condition (2) implies that for any \(\epsilon > 0 \) there exists a number \(L(\epsilon) \) such that
\[
|g(x)| \leq \epsilon D \quad \text{if} \quad D \geq L(\epsilon) \quad \text{and} \quad |x| \leq D. \tag{4}
\]

Indeed, if \(r(\epsilon) \) is such that \(|g(x)| \leq \epsilon |x| \) for \(|x| \geq r(\epsilon) \), if
\[
M = \max\{|g(x)| \mid |x| \leq r(\epsilon)\}
\]
and \(L(\epsilon) = \max(r(\epsilon), M/\epsilon) \), \(L(\epsilon) \) satisfies (4).

If \(\theta \in P \), let us define
\[
\hat{g}(\theta)(t) = g(\theta(t)) - N(\theta); \quad N(\theta) = \frac{1}{T} \int_0^T g(\theta(s)) \, ds. \tag{5}
\]

Clearly, for all \(\theta \in P \), \(\hat{g}(\theta) \in Q \) and
\[
\|\hat{g}(\theta)\| \leq 2\epsilon D \quad \text{if} \quad D \geq L(\epsilon) \quad \text{and} \quad \|\theta\| \leq D. \tag{6}
\]

Let \(R \) denote the real numbers and let \(B = P \times R \). If \((\theta, a), (\theta_1, a_1), (\theta_2, a_2) \in B, x_1, x_2 \in R, \) let us define
\[
[(\theta, a)] = \|\theta\| + |a|,
\]
\[
x_1(\theta_1, a_1) + x_2(\theta_2, a_2) = (x_1\theta_1 + x_2\theta_2, x_1a_1 + x_2a_2).
\]

With these definitions \((B, \| \|)\) is a complete normed linear space. If for each \((\theta, a) \in B \) we define \(A[(\theta, a)] = (\theta^*, a^*) \) where
\[
\theta^* = a + H[e - \hat{g}(\theta)]
\]
\[
a^* = a - N(\theta^*) \tag{7}
\]
then, by Lemma 3, \(A \) is a continuous mapping of \(B \) into \(B \).
Let

$$0 < \delta < \min\{1/3, 1/3T\},$$

$$D = \max\{b/(1 - 3\delta), (b + (3/2) T \| e \|)(1 - 3T\delta), L(\delta)\}$$

(8)

where $L(\delta)$ is as in (4), and let

$$m = \max\{\delta D, (T/2)\| e \| + T\delta D\}$$

(9)

so that

$$b + 3m \leq D.$$

(10)

Let

$$K = \{(\theta, a) \in B \| \theta \| \leq D, \| a \| \leq b + 2m\}$$

(11)

so that K is a closed and convex subset of B. We assert:

(i) $A(K) \subset K$,

(ii) $A(K)$ is conditionally compact ($A(K)$ closure compact).

To prove (i) consider $(\theta, a) \in K$, from (6)-(11) and Lemma 3,

$$\| \theta^* \| \leq \| a \| + \| H[e - \hat{g}(\theta)] \|$$

$$\leq (b + 2m) + (T/2)\| e - \hat{g}(\theta) \|$$

$$\leq (b + 2m) + T/2(\| e \| + 2\delta D) \leq b + 3m \leq D.$$

(12)

If $-(b + m) \leq a \leq b + m$, then since

$$D \geq L(\delta) \quad \text{and} \quad \| \theta^* \| \leq D,$$

$$\| N(\theta^*) \| = \frac{1}{T} \int_0^T g(\theta^*(s)) \, ds \leq \delta D \leq m,$$

so that $-(b + 2m) \leq a - N(\theta^*) \leq b + 2m$, and so

$$a \in [-(-b + m), (b + m)] \implies a^* \in [-(b + 2m), b + 2m].$$

(13)

By (6), (7), and (9),

$$\| \theta^* - a \| = \| H[e - \hat{g}(\theta)] \| \leq (T/2)(\| e \| + 2\delta D) \leq m,$$

so that $a \geq b + m$ implies $\theta^*(t) \geq b$ and $a \leq -(b + m)$ implies $\theta^*(t) \leq -b$ for all t. Hence, by (3) $a \geq b + m$ implies $g(\theta^*(t)) \geq 0$, and $a \leq -(b + m)$ implies $g(\theta^*(t)) \leq 0$ for all t. Hence, by (3) and (5) $(b + m) \leq a \leq (b + 2m)$ implies $b \leq a - N(\theta^*) \leq a \leq b + 2m$ and $-(b + 2m) \leq a \leq -(b + m)$ implies $-(b + 2m) \leq a \leq a - N(\theta^*) \leq b$. Hence,

$$a \in [b + m, b + 2m] \quad \implies \quad a^* \in [b, b + 2m],$$

$$a \in [-(b + 2m), -(b + m)] \quad \implies \quad a^* \in [-(b + 2m), -b].$$

(14)

Assertion (i) follows from (11)-(14).
To prove assertion (ii) we must show that if \(\{(\theta_n^*, a_n^*)\} = \{A(\theta_n, a_n)\} \) is a sequence in \(A(K) \), then there exists a subsequence \(\{(\theta^*_n, a^*_n)\} \) of \(\{(\theta_n^*, a_n^*)\} \) and an element \((\bar{\theta}, \bar{a}) \in B \) such that
\[
\lim_{n_k \to \infty} [(\theta^*_n, a^*_n) - (\bar{\theta}, \bar{a})] = 0.
\]

Suppose then \(\{(\theta_n^*, a_n^*)\} = \{A(\theta_n, a_n)\} \) is such a sequence. We consider the functions \(v_n = H[e - \dot{g}(\theta_n)] = G[I(e - \dot{g}(\theta_n))] \). By (9) and Lemmas 1-3,
\[
\|v_n\| \leq (T/2)\|e - \dot{g}(\theta_n)\| \leq (T/2)(\|e\| + 2\delta D) \leq m
\]
and
\[
\left\| \frac{dv_n}{dt} \right\| = \|v_n - I(e - \dot{g}(\theta_n))\| \leq \|v_n\| + (T/2)(\|e - \dot{g}(\theta_n)\| \leq 2m.
\]

Hence, the sequence \(\{v_n\} \) is equicontinuous and uniformly bounded, and thus, since \(\{v_n\} \subset P \), by Ascoli's Lemma, there exists a subsequence \(\{v_{n_k}\} \) of \(\{v_n\} \) and a \(w \in P \) such that
\[
\lim_{n_k \to \infty} \|v_{n_k} - w\| = 0.
\]

From the condition \(a_{n_k} \in [- (b + 2m) \), we may assume by again taking subsequences that
\[
\lim_{n_k \to \infty} a_{n_k} = \alpha
\]
exists and so by (7),
\[
\lim_{n_k \to \infty} \theta_n^*(t) = \lim_{n_k \to \infty} (a_{n_k} + v_{n_k}(t)) = \alpha + w = \tilde{\theta}(t)
\]
uniformly in \(t \). Obviously,
\[
\lim_{n_k \to \infty} a_{n_k}^* = \lim_{n_k \to \infty} (a_{n_k} - N(\theta_n^*)) = \alpha - N(\tilde{\theta}) = \tilde{a};
\]
and hence,
\[
\lim_{n_k \to \infty} [(\theta_n^*, a_n^*) - (\tilde{\theta}, \tilde{a})] = \lim_{n_k \to \infty} (\|\theta_n^* - \theta_n\| + |a_n^* - \tilde{a}|) = 0,
\]
which proves assertion (ii).

To conclude the proof of Theorem 1, Case I, we note that (i), (ii), the fact that \(K \) is closed and convex, and the Schauder Fixed Point Theorem as given in [1, p. 131] imply the existence of \(a(\phi, \tilde{a}) \in K \) such that \((\phi, \tilde{a}) = A[\phi, \tilde{a}] = (\phi^*, \tilde{a}^*) \).

Therefore by (7),
\[
N(\phi) = 0, \quad \dot{g}(\phi) = g(\phi),
\]
\[
\phi = \tilde{a} + H[e - g(\phi)],
\]
and so by Lemma 3, $\phi \in P$ and

$$\dot{\phi} + \phi + g(\phi) = e(t).$$

Case II. $c = 0$.

To take care of this case we need a substitute for Lemma 3. If $f \in P$, we define $f^\#(t) = f(t) - (1/T) \int_0^T f(s) \, ds$. It follows immediately that

$$f^\# \in Q, \|f^\#\| \leq 2 \|f\|. \quad (15)$$

Lemma 4. If $f \in Q$ and $S(f) \equiv I(I(f^\#))$, then

$$s(f) \in P, \quad S(f) \equiv T^2/2 \|f\|$$

and $S(f)$ is a solution of

$$\ddot{x} = f(t). \quad (16)$$

Proof. By Lemma 1 and (15) $I(f) \in P$ and $I(f^\#) \in Q$, another application of Lemma 1 implies that $S(f) = I(I(f^\#)) \in P$. Moreover, by Lemma 1 and (15),

$$\|I(I(f^\#))\| \leq (T/2)\|I(f^\#)\| \leq T\|I(f)\| \leq T^2/2 \|f\|.$$

If $x = I(I(f^\#))$, then

$$\ddot{x} = I(f^\#) = \int_0^T f(s) \, ds - \frac{1}{T} \int_0^T \left(\int_0^s f(u) \, du \right) \, ds.$$

Another differentiation gives (16).

Conclusion of Proof. For $(\theta, a) \in P \times R$ define $E(\theta, a) = (\theta^*, a^*)$ where

$$\theta^* = a + S(e - \dot{\theta}(\theta)),
\quad a^* = a - N(\dot{\theta}^*).$$

By mimicking the proof for Case I we show that E has a fixed point (u, b) and u is T-periodic solution of

$$\ddot{x} + g(x) = e(t).$$

Reference