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A characterization is given of those subspaces of L, space whose metric projection 
is !inear. and of L, . which is fimtely cod!menslonak whose meirx projection admits 
a linear selection. .C !991 .Academic Press. Iac. 

1. INTROOUCTIOS 

Let X be a normed linear space and Y a non-empty subset of X. The 
metric projection (or nearest point mapping P,: X -+ 2 ’ is a set mapping 
to be defined by Py(x)= ‘14:~ Y; I~.v-J;\! =~‘(q Y))! for any XEX, ivhere 
d(s, Y) = inf( ;Is - gij: ge Y). The subset Y is called proximinal if 
P,(x) # @ for each x E X. It is well known that it is prcximinal for any 
closed convex subset of a uniformly convex Banach space. A selection for 
P, is a mapping s: X-+ Y such that s(x) E P,,(x) for each x E X. If Y is a 
subspace, a linear selection for P, is a selection with the additional 
property of being linear. The kernel of a metric projection Pr at!:, a 
proximinal subspace Y is the set ker P ?- = {x E X; 0 E P,.(x) ). 

F. Deutsch [3] has shown that, for a proximinal subspace Y, Pr- has a 
linear selection if and only if ker Py contains a closed subspace 5 such that 
xc I’+ ;y. 

Pei-Kee Lin [6] has proved that, for a finite dimensional subspace Y of 
L, (I < p < r; and p # 2): P y admits a linear selection if and only if there 
exist k disjoint subsets B,, B2, . . . . B,, every one of which is the union of 
some atoms of T, such that Y= (0 Yt)Pz -where Y! is either 5,(B,) or a 
hyperplane of LP( Bi). 

In Section 2: we study the linear metric projection on Lpi T). For any 
closed subspace of L,(T, C, ~‘1, which ,U is a purely atomic measure, we 
prove that P, is linear if and only if there exists a disjoint subset collection 
{ -4 i 3 i E /I of T such that Y = (0 LE .1 Y;.fp, where Y, is either L,(A,,) or a 
hyperplane of LP( A ;.). 
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In Section 3, we consider the space L,( r, Z, p) of integrable functions on 
the finite measure space (T, C, p). For an n-codimensional subspace Y of 
L1: we prove that P, has a linear selection P such that Pl 7= 0, where 
1 7(1) = 1: if and only if there exist IZ disjoint subsets Bi E C, i= 1, 2, . . . . ~1, 
such that Y= {xEL,; JAixdp=O, i= 1, 2, . . . . 111,. 

2. LINEAR SELECTIONS IN L, (l<p< s” AND p# 2) 

Let (T. Z> ,u) be a measure space. An atom A is a measurable set such 
that p(A) < SC and, if B is a measurable subset of A, then it has either 
p(A ) = ,u(B) or p(B) = 0. Hence, any measurable function is constant a.e. 
(p) on an atom, and we can assume that every atom contains only one 
point. For x E L,, the supported subset of x is defined (up to a set of 
measure zero) by supp(s) = {t E T; x(t) # O}. 

We shall use the following theorem. The proof is similar to that in [2]. 

THEOREM 2.1. Let (T, 2, p) be a measure space, ,u a purely atomic 
measure, and P a contractit’e projection on X. Then there exists a Gector 
fad?’ {I)~.);.~~ of norm 1 with the disjoint supported subsets in X such that: 
For each x E X, P(x) = Cien yi_( yL), where y: is the peak flmctional of yL 
for each >. E A. 

Using this theorem, we can show the following theorem. 

THEOREM 2.2. Let (T, C, p) be a purely atomic measure space and Y a 
closed subspace of L, (1 < p < x, p # 2). Then the following statements are 
equit;alent, 

(a) P y is litlear. 

(b) There exists a disjoint subset family {A,);.,, of T such that 
Y? [ @ rcn M;],, where Mj- is either L,(A;) or a hyperplane of L,(A,) for 
any iE A. 

ProoJ (a) =- (b). Let P = P, and Q = id-P. It is obGous that Q is a 
contractive projection operator. By Theorem 2.1, there exists a vector 
family (yj.}j.Eno of norm 1 in L, in which the supported subsets supp(y;) 
of yj. are disjoint such that, for each XE L,, 

Qx= c y,jyx).y;., (2.1) j.eAo 
where y: is the peak functional of yj. for each d E A,. We can assume that 
O$A,. Let A= (0) u (i,E&; card[supp(y,)] 32). Since for any XE L, 
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and 1.x/i = 1 the peak functional f of Y is I.yiP-’ sgn(x), we get supp(f’j = 
supp(s). So I!? E L,(supp(~,)) for any j. EA. Let -4, = T’,.ij,Eno supp(y,) 
and A;.=supp(~;,) l~/i’:,,{O}. Let iM,=L,(z4,) and M,= (xEL,(A,& 
y,*(x)=O) ;.E A:,,(O). Then M, is a hyperplane of L,(A;,j for each 
~EA’L{O). For any XEL,, let x,=?c~.~;. (=x(t): SEA,; and =O, t$A;) foor 
each i. E -4. Then .v = C;. E ,, x,. By (2.1 j. 

If x E Y, then Qx = 0. By (2.2), we get J~~(x~~) = 0. If supp(~.,) is a singleton. 
let SUpp(,~j)= ct*~ f 1. Since ~.,T(t)=x;.(tj=O when ;#t,. we have x,(t,j=G 
by 0 = J;*(x;.) = I . yT(to) ..v,(t,j and I # 0: J: # 0. Hence 
.Y = C;.=,, Xj.. By ~T(x;.) = 0, we get x E [@;.E,I Mi],, that is. 
Ys C0j.c.l M;],. If x=C~.~,~X;. and x~-EM;: by (2.2) we get Q.l:=C 
Hence XE Y, i.e., [@iEz, MJp& Y. 

The (b) * (a) is the following theorems. 

THEOREM 2.3 (F. Deutsch [3]). Let Y be a proximinai hyperpiane c,f a 
Banach space X. Then P, admits a linear selection. 

THEOREM 2.4 (Pei-Kee Lin [IS]). Suppose Mi is a proximinal subspace 

of x,, PM has a linear selection si. Then M= (8 Ml), 
proximinai subspace of X= (0 Xi)p. Moreover, P, 

(1 < p < x ) is a 

has a !inear selecticn 
8 si. 

3. THE LINEAR SELECTIQX 13 Li 

In this section, we consider the linear selections in L, space. We will need 
to use the following theorems. 

THEOREM 3.1 (R. G. Douglas [S] 1). Let ( T, C, p j be a finite measure 
space and P a contractice projection on L,(T) and P1 r = 1 r, where 
l,-(t)= lJcOr an): tg T. Let Z,= {supp f; f CR(P)). Then C, is a o-subring 
of L and Pf = 0 if and only if j4 f dp = 0 for each A E Z:, . 

Using this theorem, we can get the following theorem. 

THEOREM 3.2. Let (T, Z7 p) be a jkite measure space and Y a-i: 
n-codimensional proximinal subspace of L,( T j. Then thejrolloiving statements 
are equivalent 

(1) P y admits a linear selection P such tat P! r = 0. 
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(2) There exist measurable subsets A,, A,, . . . . A,, such that 

(a) AinAj=@ (i#j) and lJ;=, Ak= T. 

(b) Y= (~-EL,(T); j,Jdp=O, i= 1, 2, . ..~ R}. 

Proof It is evident that if Y has the form in (b), then codim Y = n. 

(1) G- (2). Let Q = id- P. Then Q is a contractive projection on L, 
and Q17-= 1,. Let Z,= {suppx; XER(Q)}. By Theorem 3.1, 

Y= f~l.,; [ fdp=O for each A&C,, 
“4 (3.1) 

Let A,, AZ, . . . . A,,, be all atoms in ,X0. Since R(Q j is separable (finite 
dimension), the subset T, = u{supp x; XER(Q)} is measurable. Let 
D = T,\U r= i A,. Suppose p(D) > 0. Since D does not contain any atoms, 
there exist disjoint B,, B,, . . . . B,, 1 such that 0 < p(Bi) < ,u(D)/(n + 1) and 
Bie Z,. Hence there exist JEER such that supp(?;[j = Bi. It is obvious 
that yl, Jo, . . . . yN + l are linear independent. So dim R(Q) > ~1. It is in 
contradiction with the codim Y= n. So we get T, = Up= i Ai and 
Lo= (A,, A,, . . . . A,,). By (3.1) we get that Y has the form of (b) and 
nz = n. If ,u( T\T,) > 0, let f be the characteristic function. Then f # 0. But 

I IT-fll = ( f &=ATo)</4T)= IIl.!l. 
” 70 

This is in contradiction with the P17= 0. So we can assume that T= T, 
(up to a set of measure zero). Hence (a) holds. 

(2) * (1). Let xi be the characteristic function of Ai and lzi = x,/p(A,). 
For any XEL~: let fi(x)= jA,,ydp. Then fjeLF, IA.1 = 1, and fi(yj)=6,, 
where 6, is the Kronecker symbol. Since Ai n Aj = 0 and T = IJZ =, A,, for 
any XEL~, x=C;:=i (xix). Let x,=C;=i [x~x-~~(x~x)J~]. It is obvious 
that f(xOj=O. So X~E Y. For any J’E Y, by fi(xi~)=fr(~)=O1 

So x0 E P.x. Let Px = x0. It is evident that P is a linear selection of P,. 
We need only prove Pl T= 0. By definition, Pl T= xi=, [xi- fi(xi) yi]. 
Since fj(x,) yi = p(Ai) yi = xi, Pl == 0. 1 
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