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Abstract

Until recently, the testing of ODE/DAE software has been limited to simple comparisons and benchmarking.
The process of developing software from a mathematically specified method is complex: it entails constructing
control structures and objectives, selecting iterative methods and termination criteria, choosing norms and many
more decisions. Most software constructors have taken a heuristic approach to these design choices, and as a
consequence two different implementations of the same method may show significant differences in performance.
Yet it is common to try to deduce from software comparisons that onemethodis better than another. Such conclusions
are not warranted, however, unless the testing is carried out under trueceteris paribusconditions. Moreover, testing
is an empirical science and as such requires a formaltest protocol; without it conclusions are questionable, invalid
or even false.

We argue that ODE/DAE software can be constructed and analyzed by proven, “standard” scientific techniques
instead of heuristics. The goals are computational stability, reproducibility, and improved software quality. We also
focus on different error criteria and norms, and discuss modifications to DASPK and RADAU5. Finally, some basic
principles of a test protocol are outlined and applied to testing these codes on a variety of problems.
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1. Introduction

Initial value problems in ordinary differential equations (ODEs) and differential-algebraic equations
(DAEs) are central to the mathematical modelling of dynamical processes in science and technology.
Standard ODE software has been used routinely for over 30 years. DAE software emerged around 1980
and is beginning to reach maturity. Nevertheless, there is still progress in method construction and software
design, and there is a potential for considerable improvement.

The issue of adaptivity has in the past decade received an increased attention, and adaptive strategies
are now beginning to be based on researched, proven principles instead of earlier heuristics[5–7,13]. In
particular, the use of a coherent strategy employing digital filters for the automatic control of stepsize and
errors has been shown to have a major impact on computational stability[14,15]. Thus a small change of
parameters, especially TOL, only leads to a small change in the results produced by the code. In contrast,
many adaptive codes based on heuristic strategies are very sensitive to such perturbations. The new control
strategies can therefore be said to improve the “condition number” of the software.

This improvement can typically be obtained without added computational expense[15]. As a result,
there is a software performance increase, akin to replacing a poorly conditioned algorithm by a well-
conditioned one that is equally fast. Conversely, the improved stability and qualitycannotbe traded for
reduced wall-clock time—perhaps fortunately, it may be added, as such a trade would not be considered
good practice in numerical analysis. To summarize: work on ODE/DAE software performance should not
exclusively focus on speed-up but also on stability and well-conditioning. Reliability is more important
than efficiency[17, Chapter 6].

The question then is: how do we test and evaluate software, and what practices should be observed in
ODE/DAE software testing? The aim of this paper is to partially answer that question and lay down a few
basic principles related to ODE/DAE software design and testing. Actual tests carried out in this paper
will follow the principles outlined in the paper, and are performed with two modified versions of DASPK

and RADAU5, implementing the adaptivity algorithms as specified in[15].
Starting with principles of methodology, we note that software testing is anempirical science. It

therefore requires the standards and methodology of empirical sciences rather than the approach of “a
mathematical demonstration,” which is commonplace today. The latter approach is scientifically cor-
rect in the non-empirical context of logic and mathematics but is unsuitable, if not useless, in the
complex situation presented by software evaluation. From the epistemological point of view this is
well-known: a single counterexample falsifies a theory, and a single example can adequately demon-
strate the proper interpretation of a theory; in contrast,a large number of carefully planned and pre-
cisely controlled experiments are needed in order to corroborate even a modest empirical
claim.

In order to discern cause and effect and make it possible to draw conclusions about methods or adaptive
strategies, control structures, implementation, performance or other similar aspects,testingmust besubject
to a strict test protocol. Given a problem, such a test protocol provides detailed instructions on how to
run the problem, what to look for in it, what aspects to measure and how measure them. The testing
conditions—such as choices of norm, error control criterion and controllers—under which the results
were obtained must be completely specified to facilitatereproducibility. Moreover, comparative tests
should be run underceteris paribusconditions, i.e., tests must be “fair” in the sense that the tested aspect
alone should differ, while everything else is kept the same for both test objects. Further, results should, if
possible, be presented in a standardized form.
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Testing and evaluation is further helped by existing collections of real-life test problems, e.g., the CWI
test set[16], now maintained in Bari, Italy, or the test problems at[2,8], or the classical DETEST[11].
The latter was the pioneering effort that began to set standards for ODE software, based on early ideas on
method comparison[12]. It was then followed by a “stiff ” DETEST[3]. Many of the problems collected
then are still of relevance today.

Although test sets can be used as performance benchmarks, other aspects may be more interesting.
Trying to use a few test problems for code tuning in order to achieve “ultimate performance,” is usually
of little value as it often trades robustness and coherence for a marginal gain in a single aspect of
performance, e.g., total number of steps. A more critical approach is necessary. Feedback from testing to
the design and parameterization of adaptive strategies can be obtained. Quality aspects, such as producing
a smooth solution, using smooth stepsize sequences or producing a more stable and regular tolerance
proportionality,while meeting a specified accuracy criterion, are often overlooked. Nevertheless, as
performance is a measure of produced quality per unit cost, they do belong in a serious performance
evaluation.

2. Towards a test protocol

We shall define some elementary conditions on testing practices. The purpose of testing is always to
try to infer some claim, or to evaluate some performance aspects. The strength of the claims depend on
the scientific methodology used for testing; it could range from useless to affirmative[17, Chapter 6].

2.1. Ceteris paribus conditions

Ceteris paribusconditions imply that one aspect at a time is tested,everything else being equal. For
example, if one wants to test a new stepsize controller, that algorithm should be tested against the reference
standard technique within the same code. It is, as a matter of principle, not permissible to test the new
feature in another code, as it would then not be clear exactly what factor that makes the difference. If
it can be shown, underceteris paribusconditions within a code, that the new feature “is superior,” it is
of course an added benefit if it can be shown to be superior, compared to the reference standard, also in
another environment, i.e., in other codes. The testing is not between codes, but within the codes.

To maintainceteris paribusconditions in code comparisons is much harder. It entails tolerance scaling
(see below) as well as additional requirements on using the same types of norms, error test criteria, etc. It
may still be that different codes use very different approaches to solve the same problem; any such major
difference should then be clearly pointed out.

2.2. Reproducibility

For each test, data for the settings and modes used in the test must be reported. Details should be
specified so that the test can be independently run and repeated, and parameters for the problem as well
as the solver need to be recorded. Some environment parameters (e.g., compiler choice) may have an
effect, but if a code is well designed and has high computational stability, such minor differences should
not have any significant impact.

Test problem setup should be completely specified. With the test sets available today (see e.g.,[16,2,8])
this is a fairly straightforward matter.
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Fig. 1. Global error as a function of TOL when DASSL is applied to the Chemical Akzo Nobel problem from the CWI test set.
Replacing the original heuristic stepsize controller (left) by a digital filter (right) has a strong impact on computational stability.
Computational effort is similar in both graphs. Results are not tolerance proportional; that would require a tolerance rescaling.

2.3. Computational stability

In order to draw firm conclusions, results produced by the code must not vary strongly with small
changes in the experimental setup. High computational stability implies improved reproducibility. Com-
putational stability is defined in[15], as a qualification oftolerance proportionality: for each sufficiently
smooth problem there should be constantsc andC such that the global errorecan be bounded above and
below,

c TOL�‖e‖�C TOL, (1)

and the smaller the ratioC/c, the higher is the computational stability. The first order adaptive time-step
selection introduced in[14], in particular if based on digital filters, overcomes most of the instability
problems associated with heuristic methods for time-step control, seeFig. 1, which is drawn from[15].

When evaluating method, algorithm or software characteristics we try to answer questions through
various experiments, where the performance measurements play a key role. As a matter of principle, a
scientific question can only be answered by empirical data provided that the observed results (measure-
ments) are reasonably stable, consistent and robust under small variations in the experimental set-up.
From this it follows that if the code has a high degree of computational stability, we can infer more about
that code, and at a greater certainty. Questions having inherently unstable answers should be replaced by
more focused questions. Finally, in some cases, stability can be improved by changing the measurement
technique, rather than the code. Thus, e.g., it is sometimes of benefit to use a functional norm such asL1

orL2 over the whole range of integration while measuring the error, as such norms will have an averaging
effect that reduces measurement fluctuations.

2.4. Tolerance proportionality

In many cases it appears to be possible to use tolerance scaling to make a code tolerance proportional
[15]; if the error is proportional to TOL� (see the right graph inFig. 1), the code becomes tolerance
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proportional by internally using TOL′, defined by the scaling transformation

TOL′ = TOL(�−1)/�
0 TOL1/�. (2)

We believe that every code should be run in a tolerance proportional mode: changing the tolerance by one
order of magnitude should produce one order of magnitude difference in the error. It could be argued that
this is of little importance as one eliminates the tolerance when plotting work/accuracy diagrams, but the
important point is that in real computations, the error is unknown. The user only has access to TOL, and
this parameter ought to have an influence on the error that is as predictable as possible. In particular, it is
impossiblefor the user to assess the merits of two different codes if one is tolerance proportional and the
other is not.

2.5. Tolerance calibration

In addition to scaling TOL according to (2), it is desirable tocalibrate the tolerance: the code should
produce a specified error on a reference problem. This is achieved by a suitable choice of the tolerance
equivalence point TOL0.

The important point is that TOL ought to have thesame meaningin different codes. The reference
problem could either be the linear test equation, say, or some other problem with interesting features.
If TOL produces different results in two different codes on the same reference problem, more elaborate
code comparisons are meaningless. We repeat that performance is subject to quality constraints; unless
an effort is made to introduceceteris paribustesting conditions, code comparison does not comply with
elementary principles of empirical experiments.

Tolerance proportionality/calibration is therefore a requisite for scientific testing of ODE/DAE codes.
We also believe that implementing such a standard would be of benefit to the user who makes production
runs of real-life initial value problems. If two different codes deliver very different accuracy, for the same
tolerance setting but at different costs, the user is likely to prefer the code which completes the integration
faster. As the error is unknown to the user, the subjectively perceived performance is no longer subject to
a proper quality constraint.

2.6. Graphical presentation

Graphs of results should be presented in a consistent manner. The “natural” way—not always used
today—is to have small values to the left/down and large values to the right/up in the graphs. However,
when plotting accuracy, it is not uncommon that “significant digits” are plotted; areducederror that
corresponds to anincreasednumber of significant digits. We propose to always plot tolerances, error,
work, etc. in accordance with the standard of right-hand oriented coordinate systems. This implies, in
particular, that the slope of the graph in a “work/precision” (or rather “work/accuracy”) diagram should
benegative, reflecting that there is atrade-offbetween work and accuracy. Reducing the error costs more
work; reducing work leads to larger errors.

Standard measurements include plotting (i) achieved precision vs TOL (with a positive slope, seeFig. 1,
as there should be a positive correlation—preferably proportionality—between the input parameter TOL
and the error); (ii) plotting work (e.g., in terms of total number of steps, function evaluations, Jacobian
evaluations, CPU time etc.) vs TOL, with negative slopes reflecting the trade-off; (iii) plotting work vs
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achieved precision, again with a negative slope. These plots should normally be presented in log–log
diagrams.

3. From method to software: can heuristics be removed?

The algorithmic content of adaptive ODE/DAE software is not dominated by the discretization method
but by a considerable amount of control structures, support algorithms and logic. Among the important
elements are the choice of norm‖ · ‖; the implementation of mixed relative–absolute error tests; aiming
to keep the error per step (EPS) or per unit step (EPUS) below a tolerance; the actual stepsize controller;
the construction of error estimators; the choice of predictors as well as termination criteria for fixed-
point or Newton iteration; numerical or analytical Jacobians; refactorization strategies; convergence rate
estimation and how to interpret “slow convergence”; maximum number if iterations per step; strategy for
choosing method order; local extrapolation; recovery logic when some adaptive strategy fails, etc. The
constructor of adaptive ODE/DAE software must make a choice on all of these issues, and they affect
performance in various ways.

While the discretization method is thoroughly researched and fully specified, control structures and
logic have often been designed using elementaryheuristicswithout regard to rigorous analysis.The overall
implementation is tuned using simple benchmark tests. When this process is complete, the user of the
code still has a number of options with respect to the code elements mentioned above; some parameters
may even be selected adaptively during the computation.

A main problem in obtaining reliable test results is that heuristic control structures often have a sur-
prisingly degrading effect on computational stability and regularity. About 15 years ago, however, control
theoretic methods started being used both for the analysis and design of adaptive algorithms, see the
survey[13], and the subsequent developments[14,15]. This implies that it is now possible to analyze,
with some rigor, the behaviour of central parts of the adaptive strategies. Their “mathematical status” is
thus brought closer to that of the discretization method itself, and it is hoped that this will enable the
method in its actual implementation to come closer to its theoretical properties and performance.

The strong need for adaptivity in ODE/DAE software leads to much more complex control structures
than in e.g., linear algebra software. Because of this complexity, the quality and predictability of ODE/DAE
software is still far from the modern computational standard set by linear algebra software. In order to
bring ODE/DAE software closer to that standard, the same attention must be devoted to the control
structures as to the method itself. The example of using control theory for the construction and analysis
of adaptive time-stepping shows that significant improvements are within reach.

Last, but not least, this question is also a matter of software design. Traditionally not very empha-
sized in ODE software, this area deserves much more attention, for example along the lines indicated
in [17, Chapter 6].

4. Norms, scaling and error criteria

We shall highlight one aspect of computational criteria that has a bearing on the design and use
of ODE/DAE codes. Testing as well as production runs are concerned with computational efficiency,
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subject to accuracy. Reliable error measurements are needed in order to asses accuracy, but it turns out
to be less than trivial to control and measure errors properly.

4.1. Significant correct digits

In the CWI test set, the end point value of an “exact” reference solutionyref is provided. This is typically
used to measure the number ofsignificant correct digitsof the solution. Lete be the global error and
define

scd(y(tend)) := −log10‖e(tend)./y
ref(tend)‖∞. (3)

The component-wise division./ in combination with the max norm implies that every component in the
solution has an error not exceeding 10−scd(y).

The measure scd(y) has a number of drawbacks. First, it is not defined if a component ofyref is zero;
cases where someyref

i (tend) is small must therefore also be excluded. Another drawback is the use of the
max norm. This may not conform to the user’s choice of norm and is often incompatible with the solver’s
internal norms, as well as with its accuracy objectives. In addition,‖ · ‖∞ is non-differentiable, implying
that scd(y) may have a less regular behaviour than desired. Finally, results will be difficult to interpret
unless one measures a single solution component at a prescribed point in time, e.g., scd(yi(tend)) :=
−log10 |ei(tend)/y

ref
i (tend)|.

Precision in terms of significant digits calls for a criterion on the relative error, which must be combined
with some absolute error for very small components. There are two different ways to specify suchmixed
absolute–relative errorcriteria corresponding to different invariance properties. We shall refer to these
criteria asfixed resolutionandfixed scaling, respectively. Variants of these measurements are always used
in the software, and it is reasonable to try to measure the actual error in the same way.

4.2. Fixed resolution

Thefixed resolutiontest defines a vectord(y, �) by

di(y, �) = RTOL|yi | + �i , (4)

where RTOL is a user-prescribed relative tolerance parameter and the vector� specifies theresolution
levelof yi . Given a local error estimatêl and a norm‖ · ‖, the error estimate is considered acceptable if

‖l̂./d(y, �)‖�1. (5)

This construction is preferred when the user is interested in relative accuracy down to a certain level
of resolution which is typically considered to be independent of the accuracy requirement. Thus the
resolution limit� represents a “noise floor” which is characteristic of theproblem. A concrete example
of this error test is shown in the upper graph ofFig. 2.

4.3. Fixed scaling

In thefixed scalingtest we define the norm to depend on the solutionyand ascaling�i of each solution
componentyi . Putting

di(y, �) = |yi | + �i , (6)
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Fig. 2. Two modes to test for mixed absolute/relative accuracy. Error magnitude (vertical axis) is acceptable given the magnitude
of the solution|y| (horizontal axis) if the error is below the selected curve. Top: fixed resolution(10�V) test; bottom: fixed
scaling (100 mV) test. Resolution and scaling are shown by dotted lines. In both plots the tolerances are 10−4, 10−5 and 10−6

from top to bottom; the curves for TOL= 10−4 are the same for both tests. For details, see text.

we compute the norm of the error estimate by‖l̂./d(y, �)‖. The error is acceptably small if

‖l̂./d(y, �)‖�TOL, (7)

where TOL is a scalar tolerance parameter. This test measures relative accuracy for components with
|yi | > �i and absolute accuracy for components with|yi | < �i . The change from relative to absolute is
gradual and takes place near the component scaling factor�i . In a particular case the error criterion looks
like in the lower graph ofFig. 2.

4.4. Fixed resolution vs fixed scaling—an example

Let us consider a problem of an electrical circuit, where we seek to compute nodal voltages, whose
typical size does not exceed 5V. We shall outline the differences between the two approaches above and
illustrate their interpretations in terms of the error criteria as shown inFig. 2.
Fixed resolution. Due to thermal noise, a resolution below say 10�V is not of practical significance. We

are therefore interested inrelative accuracydown to this level, and take�=10�V. When RTOL is varied,
the break-point between relative accuracy and noise floor shifts. Thus, by taking say RTOL= 10−3, we
impose a relative accuracy criterion for voltages|yi | > �i/RTOL = 10 mV. However, for RTOL= 10−6,
the fixed resolution test no longer imposes a relative accuracy criterion, as this would require local errors
to be below the noise floor for any voltage|yi | < 10 V, see the upper graph ofFig. 2.
Fixed scaling. In the same electrical circuit, we may be interested in obtaining relative accuracy down to

the fixed scale of 100 mV; this is specified by taking�=100 mV.As TOL varies, this scaling remains fixed,
implying that the accuracy criterion changesboth in the relative and the absolute domains. Thus, while
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the break-point between absolute and relative accuracy is fixed at� = 100 mV, the noise floor, equaling
TOL �, shifts with TOL. For TOL= 10−4 the noise floor becomes 10�V, but for sharper tolerances the
noise floor too is lowered, see the lower graph inFig. 2.

4.5. Fixed resolution vs fixed scaling—practical remarks

In most ODE/DAE software the mixed absolute–relative criterion is implemented as a fixed resolution
test using two different “tolerances,” RTOL and ATOL, definingd(y, �) by

di = RTOL|yi | + ATOL i , (8)

and using the error test (5). This gives the impression that there aretwo tolerances to be set, affecting
accuracy in distinct ways. This is true only in part; by taking RTOL= 0 we have a pure absolute error
criterion, and by instead taking ATOL=0 it becomes a pure relative error criterion. By combining nonzero
values, however, the criterion is less clear, as the two parameters play different roles. Thequalityof the
accuracy (absolute or relative, fixed resolution or fixed scaling) is distinctly different from thequantity
of accuracy (determined by the tolerance).

In addition, (8) reveals that while RTOL is dimensionless, ATOLi is not. Even if the problem has
been recast in dimensionless form through scaling, both the resolution� and the scaling� may represent
several different physical entities;� and� then tell what the user considers the units of the problem to
be. Such problem properties should be clearly distinguished from the computation’s requested numerical
accuracy.

Both fixed resolution and fixed scaling can be used within the implementation (8). The choice

RTOL = TOL, (9)

ATOL i = �i , (10)

provides fixed resolution, while the choice

RTOL = TOL, (11)

ATOL i = TOL �i , (12)

provides a fixed scaling test criterion. Note that we propose using a scalar TOL parameter; in case different
levels of relative accuracy are needed for different variables, a weighted norm is preferable (for reasons
of invariance) to a vector valued RTOL. This is easily accomplished by multiplying the vectorl̂./d by a
diagonal matrix of weightsW.

Only the fixed scaling can be used as aglobal error measure; no matter how TOL is varied, one simply
measuresewith the same norm by computing‖e./d(y, �)‖. In contrast, the fixed resolution test (5) is
not a good measure of the actual erroreas RTOL and ATOL enter the norm definition in‖e./d(y, �)‖.
Suppose for instance that‖e./d(y, �)‖ = K; this implies that the global errore is K times larger than a
local errorl̂ at the same point, but it cannot be interpreted as the norm of the global error beingK times
the tolerance, since the norm is not a linear function of RTOL or ATOL unless one of these parameters is
zero. For the same reason the fixed resolution mode has a nonlinear transfer function from error setpoint
to error when the adaptivity is analyzed as a control system.
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In production runs for real problems, the fixed resolution criterion is often an indispensable mode of
operation. In particular, for problems modelling electrical circuits it is usually close to what the user needs
and wants.

For mathematical software purposes such as testing and evaluation, however, where the tolerance
parameter may vary over several orders of magnitude, it has considerable drawbacks. Thus one will
typically need a covariation of RTOL and ATOL, and a common practice is to take RTOL= ATOL.
However, this implies a particularscalingof the dependent variables, for (8) then becomes

di = RTOL (|yi | + 1), (13)

thus enforcing the scale 1 for every dependent variable, with RTOL as the noise floor. Thisunintentional
fixed scaling is not necessarily a good one.

A seriously intended adaptive method needs to offer clear error tests of both types, not just one.
Moreover, it would be an improvement to offer the user two distinct options of either fixed scaling or
fixed resolution, rather than offering the ATOL–RTOL norm without careful instructions.

In the testing and evaluation of such a method the error criteria must be specified; the norm, the
implementation and the actualmodus operandiare but a few aspects of an automatic integration procedure
which significantly affect its performance. The scientific value of test results depends crucially on whether
sufficient information for reproducibility and a unique interpretation is given.

4.6. Fixed resolution vs fixed scaling—work /precision and code behaviour

We shall illustrate the effect of choosing either a fixed resolution or scaling error criterion. We test
these notions by solving the differential equations describing a simple linear oscillatory circuit,

V ′
C1

= −iL/C1, (14)

V ′
C2

= −iL/C2 − VC2/(RC2), (15)

i′L = (VC1 + VC2)/L, (16)

with initial conditionsVC1(0)=VC2(0)=1 andiL(0)=0, and component valuesL=10�H,C1=C2=10�F
andR = 2�. The problem is solved over the time interval[0, 100�s], and the error is evaluated by
comparing with the exact solution at the endpoint of the integration.

The problem is solved with the modified version of DASPK [15] and by a new version of RADAU5, which
has been modified by using the sameH211b digital filter for stepsize control as that employed by the
modified DASPK.

The results are plotted inFigs. 3and4. . Both codes behave entirely in accordance with theory, but
in each one, we observe widely differing qualitative behaviour depending on the user’s choice of error
criterion. The test demonstrates how differently a code can be made to work, and how important it is to
understand the influence of code parameters in order to obtain an expected behaviour.

4.7. The need for other types of norms

Although the fixed resolution and fixed scaling criteria are suitable for many applications, there are
some requiring other types of norms. For instance, in chemical reaction kinetics, the dependent variables
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Fig. 3. Electrical circuit example is solved with DASPKusing different error criteria. Only fixed scaling (�=1) produces a tolerance
proportional graph (top left); fixed resolution levels of� = 10−6 and 10−7 produce graphs that flatten out for tight tolerances.
Similar effects are seen in the work diagram (top right) and for the mean order (bottom right). Although less legible, the work
precision graph (bottom left) shows that efficiency remains unaffected, but accuracy is limited to a narrow range.

typically vary over many orders of magnitude. It may then be necessary to scale the problem, or work
with logarithms of the dependent variables, before either of the error criteria becomes suitable.

Worse still are problems in celestial mechanics. Systems such as the restricted three-body problem,
especiallyArenstorf orbits,[9, p. 130], are often solved using an absolute error criterion only, after scaling
the problem so that it is of “unit size.” This criterion requires all local errors to be of the same size, yet
near a singularity (a mass) the errors need to be smaller in order to accurately compute the “slingshot
effect.” Alternatively, one could argue that the accuracy requirement could be relaxed a little away from
singularities; hence an absolute error criterion is suboptimal. Moreover, the error criterion is typically
very tight, calling for errors that are extremely minute compared to the problem size.

We therefore develop a new norm by defining

di(y, �) = min
j

‖y − y∗
j ‖ + �i , (17)

wherey∗
j is the position of thejth singularity (or mass) and�i is a scaling factor for theith body. The norm

of the local error is acceptably small if‖l̂./d(y, �)‖�TOL. This implies that near a singularity, the size
of the denominator will force local errors to be smaller there, even though TOL is constant. Naturally, as
computations involve two different types of variables, positions and velocities, these need to be treated
differently.

The modified version of DASPK, [15], was tested together with a version of RADAU5, both using the
H211b digital filter for stepsize generation, and with the additional control structure changes suggested
in [15]. In both codes tolerance rescaling was used to make the codes tolerance proportional according
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Fig. 4. The same electrical circuit example is solved using a modified version of RADAU5. The behaviour is similar to that of
DASPK, but work precision graphs are smoother. The graph on the bottom right shows total number of steps instead of the mean
order.

10-10 10-8 10-6 10-4
10-8

10-6

10-4

10-2

100

TOL

ac
hi

ev
ed

 a
cc

ur
ac

y

10-10 10-8 10-6 10-4
103

104

TOL

# 
of

 fu
nc

tio
n 

ca
lls

10-5 100
103

104

achieved accuracy

# 
of

 fu
nc

tio
n 

ca
lls

10-10 10-8 10-6 10-4
4.5

5

5.5

TOL

m
ea

n 
or

de
r

Fig. 5. The Arenstorf problem is used to compare modified versions of RADAU5 and DASPK, after tolerance calibration. Both
achieve the same accuracy (top left) but DASPK is smoother. RADAU5 is more efficient as it uses about half the work to complete
the integration (top right, bottom left). The mean order used by DASPK (bottom right) is very close top = 5.
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Fig. 6. The modified version of RADAU5 is used to solve the Arenstorf problem with two different norms. In order to produce
the same accuracy, individual tolerance calibrations are applied. The new norm constructed from (17) improves work–precision
performance although the number of steps is the same.

to (4), using� = 6/5 for RADAU5. In addition, tolerance calibration was used, taking TOL0 = 500 for
DASPK and TOL0 = 1 for RADAU5, in order that the two codes produce approximately the same accuracy
at equal tolerances. The codes were used to solve the Arenstorf problem[9, p. 130], using the new error
norm with� = 10−10. The comparison of the two codes is presented inFig. 5

The next test concerns how the norm alone affects the code’s behaviour. This is evaluated in the modified
RADAU5 code and plotted inFig. 6 . As the norm affects the accumulated error, a tolerance calibration
is necessary in order to conclude whether the norm has a beneficial influence on performance. For the
standard norm, run in fixed scaling mode with� = 1, we use TOL0 = 1700. For the new norm, which
has overflow protection at� = 10−10, the value TOL0 = 20 produces the same global accuracy. Thus
the tolerance calibration is set to produce higher accuracy than in the previous comparison with DASPK;
the latter code is unable to produce this higher accuracy. Because of the different tolerance calibration,
achieved accuracy is 30 times higher inFig. 6.

5. Some experiments with Radau5

Continuing the above investigation on how to evaluate and compare ODE/DAE codes, we have followed
the same procedure for modifying the RADAU5 code of[10] as we did in[15] with DASPK. To follow the
ceteris paribusapproach, we use the same digital filter and limiter, but tolerance rescaling has to be adapted
individually to method properties.Also, the Newton termination criterion varies slightly as RADAU5 shows
some sensitivity to this criterion.
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Fig. 7. The Chemakzo problem is solved using the original and the modified RADAU5 codes. The main difference is in tolerance
proportionality. Both codes show a similar smoothness and computational stability, although the modified code is marginally
less efficient for loose tolerances as more steps and more function evaluations are needed to complete the integration.

Our comparisons will focus on some qualitative differences in the behaviour of RADAU5 and DASPK.
With respect to a few details, the former code displays some phenomena that are not observed in DASPK.

Our first test is concerned with RADAU5 alone. More precisely, we wish to evaluate the difference
between the original code and the modified one. In the relatively simple Chemakzo problem, we see the
effects of the modifications inFig. 7. and9 These tests were run with fixed scaling (� = 1). The goal is
to establish that the new control structures can be implemented without loss of efficiency.

The objective of the second test is to determine whether stiffness has an effect on performance. We
consider the linear equation

ẏ = A(y − �(t)) + �̇(t), (18)

where�(t) = (sint, cost)T andy(0) = (0, 1)T. The problem is solved on[0, 2�], and because of the
initial condition the exact solution equals�(t).

Here we use modified versions of both RADAU5 and DASPK. The problem is solved for two different
matrices, corresponding to a nonstiff and a stiff case, with

A =
(−1 5

1 −10

)
, A =

(−1 5 · 103

1 −104

)
, (19)

respectively. The accuracy criterion is fixed scaling, with� = 1, corresponding to running with RTOL=
ATOL. The codes were tolerance calibrated for the nonstiff case by taking TOL0 = 10−5 for DASPK

and TOL0 = 20 for RADAU5; at this setting the same accuracy is produced by the two codes. That
calibration is then kept for the stiff case. There, DASPK shows a behaviour unaffected by stiffness, while
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Fig. 8. Nonstiff linear problem solved with DASPK and RADAU5. In the top left plot, the smooth graph was generated by DASPK. In
the work-TOL and work-precision graphs, the smoother curves are those of RADAU5. The lower right plot shows mean order for
DASPK.
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Fig. 9. In the stiff case, the two codes differ markedly. DASPK’s behaviour is invariant with respect to stiffness, and its results can
hardly be distinguished from those in the nonstiff case. RADAU5, on the other hand, improves its accuracy, while cost is largely
the same. Thus performance increases, but tolerance proportionality is also lost. Tolerance calibration is the same in both the
nonstiff and the stiff tests.
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RADAU5 improves both accuracy and efficiency, while at the same time losing tolerance proportionality,
seeFigs. 8.

Computational stability is high for DASPK in the TOL-precision graph, but only moderate for RADAU5,
in spite of new stepsize algorithms. Even more surprising is that the converse holds for work, which is
very regular for RADAU5, cf. the top right graphs ofFigs. 8and9.

There are however some remaining problems in RADAU5. It appears to be difficult to obtain the same
computational stability in RADAU5 as in DASPK. This could be caused by a lower intrinsic computational
stability. On a few problems, such as the Pollution problem from[16], moreover, RADAU5 shows a high
sensitivity to the Newton termination criterion and to the initial stepsizeh0 ; changing these parameters
may cause highly erratic TOL-precision graphs.

The accuracy may vary by several orders of magnitude for a small change inh0 or the Newton
termination criterion. As the variations do not appear to be stochastic but systematic, they indicate that
the code’s control structures have strong dependencies on these parameters. The spurious behaviour is not
eliminated by replacing the controllers. One possible cause for this behaviour is that for loose tolerances,
the integration can be completed in a small number of steps, typically in the range 15–30. In such a case
it can make a major difference if the integration is carried out in 20 or 25 steps.

6. Conclusions

The tests carried out in this paper, with the exception of the left graph inFig. 1, have been produced
with two modified versions of DASPK and RADAU5. The codes implement the adaptivity algorithms as
specified in[15]. More specifically, this entails using theH211b digital filter for generating step-sizes,
including the recommended control error limiter; an unconstrained order control in DASPK; a sharper
Newton termination criterion in DASPK and a slightly modified one in RADAU5; tolerance rescaling and
calibration in both codes; options to run in fixed scaling and fixed resolution modes. Technical details
beyond the specifications in[15] are available in[18].

This paper has focused on the importance of a systematic approach to ODE/DAE testing practices, as
well as the impact of properly designed control structures. We have attempted to run stringent tests of the
modified DASPK and RADAU5 codes, also comparing the two. The tests have emphasized aceteris paribus
approach, where we have tried to isolate certain phenomena, or code changes, to see what impact they
have. The interpretation and use of norms have been discussed and a new norm constructed for application
in e.g., celestial mechanics.

Although it is possible to make significant improvements to existing codes, we believe that much
remains to be done in order to improve the reliability of ODE/DAE software in general. This work rests
on eliminating heuristic algorithmic elements. The evaluation of improved algorithms must follow a test
protocol in order to draw firm conclusions. The tests presented here show that this is far from trivial, and
that it also requires much more care than a simple benchmarking.
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