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The number of inequivalent primitive embeddings of a quadratic lattice M into
an indefinite even unimodular Z-lattice L, modulo the action of the orthogonal
groups O(L), SO(L), and O$(L), are determined. � 1996 Academic Press, Inc.

1. Introduction

Let L be a unimodular lattice on an S-indefinite quadratic space V of
finite dimension n�3 over an algebraic number field F. Denote by O(V)
the orthogonal group of V, and by O(L) the subgroup of those isometries
that leave L invariant. Let M be a second S-lattice on a non-degenerate
quadratic space with dimension m<n. In [1] we studied primitive embed-
dings of M into L, and the number N(L, M) of inequivalent embedding
modulo the action of O(L), SO(L) and the spinorial kernel O$(L)=
O(L) & O(V). These results were incomplete at dyadic primes and will now
be completed when 2 is unramified and L is an even lattice. The notation
and terminology in [1] will be continued.

We first determine the number e2=N$(L2 , M2) of local dyadic embed-
dings modulo the action of O$(L2) when m+m2=n (see Theorems 2.1 and
2.6). By studying the action of the quotient group O(L)�O$(L) on the local
embeddings, all situations where there is a unique global embedding
modulo the action of O(L) are then determined for even Z-lattices L (see
Theorems 3.1 and 3.2). This extends the earlier work of Miranda and
Morrison [2].
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2. Unramified Dyadic Embeddings

Let q be the size of the residue class field O2 �2O2 . Theorems 2.1 and 2.6
evaluate e2 when m+m2=n. For q=2 the data is the same as for e2 in
Table II of [2, 1986]. Let ^ denote the subgroup of integers in O2 of the
form :(:+1). Then ^=2O2 when q=2, and in general 2O2�^ with
the index [O2 : ^]=2. Let M2==k�0 Jk be a Jordan splitting with Jk the
2k-modular component. The component Jk is called odd if there exists
z # Jk with q(z) # 2k&1U2 ; otherwise Jk is even (including Jk=0) and
q(Jk)�2kO2 . Then rk=rank Jk and the parity of Jk are invariants of M2 .
In the notation of [2, p. 31], rk=2s(k)+rank w(k), and Jk is even when
w(k)=0.

There are several cases to consider when J1 is odd. As in [1], first reduce
to M2=M2(1) and n=2m2 by cancelling the even unimodular component
M2(0)=J0 from M2 and L2 . Fix x # J1 with q(x)=*#1 mod 2; *
corresponds to = in Table II of [2].

Case 1: r1�3, or r1=2 with J2 odd, or r1=2 with J2 even and the
discriminant dJ1 # &4(1+4O2) U2

2 .

Case 2: r1=2 with J2 even and dJ1 � &4(1+4O2) U2
2 . When q=2,

* mod 4 is an invariant of m2 .

Case 3: r1=1, J2 is odd, and r2�2 or J3 odd.

Case 4: r1=r2=0 and J3 is even. Choose x with *#1 mod 4. Let
J1=O2x and normalize J2=O2z with q(z)=2'#2 mod 4. The cosets
*+4^ and '+4^ are then invariants of M2 (since J3 is even); ' is the
same as in Table II of [2].

Case 5: r1=1, and r2�2 with J2 even, or r2=0 with J3 odd. The coset
*+4O2 is now an invariant of M2 .

Case 6: r1=1, r2=0 and J3 is even. The coset *+4^ is an invariant
of M2 .

Theorem 2.1. Assume 2 prime, the even lattice L2 primitively represents
M2 with m+m2=n, and J1 odd. Then:

1. e2=1 for Cases 1 and 3.

2. e2=2 for Cases 2 and 4.

3. e2=q for Case 5.

4. e2=2q for Case 6.
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If L2 is not a sum of hyperbolic planes, replace L2 by L2 = B and M2 by
M2 = B, and extend the embedding by the identity on B. Since B = B=
H = H and B = O2x=H=O2x$ with *=q(x)#q(x$) mod 4, after cancelling
H, we have L2=H1 = } } } = Hm , preserving * mod 4. However, *U2

2

changes. It was shown in Proposition 3.6 of [1] that any embedding of M2

into the even lattice L2 , with m+m2=n, is locally spinor equivalent to a
canonical embedding (after cancelling the unimodular component M2(0)).
Hence it suffices to concentrate on canonical embeddings. Let x1 , ..., xm be
a basis for M2 , viewed as a primitive sublattice of L2 , with xm=x and

xi=ui+vi+ :
j<i

aij vj , 1�i�m,

where aij= f (xi , xj) # Sp , ai=q(xi) # Op and 2ai # Sp (as in [1, 3.4]). Let
� : M2 � L2 be a canonical embedding with �(xi)=xi for i<m, and
=um+$vm the component of �(xm) in Hm . The value of e2 depends on how
much control there is of the unit =. First get =#1 mod 2 by using
8(!2) # O$(Hm) with ! # U2 , so that e2�2q=[U2 : U2

2], since inter-
changing um and vm gives no new inequivalent embedding with *==$ a
unit. When m=m2=1 there are exactly 2q inequivalent embeddings since
O$(Hm) is the group of isometries 8(!2). Assume, therefore, m�2.

Proof of Upper Bounds. In Case 1, except for r1=3 and J1 anisotropic,
there exists y # M2 with f (x, y)=2 and q( y) # 4O2 . Since O2x+O2y
orthogonally splits M2 , a basis exists with xm&1=y=um&1+q( y) vm&1 ,
xm=x=2vm&1+um+*vm and �(x)=2vm&1+=um+$vm with =$=*. The
Eichler transformations E(vm , &$ cr) E(um , cr) with r=um&1&q( y) vm&1

and =+2c+c2q( y) $=1, which fixes xm&1 , changes = to 1. Hence e2=1.
In Case 2 a similar argument with q( y) # 2U2 gives the bound e2�2, since
= can be additively changed by 2^. In the remaining part of Case 1 where
r1=3, take xm&2=um&2+2vm&2 , xm&1=2vm&2+um&1++vm&1 with + a
unit, and �(xm)=�(um+*um)==um+$vm . Now reduce = to 1 by using
E(vm , dt) E(um , ct) twice, first with t=um&2&2vm&2&2vm&1 to get
=#1 mod 4, and then with t=um&1&+vm&1.

For Cases 3 and 4, use a modified argument with xm&1=y # J2 ,
q( y) # 2U2 and �(x)=�(um+*vm)==um+$vm , to get =#1 mod 4 so that
e2�2. When J3 is odd in Case 3, take xm&2=um&2= +`vm&2 # J3 with
` # 4U2 , and use E(um , c(um&2&`vm&2)) to get =#1 mod 8; thus e2=1.
This can be modified when r2�2 with suitable xm&2 # J2 , (similar to r1=3
above, possibly changing the choice of x). For Case 5, e2�q since = can be
additively changed by 4O2 . K

The corresponding lower bounds will be obtained by modifying
Lemma 3.8 in [1].

3EMBEDDINGS OF QUADRATIC LATTICES



File: 641J 194204 . By:BV . Date:28:05:96 . Time:16:33 LOP8M. V8.0. Page 01:01
Codes: 3716 Signs: 2714 . Length: 45 pic 0 pts, 190 mm

Proof for Cases 5 and 6. For Case 6, J1=O2 xm with xm=um+*vm ,
while x1 , ..., xm&1 span=k�3 Jk . Let % # O$(L2) satisfy %(xi)=xi for i<m,
and %(xm)==um+w with = a unit and f (w, vm)=0. If we prove = # U2

2 it
then follows that the canonical embeddings �c with =c ranging over U2 �U2

2

are spinor inequivalent, and e2�2q. The map 8(=&1) % fixes xi for i<m,
while 8(=&1) %(xm)=um+$vm+t with t # H =

m . Take xi , vj as a base for L2

and let vi , sj=uj&ajvj&�k>j ajkvk be the dual base. Then s1 , ..., sm span
the orthogonal complement of M2 in L2 ; this is isometric to &M2 . Let
t=�i<m (cixi+divi). The map ,=E(vm , �i<m cisi) 8(=&1) % fixes all xj .
Put s=sm=um&*vm#xm mod 2L2 . Then ,(s)=as+2 �i<m bisi since
f (s, xj)=0. Thus a2#1 mod 32, using f (s, si)=&aim=0 and q(si)=
&ai # 8O2 for i<m. If a#&1 mod 4, then 9(,(s)&s) , lies in O(L2) and
fixes s and all xi ; consequently (using [1, 3.8] on x1 , ..., xm&1) this map
lies in O$(L2) O(8L2)=O$(L2), where O(8L2) is the congruence subgroup
modulo 8, giving the contradiction det ,=&1. Hence a#1 mod 16. Then
9(s) 9(,(s)+s) , fixes s and all xi , and so is in O$(L2). It follows from
spinor norms that = # U2

2 , and hence e2�2q.
A minor variation of this argument, with weaker congruences, gives

= # (1+4O2) U2
2 , and hence e2�2q for Case 5.

Proof for Case 4. Modify Case 6. Let % be as above with =#1 mod 4.
If we proof = # U2

2 , it follows that e2�2. Let xm&1=um&1+2'vm&1 # J2 ,
where ' # U2 , and r=sm&1=um&1&2'vm&1 . Then, with ,, xm and s as
above, ,(s)=as+2br+2 �i<m&1 bisi . Since *#1 mod 4 and J3 is even, it
follows that a2+8'b2#1 mod 32. Then either 9(,(s)&s) , when
a&1 # 2U2 , or {=9(s) 9(,(s)+s) , when a+1 # 2U2 , is integral and fixes
s and all xi , and so by [1, 3.8] lies in O$(L2) O(4L2). The first possibility
violates det ,=1. For the second, by spinor norms, =q(s) q(,(s)+s) is in
(1+4O2) F2

2 . Hence (1+a)�2#:2#1 mod 4 and a#1 mod 8. Then
a2+8'b2#1 mod 32 shows that b is even and a#1 mod 16. Since
r#xm&1 mod 4L2 , it follows that {(r)=cr+4 �i<m&1 disi with c#

1 mod 32. Now 9(r) 9({(r)+r) { fixes s, r and all xi and so is in
O$(L2) O(8L2)=O$(L2). The product 9(r) 9({(r)+r) is integral, although
the individual symmetries are not (check the images of r, vm&1 and
t # H1= } } } =Hm&2). Finally, by spinor norms, = # U2

2 , and e2�2.

Proof for Case 2. Modify Case 4. Let xm&1=um&1++vm&1 # J1 , where
+#1 mod 2, &*+�1 mod 4 and r=sm&1=um&1&+vm&1. For %, ,, xm

and s above, ,(s)=as+2br+2 �i<m&1 bisi , and a2+4*+b2#1 mod 16.
Either _=9(,(s)&s) , when a&1 # 2U2 , or {=9(s) 9(,(s)+s) , when
a+1 # 2U2 , is integral and fixes s and all xi . Repeat this for r where now
_(r), or {(r), equals cr+2 �i<m&1 disi so that c2#1 mod 16. Then either
9(_(r)&r) _ or 9(r) 9({(r)+r) { fixes all xi , s and r, and so is in
O$(L2) O(4L2) (the other possibilities violate det ,=1). For the first map,
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by spinor norms, =q(_(r)&r) q(,(s)&s) lies in (1+4O2) F2
2 . Therefore,

=(1&a)�2#*+:2 mod 4, and a2+4*+b2#1 mod 16 then gives =#*+:2+
;2 mod 4. Let &*+=1+2` where ` is a unit since &*+�1 mod 4. If
==1+2`&1\ with \ � ^, the congruence has no solutions for :, ;. Hence
e2�2. The second map is similar.

Observation. Let L2=H1 = } } } = Hm and � : M2(1) � L2 be a local
canonical embedding with �(xi)=xi for i<m, and the Hm-component of
�(xm) equal to =um+$vm with =#1 mod 2, and =#1 mod 4 in Case 4. The
above arguments have shown that the spinor orbit of a local canonical
embedding is uniquely determined by the group coset =+2^ in Case 2, by
=+4^ in Cases 4 and 6, and by =+4O2 in Case 5. We use this to study the
action of 8=8(&1) and 9=9(um&vm) on the spinor orbits of local
embeddings. This will later help determine N(L, M).

Corollary 2.2 Assume the conditions of Theorem 2.1. Then 8 inter-
changes the local spinor orbits in pairs in Cases 5 and 6, and 8 interchanges
the two local spinor orbits in Case 2 except when = # ^.

Proof. In a local embedding, 8 changes = to &=.

Corollary 2.3. In Case 4 let J1 = J2=O2x = O2z with *=q(x)#1
mod 4 and 2'=q(z)#2 mod 4. Then 8 leaves the two local spinor orbits
invariant if and only if '+1 # 2^.

Proof. As in the proof 2.1, take xm=x=um+*vm and xm&1=z=
um&1+2'vm&1. Then the orbit of the canonical embedding � is determined
by =+4^, where �(xm)==um+$vm (with =#$#1 mod 4). Then 8
changes = to &=#3 mod 4 in �(xm). Since E(um , um&1&2'vm&1) fixes
xm&1 and changes &= to &=&2'$#1 mod 4 in 8�(xm), 8 leaves the
orbits invariant if and only if =+4^=&=&2'$+4^, or '+1 # 2^.

Corollary 2.4. Assume the conditions of Theorem 2.1 and q=2.
Then 9 (resp. 9(um+vm)) leaves the spinor orbits invariant for Cases 2
and 5 if and only if *#1 mod 4 (resp. *#&1 mod 4), and for Cases 4
and 6 (assuming L2 = H1 = } } } = Hm) if and only if * # 1 mod 8 (resp.
*#&1 mod 8).

Proof. In Cases 2 and 5, * mod 4 is an invariant of M2 , and the spinor
orbit of the embedding � is determined by the value of = mod 4 in
�(xm)==um+$vm ; thus 9 leaves the orbit invariant if and only if
=#$ mod 4, that is *==$#1 mod 4. For Cases 4 and 6, * mod 8 is an
invariant of M2 , and the orbit is determined by = mod 8; note * changes to
*+4 if modifications to M2 and L2 are needed for the exceptional situation
in Theorem 3.1(iii) of [1].
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Corollary 2.5. Assume the conditions of Theorem 2.1. Then 9 leaves
all SO(L2)-orbits invariant.

Proof. The symmetry 9(s) with s==um&$vm leaves invariant the
canonical embedding �c involving xc==um+$vm , with =$=* a unit. Since
99(s) # SO(Hm), it follows that 9 leaves the SO(L2)-orbits invariant.

Theorem 2.6. Assume 2 is prime, the even lattice L2 primitively
represents M2 with n&m=m2�2, and J1 is even. Then:

1. e2=2 when r1>0.

2. e2=2q when r1=0 and r2>1.

3. e2=4q when r1=0 and r2�1.

Proof. This follows from Theorem 3.7 in [1] when M2 is strongly even.
It remains to consider S2=4O2 and J2 odd. Then J1=0, and either J2 is
split by ( :

4
4
$) with : # 8O2 and $ # 4U2 , or r2=1. The first case gives e2=2q

by an argument similar to that used for strongly even lattices in [1]. In the
remaining case with r2=1, Proposition 3.6(i) in [1] gives e2�4q, while
e2�4q follows by an argument similar to that used in the proof of
Theorem 2.1(4).

Corollary 2.7. Assume the conditions of Theorem 2.6. Then 8 and 9
independently interchange the local spinor orbits in pairs, except for 8 when
r1>0.

3. Global Orbits under O(L) and SO(L)

Assume L is an even unimodular isotropic Z-lattice. The quotient group
O(L)�O$(L) is then the Klein 4-group generated by 8(&1) and 9(u&v)
(viewed acting on a hyperbolic plane Hm common to all the local splittings
of Lp used in the canonical embeddings).

Theorem 3.1. Let L be an even unimodular Z-lattice with n&m�3 and
the Witt index i�(L =&M)>m. Then

2N+(L, M)=N$(L, M)=`
p

ep

if and only if either:
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1. There exists a prime p#3 mod 4 with m+mp�n&1, or

2. m+m2=n, e2�2, either J1=0 or J1 is odd, and if r1=r2=1 with
J3 even then '#1 mod 4.

Otherwise, N+(L, M)=N$(L, M).

Proof. The conditions given are exactly those needed so that 8(&1)
does not act trivially on the local spinor orbits. See Theorem 4.1 in [1] for
the first part. The rest uses Corollaries from the previous section. K

This result is essentially in [2] although expressed differently, and with
the notation e++=N$(L, M), e+&=N +(L, M) and e=N(L, M). Finally,
we give necessary and sufficient conditions for N(L, M)=1. Let p1 , ..., ps be
the odd primes where m+mp�n&1, and let P be the two rowed matrix
over F2 where the (1, j )-entry is 1 if and only if pj#3 mod 4, and the (2, j )-
entry is 1 if and only if m+mpj=n&1 and 2dMpj (0){(&1)n&m dLpj . This
last condition corresponds to (22�pj)=&1 in [2], where 2#&* mod 8.

Theorem 3.2. Let L be an even unimodular Z-lattice primitively
representing M with n&m�3 and i�(L =&M)>m. Then N(L, M)=1 if
and only if e2�4 and one of the three following situations occur:

1. If e2=1 and an odd prime p exists with m+mp=n, then
p#3 mod 4, and m+mp�n&2 for all other odd primes. At most two
primes with m+mp=n&1 exist, with rank P=1 when only one exists, and
rank P=2 when two exist.

2. If e2=2, then m+mp�n&1 for all odd primes. At most one p with
m+mp=n&1 exists, with p#3 mod 4 when J1 is even, and 2dMp(0){
(&1)n&m dLp , with '#1 mod 4 in Case 4, when J1 is odd.

3. If e2=4, then m+mp�n&2 for all odd primes, r1=0 and r2>1.

Proof. Clearly >p ep=N$(L, M)�4 is necessary; Theorem 3.7 in [1]
then forces the given restrictions on m+mp at odd primes. When e2=1,
the result follows from 3.1 above and Theorem 4.2 (and the remarks
following it) in [1]. When e2=4, Case 6 cannot occur by 2.5. Thus only
2.6(2) applies, and 8(&1) and 9(u&v) then act independently on the
dyadic spinor orbits. Finally, let e2=2. If r1>0 with J1 even, 8(&1) acts
invariantly on dyadic spinor orbits, so that p#3 mod 4 is necessary when
p exists with m+mp=n&1. If J1 is odd, then 9(u&v) acts invariantly on
SO(L2)-orbits by 2.5, and also invariantly on O$(Lp)-orbits unless
2dMp(0){(&1)n&m dLp (see [1]), so this condition is now necessary.
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