The Number of Embeddings of Quadratic $\mathbb Z$ -Lattices

Donald G. James*

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802

Communicated by J. S. Hsia

Received May 17, 1994; revised January 27, 1995

The number of inequivalent primitive embeddings of a quadratic lattice M into an indefinite even unimodular Z -lattice L , modulo the action of the orthogonal groups $O(L)$, $SO(L)$, and $O'(L)$, are determined. \circ 1996 Academic Press, Inc.

1. Introduction

Let L be a unimodular lattice on an S-indefinite quadratic space V of finite dimension $n \geq 3$ over an algebraic number field F. Denote by $O(V)$ the orthogonal group of V, and by $O(L)$ the subgroup of those isometries that leave L invariant. Let M be a second S -lattice on a non-degenerate quadratic space with dimension $m < n$. In [1] we studied primitive embeddings of M into L, and the number $N(L, M)$ of inequivalent embedding modulo the action of $O(L)$, $SO(L)$ and the spinorial kernel $O'(L)=$ $O(L) \cap O(V)$. These results were incomplete at dyadic primes and will now be completed when 2 is unramified and L is an even lattice. The notation and terminology in [1] will be continued.

We first determine the number $e_2 = N'(L_2, M_2)$ of local dyadic embeddings modulo the action of $O'(L_2)$ when $m+m_2=n$ (see Theorems 2.1 and 2.6). By studying the action of the quotient group $O(L)/O'(L)$ on the local embeddings, all situations where there is a unique global embedding modulo the action of $O(L)$ are then determined for even \mathbb{Z} -lattices L (see Theorems 3.1 and 3.2). This extends the earlier work of Miranda and Morrison [2].

* This research was partially supported by NSA Grant MDA 904-94-H-2034. It was completed while the author was on sabbatical leave at the University of Auckland.

2 DONALD G. JAMES

2. Unramified Dyadic Embeddings

Let q be the size of the residue class field $\mathcal{O}_2/2\mathcal{O}_2$. Theorems 2.1 and 2.6 evaluate e_2 when $m+m_2=n$. For $q=2$ the data is the same as for e_2 in Table II of [2, 1986]. Let \wp denote the subgroup of integers in \mathcal{O}_2 of the form $\alpha(\alpha+1)$. Then $\beta=2\ell_2$ when $q=2$, and in general $2\ell_2\leq \beta$ with the index $[0_2 : \wp] = 2$. Let $M_2 = \perp_{k>0} J_k$ be a Jordan splitting with J_k the 2^k -modular component. The component J_k is called *odd* if there exists $z \in J_k$ with $q(z) \in 2^{k-1} \mathcal{U}_2$; otherwise J_k is even (including $J_k=0$) and $q(J_k) \subseteq 2^k \mathcal{O}_2$. Then $r_k = \text{rank } J_k$ and the parity of J_k are invariants of M_2 . In the notation of [2, p. 31], $r_k = 2s(k) + \text{rank } w(k)$, and J_k is even when $w(k)=0.$

There are several cases to consider when J_1 is odd. As in [1], first reduce to $M_2 = M_2(1)$ and $n = 2m_2$ by cancelling the even unimodular component $M_2(0) = J_0$ from M_2 and L_2 . Fix $x \in J_1$ with $q(x) = \lambda \equiv 1 \mod 2; \lambda$ corresponds to ε in Table II of [2].

Case 1: $r_1 \ge 3$, or $r_1 = 2$ with J_2 odd, or $r_1 = 2$ with J_2 even and the discriminant $dJ_1 \in -4(1+4\mathcal{O}_2) \mathcal{U}_2^2$.

Case 2: $r_1 = 2$ with J_2 even and $dJ_1 \neq -4(1+4\ell_2) \mathcal{U}_2^2$. When $q = 2$, λ mod 4 is an invariant of m_2 .

Case 3: $r_1 = 1$, J_2 is odd, and $r_2 \ge 2$ or J_3 odd.

Case 4: $r_1 = r_2 = 0$ and J_3 is even. Choose x with $\lambda = 1$ mod 4. Let $J_1 = \mathcal{O}_2x$ and normalize $J_2 = \mathcal{O}_2z$ with $q(z) = 2\eta \equiv 2 \mod 4$. The cosets $\lambda + 4\wp$ and $\eta + 4\wp$ are then invariants of M_2 (since J_3 is even); η is the same as in Table II of [2].

Case 5: $r_1 = 1$, and $r_2 \ge 2$ with J_2 even, or $r_2 = 0$ with J_3 odd. The coset $\lambda + 4\mathcal{O}_2$ is now an invariant of M_2 .

Case 6: $r_1 = 1$, $r_2 = 0$ and J_3 is even. The coset $\lambda + 4\wp$ is an invariant of M_2 .

THEOREM 2.1. Assume 2 prime, the even lattice L_2 primitively represents M_2 with $m+m_2=n$, and J_1 odd. Then:

- 1. $e_2 = 1$ for Cases 1 and 3.
- 2. $e_2 = 2$ for Cases 2 and 4.
- 3. $e_2 = q$ for Case 5.
- 4. $e_2=2q$ for Case 6.

If L_2 is not a sum of hyperbolic planes, replace L_2 by $L_2 \perp B$ and M_2 by $M_2 \perp B$, and extend the embedding by the identity on B. Since $B \perp B =$ $H \perp H$ and $B \perp \mathcal{O}_2x = H \perp \mathcal{O}_2x'$ with $\lambda = q(x) \equiv q(x') \mod 4$, after cancelling H, we have $L_2 = H_1 \perp \cdots \perp H_m$, preserving $\lambda \mod 4$. However, $\lambda \mathcal{U}_2^2$ changes. It was shown in Proposition 3.6 of [1] that any embedding of M_2 into the even lattice L_2 , with $m+m_2=n$, is locally spinor equivalent to a canonical embedding (after cancelling the unimodular component $M_2(0)$). Hence it suffices to concentrate on canonical embeddings. Let $x_1, ..., x_m$ be a basis for M_2 , viewed as a primitive sublattice of L_2 , with $x_m = x$ and

$$
x_i = u_i + v_i + \sum_{j < i} a_{ij} v_j, \qquad 1 \leq i \leq m,
$$

where $a_{ij} = f(x_i, x_j) \in \mathcal{S}_p$, $a_i = q(x_i) \in \mathcal{O}_p$ and $2a_i \in \mathcal{S}_p$ (as in [1, 3.4]). Let $\psi : M_2 \to L_2$ be a canonical embedding with $\psi(x_i) = x_i$ for $i < m$, and $\epsilon u_m + \delta v_m$ the component of $\psi(x_m)$ in H_m . The value of e_2 depends on how much control there is of the unit ε . First get $\varepsilon = 1 \mod 2$ by using $\Phi(\xi^2) \in O'(H_m)$ with $\xi \in \mathcal{U}_2$, so that $e_2 \leq 2q = [\mathcal{U}_2 : \mathcal{U}_2^2]$, since interchanging u_m and v_m gives no new inequivalent embedding with $\lambda = \varepsilon \delta$ a unit. When $m=m_2=1$ there are exactly 2q inequivalent embeddings since $O'(H_m)$ is the group of isometries $\Phi(\xi^2)$. Assume, therefore, $m \ge 2$.

Proof of Upper Bounds. In Case 1, except for $r_1 = 3$ and J_1 anisotropic, there exists $y \in M_2$ with $f(x, y) = 2$ and $q(y) \in 4\mathcal{O}_2$. Since $\mathcal{O}_2x + \mathcal{O}_2y$ orthogonally splits M_2 , a basis exists with $x_{m-1}=y=u_{m-1}+q(y) v_{m-1}$, $x_m = x = 2v_{m-1} + u_m + \lambda v_m$ and $\psi(x) = 2v_{m-1} + \varepsilon u_m + \delta v_m$ with $\varepsilon \delta = \lambda$. The Eichler transformations $E(v_m, -\delta c r) E(u_m, c r)$ with $r=u_{m-1}-q(y) v_{m-1}$ and $\varepsilon + 2c + c^2 q(y) \delta = 1$, which fixes x_{m-1} , changes ε to 1. Hence $e_2 = 1$. In Case 2 a similar argument with $q(y) \in 2\mathcal{U}_2$ gives the bound $e_2 \le 2$, since ε can be additively changed by 2φ . In the remaining part of Case 1 where $r_1=3$, take $x_{m-2}=u_{m-2}+2v_{m-2}$, $x_{m-1}=2v_{m-2}+u_{m-1}+\mu v_{m-1}$ with μ a unit, and $\psi(x_m) = \psi(u_m + \lambda u_m) = \varepsilon u_m + \delta v_m$. Now reduce ε to 1 by using $E(v_m, dt) E(u_m, ct)$ twice, first with $t=u_{m-2}-2v_{m-2}-2v_{m-1}$ to get $\varepsilon \equiv 1 \mod 4$, and then with $t=u_{m-1}-\mu v_{m-1}$.

For Cases 3 and 4, use a modified argument with $x_{m-1} = y \in J_2$, $q(y) \in 2\mathcal{U}_2$ and $\psi(x) = \psi(u_m + \lambda v_m) = \varepsilon u_m + \delta v_m$, to get $\varepsilon \equiv 1 \mod 4$ so that $e_2 \leq 2$. When J_3 is odd in Case 3, take $x_{m-2} = u_{m-2} = +\zeta v_{m-2} \in J_3$ with $\zeta \in 4\mathcal{U}_2$, and use $E(u_m, c(u_{m-2}-\zeta v_{m-2}))$ to get $\varepsilon \equiv 1 \mod 8$; thus $e_2=1$. This can be modified when $r_2 \ge 2$ with suitable $x_{m-2} \in J_2$, (similar to $r_1 = 3$) above, possibly changing the choice of x). For Case 5, $e_2 \leq q$ since ε can be additively changed by $4\mathcal{O}_2$.

The corresponding lower bounds will be obtained by modifying Lemma 3.8 in [1].

Proof for Cases 5 and 6. For Case 6, $J_1 = \mathcal{O}_2 x_m$ with $x_m = u_m + \lambda v_m$, while $x_1, ..., x_{m-1}$ span $\perp_{k\geq3} J_k$. Let $\theta \in O'(L_2)$ satisfy $\theta(x_i)=x_i$ for $i < m$, and $\theta(x_m) = \varepsilon u_m + w$ with ε a unit and $f(w, v_m) = 0$. If we prove $\varepsilon \in \mathcal{U}_2^2$ it then follows that the canonical embeddings ψ_c with ε_c ranging over $\mathscr{U}_2/\mathscr{U}_2^2$ are spinor inequivalent, and $e_2 \ge 2q$. The map $\Phi(\varepsilon^{-1})$ θ fixes x_i for $i < m$, while $\Phi(\varepsilon^{-1}) \theta(x_m) = u_m + \delta v_m + t$ with $t \in H_m^{\perp}$. Take x_i, v_j as a base for L_2 and let v_i , $s_j = u_j - a_jv_j - \sum_{k>j} a_{ik} v_k$ be the dual base. Then s_1 , ..., s_m span the orthogonal complement of M_2 in L_2 ; this is isometric to $-M_2$. Let $t = \sum_{i \le m} (c_i x_i + d_i v_i)$. The map $\phi = E(v_m, \sum_{i \le m} c_i s_i) \Phi(\varepsilon^{-1}) \theta$ fixes all x_j . Put $s=s_m=u_m-\lambda v_m \equiv x_m \mod 2L_2$. Then $\phi(s)=as+2 \sum_{i\le m} b_i s_i$ since $f(s, x_j) = 0$. Thus $a^2 \equiv 1 \mod 32$, using $f(s, s_i) = -a_{im} = 0$ and $q(s_i) =$ $-a_i \in 8\mathcal{O}_2$ for $i < m$. If $a \equiv -1 \mod 4$, then $\Psi(\phi(s) - s)$ ϕ lies in $O(L_2)$ and fixes s and all x_i ; consequently (using [1, 3.8] on $x_1, ..., x_{m-1}$) this map lies in $O'(L_2) O(8L_2) = O'(L_2)$, where $O(8L_2)$ is the congruence subgroup modulo 8, giving the contradiction det $\phi=-1$. Hence $a \equiv 1 \text{ mod } 16$. Then $\Psi(s)$ $\Psi(\phi(s) + s)$ ϕ fixes s and all x_i , and so is in $O'(L_2)$. It follows from spinor norms that $\varepsilon \in \mathcal{U}_2^2$, and hence $e_2 \geq 2q$.

A minor variation of this argument, with weaker congruences, gives $\varepsilon \in (1 + 4\mathcal{O}_2) \mathcal{U}_2^2$, and hence $e_2 \geq 2q$ for Case 5.

Proof for Case 4. Modify Case 6. Let θ be as above with $\varepsilon = 1 \text{ mod } 4$. If we proof $\varepsilon \in \mathcal{U}_2^2$, it follows that $e_2 \geq 2$. Let $x_{m-1} = u_{m-1} + 2\eta v_{m-1} \in J_2$, where $\eta \in \mathcal{U}_2$, and $r = s_{m-1} = u_{m-1} - 2\eta v_{m-1}$. Then, with ϕ , x_m and s as above, $\phi(s) = as +2br + 2 \sum_{i \le m-1} b_i s_i$. Since $\lambda \equiv 1 \text{ mod } 4$ and J_3 is even, it follows that $a^2 + 8\eta b^2 \equiv 1 \mod 32$. Then either $\Psi(\phi(s) - s) \phi$ when $a-1 \in 2\mathcal{U}_2$, or $\tau = \Psi(s) \Psi(\phi(s)+s) \phi$ when $a+1 \in 2\mathcal{U}_2$, is integral and fixes s and all x_i , and so by [1, 3.8] lies in $O'(L_2) O(4L_2)$. The first possibility violates det $\phi=1$. For the second, by spinor norms, $\varepsilon q(s) q(\phi(s)+s)$ is in $(1+4\ell_2) F_2^2$. Hence $(1+a)/2 \equiv \alpha^2 \equiv 1 \mod 4$ and $a \equiv 1 \mod 8$. Then $a^2 + 8\eta b^2 \equiv 1 \text{ mod } 32$ shows that b is even and $a \equiv 1 \text{ mod } 16$. Since $r \equiv x_{m-1}$ mod $4L_2$, it follows that $\tau(r)=cr+4\sum_{i \leq m-1} d_i s_i$ with $c \equiv$ 1 mod 32. Now $\Psi(r) \Psi(\tau(r)+r) \tau$ fixes s, r and all x_i and so is in $O'(L_2) O(8L_2) = O'(L_2)$. The product $\Psi(r) \Psi(\tau(r)+r)$ is integral, although the individual symmetries are not (check the images of r, v_{m-1} and $t \in H_1 \perp \cdots \perp H_{m-2}$). Finally, by spinor norms, $\varepsilon \in \mathcal{U}_2^2$, and $e_2 \ge 2$.

Proof for Case 2. Modify Case 4. Let $x_{m-1}=u_{m-1}+\mu v_{m-1} \in J_1$, where $\mu \equiv 1 \mod 2$, $-\lambda \mu \not\equiv 1 \mod 4$ and $r=s_{m-1}=u_{m-1}-\mu v_{m-1}$. For θ , ϕ , x_m and s above, $\phi(s) = as + 2br + 2 \sum_{i \le m-1} b_i s_i$, and $a^2 + 4\lambda \mu b^2 \equiv 1 \text{ mod } 16$. Either $\sigma = \Psi(\phi(s) - s)$ ϕ when $a - 1 \in 2\mathcal{U}_2$, or $\tau = \Psi(s) \Psi(\phi(s) + s)$ ϕ when $a+1 \in 2\mathcal{U}_2$, is integral and fixes s and all x_i . Repeat this for r where now $\sigma(r)$, or $\tau(r)$, equals $cr + 2\sum_{i \le m-1} d_i s_i$ so that $c^2 \equiv 1 \mod 16$. Then either $\Psi(\sigma(r)-r)\sigma$ or $\Psi(r)\Psi(\tau(r)+r)\tau$ fixes all x_i , s and r, and so is in $O'(L_2) O(4L_2)$ (the other possibilities violate det $\phi=1$). For the first map,

by spinor norms, $\epsilon q(\sigma(r) - r) q(\phi(s) - s)$ lies in $(1 + 4\mathcal{O}_2) F_2^2$. Therefore, $\varepsilon(1-a)/2 \equiv \lambda \mu \alpha^2 \mod 4$, and $a^2 + 4\lambda \mu b^2 \equiv 1 \mod 16$ then gives $\varepsilon \equiv \lambda \mu \alpha^2 + \lambda^2 \mu b^2 \equiv 1 \mod 16$ β^2 mod 4. Let $-\lambda\mu=1+2\zeta$ where ζ is a unit since $-\lambda\mu \neq 1$ mod 4. If $\varepsilon = 1+2\zeta^{-1}\rho$ with $\rho \notin \wp$, the congruence has no solutions for α , β . Hence $e_2 \geq 2$. The second map is similar.

Observation. Let $L_2 = H_1 \perp \cdots \perp H_m$ and $\psi : M_2(1) \rightarrow L_2$ be a local canonical embedding with $\psi(x_i)=x_i$ for $i < m$, and the H_m -component of $\psi(x_m)$ equal to $\epsilon u_m + \delta v_m$ with $\epsilon \equiv 1 \mod 2$, and $\epsilon \equiv 1 \mod 4$ in Case 4. The above arguments have shown that the spinor orbit of a local canonical embedding is uniquely determined by the group coset $\varepsilon + 2\omega$ in Case 2, by ε +4 φ in Cases 4 and 6, and by ε +4 φ , in Case 5. We use this to study the action of $\Phi = \Phi(-1)$ and $\Psi = \Psi(u_m - v_m)$ on the spinor orbits of local embeddings. This will later help determine $N(L, M)$.

COROLLARY 2.2 Assume the conditions of Theorem 2.1. Then Φ interchanges the local spinor orbits in pairs in Cases 5 and 6, and Φ interchanges the two local spinor orbits in Case 2 except when $\varepsilon \in \mathcal{D}$.

Proof. In a local embedding, Φ changes ε to $-\varepsilon$.

COROLLARY 2.3. In Case 4 let $J_1 \perp J_2 = \mathcal{O}_2 x \perp \mathcal{O}_2 z$ with $\lambda = q(x) \equiv 1$ mod 4 and $2\eta = q(z) \equiv 2 \mod 4$. Then Φ leaves the two local spinor orbits invariant if and only if $\eta + 1 \in 2\omega$.

Proof. As in the proof 2.1, take $x_m = x = u_m + \lambda v_m$ and $x_{m-1} = z = 1$ $u_{m-1} + 2\eta v_{m-1}$. Then the orbit of the canonical embedding ψ is determined by $\varepsilon+4\varphi$, where $\psi(x_m)=\varepsilon u_m+\delta v_m$ (with $\varepsilon \equiv \delta \equiv 1 \mod 4$). Then Φ changes ε to $-\varepsilon \equiv 3 \mod 4$ in $\psi(x_m)$. Since $E(u_m, u_{m-1}-2\eta v_{m-1})$ fixes x_{m-1} and changes $-\varepsilon$ to $-\varepsilon-2\eta\delta \equiv 1 \mod 4$ in $\Phi\psi(x_m)$, Φ leaves the orbits invariant if and only if $\varepsilon+4\rho=-\varepsilon-2\eta\delta+4\rho$, or $\eta+1 \in 2\rho$.

COROLLARY 2.4. Assume the conditions of Theorem 2.1 and $q=2$. Then Ψ (resp. $\Psi(u_m+v_m)$) leaves the spinor orbits invariant for Cases 2 and 5 if and only if $\lambda \equiv 1 \mod 4$ (resp. $\lambda \equiv -1 \mod 4$), and for Cases 4 and 6 (assuming $L_2 = H_1 \perp \cdots \perp H_m$) if and only if $\lambda \equiv 1 \mod 8$ (resp. $\lambda \equiv -1 \mod 8$.

Proof. In Cases 2 and 5, λ mod 4 is an invariant of M_2 , and the spinor orbit of the embedding ψ is determined by the value of ε mod 4 in $\psi(x_m) = \varepsilon u_m + \delta v_m$; thus Ψ leaves the orbit invariant if and only if $\varepsilon = \delta$ mod 4, that is $\lambda = \varepsilon \delta = 1$ mod 4. For Cases 4 and 6, λ mod 8 is an invariant of M_2 , and the orbit is determined by ε mod 8; note λ changes to $\lambda + 4$ if modifications to M_2 and L_2 are needed for the exceptional situation in Theorem 3.1(iii) of $\lceil 1 \rceil$.

COROLLARY 2.5. Assume the conditions of Theorem 2.1. Then Ψ leaves all $SO(L₂)-orbits$ invariant.

Proof. The symmetry $\Psi(s)$ with $s = \varepsilon u_m - \delta v_m$ leaves invariant the canonical embedding ψ_c involving $x_c = \varepsilon u_m + \delta v_m$, with $\varepsilon \delta = \lambda$ a unit. Since $\Psi \Psi(s) \in SO(H_m)$, it follows that Ψ leaves the $SO(L_2)$ -orbits invariant.

THEOREM 2.6. Assume 2 is prime, the even lattice L_2 primitively represents M_2 with $n-m=m_2\geq 2$, and J_1 is even. Then:

- 1. $e_2 = 2$ when $r_1 > 0$.
- 2. $e_2 = 2q$ when $r_1 = 0$ and $r_2 > 1$.
- 3. $e_2 = 4q$ when $r_1 = 0$ and $r_2 \le 1$.

Proof. This follows from Theorem 3.7 in [1] when M_2 is strongly even. It remains to consider $\mathcal{S}_2=4\mathcal{O}_2$ and J_2 odd. Then $J_1=0$, and either J_2 is split by $\begin{pmatrix} \alpha & 4 \\ 4 & \delta \end{pmatrix}$ with $\alpha \in 8\mathcal{O}_2$ and $\delta \in 4\mathcal{U}_2$, or $r_2 = 1$. The first case gives $e_2 = 2q$ by an argument similar to that used for strongly even lattices in [1]. In the remaining case with $r_2=1$, Proposition 3.6(i) in [1] gives $e_2 \le 4q$, while $e_2 \ge 4q$ follows by an argument similar to that used in the proof of Theorem 2.1(4).

COROLLARY 2.7. Assume the conditions of Theorem 2.6. Then Φ and Ψ independently interchange the local spinor orbits in pairs, except for Φ when $r_1>0.$

3. GLOBAL ORBITS UNDER $O(L)$ and $SO(L)$

Assume L is an even unimodular isotropic \mathbb{Z} -lattice. The quotient group $O(L)/O'(L)$ is then the Klein 4-group generated by $\Phi(-1)$ and $\Psi(u-v)$ (viewed acting on a hyperbolic plane H_m common to all the local splittings of L_p used in the canonical embeddings).

THEOREM 3.1. Let L be an even unimodular \mathbb{Z} -lattice with $n-m\geq3$ and the Witt index $i_{\infty}(L \perp - M) > m$. Then

$$
2N^{+}(L, M) = N'(L, M) = \prod_{p} e_p
$$

if and only if either:

1. There exists a prime $p \equiv 3 \mod 4$ with $m+m_n \geq n-1$, or

2. $m+m_2=n, e_2 \ge 2$, either $J_1=0$ or J_1 is odd, and if $r_1=r_2=1$ with J_3 even then $\eta \equiv 1 \mod 4$.

Otherwise, $N^+(L, M) = N'(L, M)$.

Proof. The conditions given are exactly those needed so that $\Phi(-1)$ does not act trivially on the local spinor orbits. See Theorem 4.1 in [1] for the first part. The rest uses Corollaries from the previous section. \blacksquare

This result is essentially in [2] although expressed differently, and with the notation $e_{++}=N'(L, M), e_{+-}=N^+(L, M)$ and $e=N(L, M)$. Finally, we give necessary and sufficient conditions for $N(L, M) = 1$. Let $p_1, ..., p_s$ be the odd primes where $m+m_p\geq n-1$, and let P be the two rowed matrix over \mathbb{F}_2 where the $(1, j)$ -entry is 1 if and only if $p_j \equiv 3 \mod 4$, and the $(2, j)$ entry is 1 if and only if $m + m_{p_j} = n - 1$ and $2dM_{p_j}(0) \neq (-1)^{n-m} dL_{p_j}$. This last condition corresponds to $(2\Delta/p_i) = -1$ in $\lceil 2 \rceil$, where $\Delta = -\lambda$ mod 8.

THEOREM 3.2. Let L be an even unimodular $\mathbb Z$ -lattice primitively representing M with $n-m\geq3$ and $i_{\infty}(L \perp-M)>m$. Then $N(L, M)=1$ if and only if $e_2 \leq 4$ and one of the three following situations occur:

1. If $e_2=1$ and an odd prime p exists with $m+m_p=n$, then $p \equiv 3 \mod 4$, and $m+m_p \le n-2$ for all other odd primes. At most two primes with $m+m_p=n-1$ exist, with rank $P=1$ when only one exists, and rank $P=2$ when two exist.

2. If $e_2 = 2$, then $m + m_p \le n - 1$ for all odd primes. At most one p with $m+m_p=n-1$ exists, with $p \equiv 3 \mod 4$ when J_1 is even, and $2dM_p(0) \neq$ $(-1)^{n-m} dL_p$, with $\eta \equiv 1 \mod 4$ in Case 4, when J_1 is odd.

3. If $e_2=4$, then $m+m_p\leq n-2$ for all odd primes, $r_1=0$ and $r_2>1$.

Proof. Clearly $\prod_{p} e_p = N'(L, M) \leq 4$ is necessary; Theorem 3.7 in [1] then forces the given restrictions on $m+m_p$ at odd primes. When $e_2=1$, the result follows from 3.1 above and Theorem 4.2 (and the remarks following it) in [1]. When $e_2 = 4$, Case 6 cannot occur by 2.5. Thus only 2.6(2) applies, and $\Phi(-1)$ and $\Psi(u-v)$ then act independently on the dyadic spinor orbits. Finally, let $e_2 = 2$. If $r_1 > 0$ with J_1 even, $\Phi(-1)$ acts invariantly on dyadic spinor orbits, so that $p \equiv 3 \mod 4$ is necessary when p exists with $m+m_p=n-1$. If J_1 is odd, then $\Psi(u-v)$ acts invariantly on $SO(L_2)$ -orbits by 2.5, and also invariantly on $O'(L_p)$ -orbits unless $2dM_p(0) \neq (-1)^{n-m} dL_p$ (see [1]), so this condition is now necessary.

8 DONALD G. JAMES

REFERENCES

- 1. D. G. JAMES, The number of embeddings of quadratic S -lattices, in "K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras,'' Proc. Symposium Pure Math., Amer. Math. Soc., Providence, R.I., 58 (2) (1995), 265-274.
- 2. R. Miranda and D. R. Morrison, The number of embeddings of integral quadratic forms, Proc. Japan Acad. 61 (1985), 317-320; 62 (1986), 29-32.