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The number of inequivalent primitive embeddings of a quadratic lattice M into
an indefinite even unimodular Z-lattice L, modulo the action of the orthogonal
groups O(L), SO(L), and O'(L), are determined. ~ © 1996 Academic Press, Inc.

1. INTRODUCTION

Let L be a unimodular lattice on an S-indefinite quadratic space V of
finite dimension n >3 over an algebraic number field F. Denote by O(V)
the orthogonal group of V, and by O(L) the subgroup of those isometries
that leave L invariant. Let M be a second S-lattice on a non-degenerate
quadratic space with dimension m <n. In [ 1] we studied primitive embed-
dings of M into L, and the number N(L, M) of inequivalent embedding
modulo the action of O(L), SO(L) and the spinorial kernel O'(L)=
O(L) n O(V). These results were incomplete at dyadic primes and will now
be completed when 2 is unramified and L is an even lattice. The notation
and terminology in [ 1] will be continued.

We first determine the number e, = N'(L,, M,) of local dyadic embed-
dings modulo the action of O'(L,) when m + m, =n (see Theorems 2.1 and
2.6). By studying the action of the quotient group O(L)/O’(L) on the local
embeddings, all situations where there is a unique global embedding
modulo the action of O(L) are then determined for even Z-lattices L (see
Theorems 3.1 and 3.2). This extends the earlier work of Miranda and
Morrison [2].

* This research was partially supported by NSA Grant MDA 904-94-H-2034. It was com-
pleted while the author was on sabbatical leave at the University of Auckland.
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2. UNRAMIFIED DyADIC EMBEDDINGS

Let ¢ be the size of the residue class field ¢, /2¢,. Theorems 2.1 and 2.6
evaluate e, when m +m,=n. For ¢=2 the data is the same as for ¢, in
Table II of [2, 1986]. Let g denote the subgroup of integers in (), of the
form a(a+1). Then o =20, when ¢g=2, and in general 20, < ¢ with
the index [(;: p]=2. Let M, =1,_,J, be a Jordan splitting with J, the
2*-modular component. The component J, is called odd if there exists
zeJ, with g(z)e2*~'%,; otherwise J, is even (including J,=0) and
q(J,) €2%0,. Then r, =rank J, and the parity of J, are invariants of M,.
In the notation of [2, p. 31], r, =2s(k)+ rank w(k), and J, is even when
w(k)=0.

There are several cases to consider when J, is odd. As in [ 1], first reduce
to M,= M,(1) and n=2m, by cancelling the even unimodular component
M,0)=J, from M, and L,. Fix xeJ, with ¢g(x)=A=1mod?2; A
corresponds to ¢ in Table II of [2].

Case 1: r, =3, or r;=2 with J, odd, or r, =2 with J, even and the
discriminant dJ, € —4(1 +40,) %5.

Case 2: r;=2 with J, even and dJ, ¢ —4(1 +40,) %3. When ¢=2,
Amod 4 is an invariant of m,.

Case 3. r,=1, J,is odd, and r, >2 or J; odd.

Case 4. r,=r,=0 and J; is even. Choose x with A=1mod4. Let
J,=0,x and normalize J,=(0z with ¢(z)=2n=2mod 4. The cosets
A+4p and 5y +4p are then invariants of M, (since J; is even); 5 is the
same as in Table II of [2].

Case 5: r;=1, and r, =2 with J, even, or r, =0 with J; odd. The coset
A+40, is now an invariant of M,.

Case 6: r,=1, r,=0 and J; is even. The coset A +4 is an invariant
of M,.

THEOREM 2.1. Assume 2 prime, the even lattice L, primitively represents
M, with m+m,=n, and J, odd. Then:
e, =1 for Cases 1 and 3.
e, =2 for Cases 2 and 4.
e, =¢q for Case 5.
e, =2q for Case 6.
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If L, is not a sum of hyperbolic planes, replace L, by L, | B and M, by
M, 1 B, and extend the embedding by the identity on B. Since B | B=
H 1 Hand B L O,x=H10,x" with /. =¢q(x)=q(x') mod 4, after cancelling
H, we have L,=H,1l.--1 H,, preserving Amod4. However, A%}
changes. It was shown in Proposition 3.6 of [ 1] that any embedding of M,
into the even lattice L,, with m +m, =mn, is locally spinor equivalent to a
canonical embedding (after cancelling the unimodular component M,(0)).
Hence it suffices to concentrate on canonical embeddings. Let x,, ..., x,, be
a basis for M,, viewed as a primitive sublattice of L,, with x,,=x and

X;=u;+v;+ ) a,v;, 1<i<m,
j<I

where a;= f(x;, x;)€%,, a,=q(x;)e 0, and 2a,€ ¥, (as in [1, 3.4]). Let
Y:M,— L, be a canonical embedding with (x;)=x; for i<m, and
eu,, + ov,, the component of Y(x,,) in H,,. The value of e, depends on how
much control there is of the unit & First get ¢e=1mod2 by using
@(E*)e O'(H,,) with Ee,, so that e,<2q=[%:%3], since inter-
changing u,, and v,, gives no new inequivalent embedding with 1=¢d a
unit. When m =m, =1 there are exactly 2¢ inequivalent embeddings since
O'(H,) is the group of isometries @(£2). Assume, therefore, m > 2.

Proof of Upper Bounds. In Case 1, except for r; =3 and J, anisotropic,
there exists ye M, with f(x,y)=2 and ¢(y)e4@,. Since 0O,x+ O,y
orthogonally splits M,, a basis exists with x,, _,=y=u,,_;+q(y)v,,_,
X, =x=2v,,_;+u,+ v, and y(x)=2v,,_, + éu,, + ov,, with ¢6 = 1. The
Eichler transformations E(v,,, — 9 cr) E(u,,, cr) with r=u,, | —q(y) v,,_,
and ¢+ 2c¢+ c?g(y) 6 =1, which fixes x,, ,, changes ¢ to 1. Hence e, = 1.
In Case 2 a similar argument with ¢( y) € 2%, gives the bound e, < 2, since
¢ can be additively changed by 2. In the remaining part of Case 1 where
ri=3,take x,, _,=u,,_>+2v,,_», X,,_1=20,, _>+U,,_+uv,,_, with g a
unit, and Y(x,,) =y¥(u,, + Au,,) =¢u,,+ ov,,. Now reduce ¢ to 1 by using

E(v,,, dt) E(u,,, ct) twice, first with t=u,, ,—2v,,_,—2v,,_, to get
e=1mod4, and then with t=u,, | —uv,, ;.

For Cases 3 and 4, use a modified argument with x,,_,=yeJ,,

( ) €29, and Y(x)=y(u,,+ Av,,) =¢u,, + dv,,, to get ¢=1mod 4 so that
<2. When J; is odd in Case 3, take x,,_,=u,,_,= +{v,,_,€J; with
Ce40212, and use E(u,,, c(u,,_,—{v,,_,)) to get e=1mod §; thus e, =1.
This can be modified when r, > 2 with suitable x,, ,€J,, (similar to r, =3
above, possibly changing the choice of x). For Case 5, e, < ¢ since ¢ can be
additively changed by 40,. |

The corresponding lower bounds will be obtained by modifying
Lemma 3.8 in [1].
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Proof for Cases 5 and 6. For Case 6, J,=0,x,, with x,, =u,,+ iv,,,
while x, .., x,,_;spanl,.;J,. Let e O'(L,) satisfy O(x;)=x; for i<m,
and 0(x,,) =eu,, +w with ¢ a unit and f(w, v,,) =0. If we prove ¢e %3 it
then follows that the canonical embeddings v, with ¢, ranging over %, /%3
are spinor inequivalent, and e,>2q. The map ®(¢~ ') 0 fixes x; for i <m,
while ®(¢ ") H(x,,,) =u,,+0v, +t with re H,,. Take x;, v, as a base for L,
and let v;, s;,=u; — X k=, @y v, be the dual base. Then 815 s S,y SPAnN
the orthogonal complement of M, in L,; this is isometric to —M2 Let
1=, (cx;+dv;). The map ¢ =E(v,,, >, _, ¢;s;) P(e~") 0 fixes all x,.
Put s=s,,=u,,—iv,,=x,,mod 2L,. Then ¢(s)=as+2>,_,, b;s; since
f(s,x,)=0. Thus a’>=1mod 32, using f(s,s5,)=—a,,=0 and q(s,)=
—a,;e80, for i<m. If a= —1 mod 4, then ¥(4(s)—s) ¢ lies in O(L,) and
fixes s and all x;; consequently (using [1, 3.8] on x, ..., x,,_) this map
lies in O'(L,) O(8L,) = O'(L,), where O(8L,) is the congruence subgroup
modulo 8, giving the contradiction det ¢ = — 1. Hence ¢ =1 mod 16. Then
Y(s) P(¢p(s)+s) ¢ fixes s and all x;, and so is in O'(L,). It follows from
spinor norms that ¢ e 2, and hence e, > 2q.

A minor variation of this argument, with weaker congruences, gives

€ (1+40,) %3, and hence e, > 2q for Case 5.

Proof for Case 4. Modify Case 6. Let 0 be as above with e=1 mod 4.
If we proof ¢e#2, it follows that e,>2. Let x,,_,=u,,_, +2nv,,_,€J5,
where ne#,, and r=s,,_,=u,,_,—2nv,,_,. Then, with ¢, x,, and s as
above, ¢(s)=as+2br+2>,_,,_1 b;s;. Since A=1mod 4 and J; is even, it
follows that «?+87b*>=1mod 32. Then either Y(¢(s)—s)¢ when
a—1e2%u,, or t=Y(s) Y(¢(s)+s) ¢ when a+ 1€2%,, is integral and fixes
s and all x,, and so by [1, 3.8] lies in O'(L,) O(4L,). The first possibility
violates det ¢ = 1. For the second, by spinor norms, &g(s) g(¢(s)+s) is in
(1 +40,) F3. Hence (14+a)2=o*=1mod4 and a=1mod8. Then
a’+8yb*>=1mod 32 shows that b is even and a=1mod 16. Since
r=x,_,mod4L,, it follows that t(r)=cr+43,_,,_,d;s; with c=
1 mod 32. Now Y(r) W(z(r)+r)t fixes s, r and all x, and so is in
O'(L,) O(8L,) = O'(L,). The product ¥(r) ¥(z(r)+r) is integral, although
the individual symmetries are not (check the images of r, v,,_; and
teH,l .- 1H, ). Finally, by spinor norms, ¢ %3, and e, >2.

Proof for Case 2. Modify Case 4. Let x,,,_,=u,,_,+uv,,_,; €J,, where
u=1mod2, —Au#1mod4 and r=s,,_,=u,,_,—uv,,_,. For 0, ¢, x,,
and s above, ¢(s)=as+2br+23,_,, 1 b;s;, and a*+4iub>=1mod 16.
Either o = ¥Y(¢(s)—s) ¢ when a—1¢€2%,, or = P(s) P(P(s) +s) ¢ when
a+1e€2%,, is integral and fixes s and all x;. Repeat this for » where now
a(r), or ©(r), equals cr+23,_,, , d,s; so that ¢>=1mod 16. Then either
Y(o(r)—r)o or P(r) Y(e(r)+r)t ﬁxes all x;, s and r, and so is in
O'(L,) O(4L,) (the other possibilities violate det ¢ =1). For the first map,
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by spinor norms, &g(a(r) —r) q(¢(s)—s) lies in (1+40,) F3. Therefore,
&(1 —a)/2 = iux* mod 4, and a® +4Jub*=1mod 16 then gives &= Auo’®+
p*mod4. Let —Au=1+2{ where { is a unit since —Au#1mod4. If
e=1+2{""p with p ¢ p, the congruence has no solutions for «, . Hence
e, >=>2. The second map is similar.

Observation. Let L,=H,1-.--1 H,, and {y: M,(1)> L, be a local
canonical embedding with (x;) = x; for i <m, and the H,,-component of
Y(x,,) equal to &u,,+ ov,, with e=1mod 2, and ¢=1 mod 4 in Case 4. The
above arguments have shown that the spinor orbit of a local canonical
embedding is uniquely determined by the group coset ¢ + 2 in Case 2, by
e+ 4 in Cases 4 and 6, and by ¢ + 40, in Case 5. We use this to study the
action of ®=&(—1) and ¥= ¥(u,,—v,,) on the spinor orbits of local
embeddings. This will later help determine N(L, M).

COROLLARY 2.2 Assume the conditions of Theorem 2.1. Then @ inter-
changes the local spinor orbits in pairs in Cases 5 and 6, and @ interchanges
the two local spinor orbits in Case 2 except when ¢ € .

Proof. 1In a local embedding, @ changes ¢ to —e.

COROLLARY 2.3. In Case 4 let J, L J,=0x L Oz with A=q(x)=1
mod 4 and 2n=q(z) =2 mod 4. Then @ leaves the two local spinor orbits
invariant if and only if n+1€2p.

Proof. As in the proof 2.1, take x,,=x=u,,+4v,, and x,_,=z=
u,, 1+ 2nv,,_,. Then the orbit of the canonical embedding s is determined
by e+4p, where y(x,,)=c¢u,,+0ov, (with ¢=d=1mod4). Then @
changes ¢ to —¢=3mod4 in VY(x,,). Since E(u,,,u,,_,—2nv,,_) fixes
X,,_, and changes —& to —e—2yd=1mod4 in ®Y(x,,), @ leaves the
orbits invariant if and only if e +4p = —e—2nd +4p, or n+1€2p.

COROLLARY 2.4. Assume the conditions of Theorem 2.1 and ¢q=2.
Then ¥ (resp. ¥(u,,+v,,)) leaves the spinor orbits invariant for Cases 2
and 5 if and only if A=1mod 4 (resp. A= —1mod 4), and for Cases 4
and 6 (assuming L,=H, L---1 H,,) if and only if =1 mod 8 (resp.
= —1mod 8).

Proof. 1In Cases 2 and 5, A mod 4 is an invariant of M,, and the spinor
orbit of the embedding i is determined by the value of ¢mod4 in
V(x,,) =eu,,+0dv,,; thus ¥ leaves the orbit invariant if and only if
e=o0mod4, that is A=e¢d=1mod 4. For Cases 4 and 6, Amod 8 is an
invariant of M,, and the orbit is determined by £ mod 8; note A changes to
A+ 4 if modifications to M, and L, are needed for the exceptional situation
in Theorem 3.1(iii) of [1].
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COROLLARY 2.5. Assume the conditions of Theorem 2.1. Then ¥ leaves
all SO(L,)-orbits invariant.

Proof. The symmetry ¥(s) with s=e¢u, —0dv,, leaves invariant the
canonical embedding . involving x, = ¢u,, + dv,,, with &d =1 a unit. Since
Y¥(s)e SO(H,,), it follows that ¥ leaves the SO(L,)-orbits invariant.

m

THEOREM 2.6. Assume 2 is prime, the even lattice L, primitively
represents M, with n—m=m,>2, and J, is even. Then:

1. e,=2 when r,>0.
2. ey=2q when ri=0 and r,>1.

3. e,=4q when ry=0 and r, < 1.

Proof. This follows from Theorem 3.7 in [ 1] when M, is strongly even.
It remains to consider % =4¢, and J, odd. Then J, =0, and either J, is
split by (% 3) with o« € 8¢, and 6 € 4%,, or r, = 1. The first case gives e, =2q
by an argument similar to that used for strongly even lattices in [ 1]. In the
remaining case with r, =1, Proposition 3.6(i) in [1] gives e, <4q, while
e,>4q follows by an argument similar to that used in the proof of
Theorem 2.1(4).

COROLLARY 2.7. Assume the conditions of Theorem 2.6. Then @ and ¥
independently interchange the local spinor orbits in pairs, except for @ when
r; >0.

3. GLOBAL ORBITS UNDER O(L) AND SO(L)

Assume L is an even unimodular isotropic Z-lattice. The quotient group
O(L)/O'(L) is then the Klein 4-group generated by @(—1) and ¥(u—v)
(viewed acting on a hyperbolic plane H,, common to all the local splittings
of L, used in the canonical embeddings).

THEOREM 3.1. Let L be an even unimodular 7Z-lattice with n —m =3 and
the Witt index i (L L — M)>m. Then

AN*(L, M)=N'(L, M)=]]e,
P

if and only if either:
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1. There exists a prime p=3 mod 4 with m+m,>n—1, or

2. m+my=n, e, =2, either J,=0 or J, is odd, and if r, =r,=1 with
J5 even then n =1 mod 4.

Otherwise, N* (L, M)=N'(L, M).

Proof. The conditions given are exactly those needed so that &(—1)
does not act trivially on the local spinor orbits. See Theorem 4.1 in [1] for
the first part. The rest uses Corollaries from the previous section. ||

This result is essentially in [2] although expressed differently, and with
the notation e, , =N'(L, M), e, _=N7"(L, M) and e=N(L, M). Finally,
we give necessary and sufficient conditions for N(L, M) =1. Let p,, ..., p, be
the odd primes where m +m,>n—1, and let P be the two rowed matrix
over [, where the (1, j)-entry is 1 if and only if p,=3 mod 4, and the (2, j)-
entry is 1 if and only if m +m, =n—1 and 2dM, (0) #(—1)"""dL,,. This
last condition corresponds to (24/p;)= —1 in [2], where 4= —Amod 8.

THEOREM 3.2. Let L be an even unimodular Z-lattice primitively
representing M with n—m>=3 and i (L L — M) >m. Then N(L, M)=1 if
and only if e, <4 and one of the three following situations occur:

1. If e;=1 and an odd prime p exists with m+m,=n, then
p=3mod4, and m+m,<n—2 for all other odd primes. At most two
primes with m+m,=n—1 exist, with rank P =1 when only one exists, and
rank P =2 when two exist.

2. Ife,=2, then m+m,<n—1 for all odd primes. At most one p with
m+m,=n—1 exists, with p=3mod4 when J, is even, and 2dM ,(0) #
(—1)"="dL,, withn=1mod 4 in Case 4, when J, is odd.

3. Ifey;=4, then m+m,<n—2 for all odd primes, r =0 and r,> 1.

P

Proof. Clearly [],e,=N'(L, M)<4 is necessary; Theorem 3.7 in [1]
then forces the given restrlctlons on m+m, at odd primes. When ¢, =1,
the result follows from 3.1 above and Theorem 4.2 (and the remarks
following it) in [1]. When e, =4, Case 6 cannot occur by 2.5. Thus only
2.6(2) applies, and @(—1) and Y(u—v) then act independently on the
dyadic spinor orbits. Finally, let e, =2. If r, >0 with J, even, &(—1) acts
invariantly on dyadic spinor orbits, so that p =3 mod 4 is necessary when
p exists with m +m,=n—1.1f J, is odd, then ¥(u —v) acts invariantly on
SO(L,)-orbits by 2.5, and also invariantly on O'(L,)-orbits unless
2dM (0) #(—1)"""dL, (see [1]), so this condition is now necessary.
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