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1. INTRODUCTION AND THE MAIN RESULTS

Throughout the paper K will denote a fixed algebraically closed field.
By an algebra we mean a basic connected finite dimension K-algebra
(associative with an identity), by mod 4 we mean the category of all finite
dimensional left 4-modules, and by ind 4 we mean the full subcategory of
mod A consisting of indecomposable modules. Moreover, we denote by
I'(mod A) the Auslander—Reiten quiver of 4 and by 7, and 7; the
Auslander—Reiten translations D Tr and Tr D in mod A, respectively. We
shall identify an object of ind A with the corresponding vertex of the
quiver T'(mod A). By an abelian category we mean a connected abelian
K-category &/ with finite dimensional K-vector spaces Hom(Y,Y) and
Ext!(X,Y) for all objects X and Y in .. We denote by D®(%) the derived
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786 KERNER AND SKOWRONSKI

category of bounded complexes over .. Finally, an abelian category &/ is
called hereditary if the functor Ext?(—, —) vanishes on .«/.

An algebra A is said to be piecewise hereditary (of type #) if there
exists a hereditary abelian category .# such that D’(mod 4) and D*(%)
are equivalent as triangulated categories. It is known [47] that an alge-
bra A is piecewise hereditary of type 7 if and only if 4 = End (T ")
for a tilting complex 7  in D’(#), that is, a complex T  with
Hom (T, T'[i]) = 0 for all i # 0 such that the additive category add
(T) of T  generates D’(#) as a triangulated category. A special but
important class of piecewise hereditary algebras is formed by the qua-
sitilted algebras, being the algebras of the form End,(T), where T is a
tilting object in a hereditary abelian category /7, that is, satisfying the
properties Ext (T, T) =0 and Hom(T, X) = 0 = Ext (T, X) implies
X = 0. It has been proved in [17] that an algebra A is quasitilted if and
only if A is of global dimension at most two and every indecomposable
finite dimensional A-module is of projective dimension or injective dimen-
sion at most one.

In [34] Lenzing has shown that the only noetherian hereditary abelian
categories with tilting objects are those which are derived equivalent to
mod H for a hereditary algebra H or to a category coh X of coherent
sheaves over a weighted projective line X. Recently [15] Happel proved
that up to derived equivalence these are the only possible types of
hereditary abelian categories with tilting objects. In particular, one obtains
that every quasitilted algebra is tilted (a tilt of a hereditary algebra) or of
canonical type (a tilt of a canonical algebra). Moreover, every piecewise
hereditary algebra can be obtained from a hereditary algebra or a canoni-
cal algebra by a finite sequence of tilts [38]. The quasitilted algebras of
tame representation type (and their module categories) have been com-
pletely described already in [54]. On the other hand, our knowledge of
quasitilted algebras of wild representation type is still relatively poor. For
example, it has been shown in [37] that a quasitilted algebra A is of
canonical type if and only if A4 is a semiregular branch enlargement of a
concealed canonical algebra C. But besides the canonical algebras we
know only a few concealed canonical algebras of wild type (see [39).
Recall that an algebra C is called concealed canonical if C is the
endomorphism algebra of a tilting vector bundle 7' in the category coh X
of coherent sheaves over a weighted projective line X. Concealed canoni-
cal algebras are characterized by the existence of a separating family of
stable tubes [36, 53]. Similarly, the tilted algebras given by regular tilting
modules are characterized by the existence of a stable nonperiodic (con-
necting) component with finitely many orbits with respect to the action of
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the Auslander—Reiten translation [50]. In the both cases, only general
information on the structure of such stable components is available.

In the paper we are interested in the structure of quasitilted algebras
which are one-point extensions

H[M] - [H M}

0 K

of wild hereditary algebras H by non-zero regular H-modules M. It is
known that if such a one-point extension is piecewise hereditary then
necessarily M is quasi-simple [32] and End (M) = K (see [17]). Moreover,
we know (see [17, 29]) that the one-point extension H[M] is piecewise
hereditary of type ## if and only if all one-point extensions H[r} M],
i € Z, are piecewise hereditary of type Z. Moreover, Lache has shown in
[32] that if H[M] is piecewise hereditary of type # then there exists a
positive integer r such that the algebras H[7,,M], i > r, are quasitilted of
type . We know also that there exists a positive integer s such that all
algebras H[7;;/M], i > s, are not quasitilted [17]. Finally, we mention that
for any wild hereditary algebra H there exists a quasi-simple regular
H-module M such that H[M] is quasitilted (see Section 3).

The aim of this paper is two-fold. On the one hand, we explain the
transition from a piecewise hereditary algebra H[M] to the quasitilted
algebras H[r/,M]for i > 0. On the other hand, we exhibit interesting new
properties of stable components with finitely many nonperiodic orbits over
wild tilted algebras and of stable tubes over wild concealed canonical
algebras.

In order to state our first main result, recall that an indecomposable
module X over an algebra A is called sincere (respectively, almost
sincere) if all (respectively, all but one) simple A-modules occur as
composition factors of X. It is known that if & is the connecting compo-
nent of a tilted algebra given by a regular tilting module (respectively, the
family of all stable tubes of a wild concealed canonical algebra) then all
but finitely many indecomposable modules in % are sincere.

THEOREM 1. Let H be a connected wild hereditary algebra, let M be a
quasi-simple regular H-module, and assume that H[ M is piecewise heredi-
tary. Take a positive integer d. Then there exists a positive integer r such that,
for all i >r, the algebras H[1},M] are either tilted algebras with regular
connecting components or concealed canonical algebras. Moreover, fori > r,
we have

() If Hlt},M] is tilted then all indecomposable modules in the con-
necting component of H[t}; M ] are of dimension at least d. Moreover, all but
finitely many of them are sincere and the remaining ones are almost sincere.



788 KERNER AND SKOWRONSKI

(i) If Hlt,; M1 is concealed canonical then all indecomposable mod-
ules in the family of stable tubes over H[t\; M1 are of dimension at least d.
Moreover, all but finitely many of them are sincere and the remaining ones are
almost sincere.

Let H be a connected wild hereditary algebra and let M be a quasi-
simple regular H-module. It is an interesting open problem to find handy
necessary and sufficient conditions for M making H[M] piecewise heredi-
tary. It follows from [17, 32] that in this case M is necessarily elementary
(in the sense of [29]). It was also shown in [29] that there are only finitely
many orbits of the dimension vectors of elementary modules with respect
to action of the Coxeter transformation of H. In particular, there are
infinitely many 7,-orbits of quasi-simple regular H-modules which do not
create piecewise hereditary one-point extensions. Recall from [33] that the
orbit algebra of a regular H-module M is the Z-graded algebra @#(M) =
®._, @(M), where (M) = Hom (M, 7/, M) and multiplication is given
by (M) X G(M) — &, (M), (f,g) = (7;,¢) - f, where “-” denotes the
composition of maps. It has been shown in [27] that for a quasi-simple
regular H-module M, the algebra &(M) is a free (noncommutative)
algebra if and only if M is orbital elementary. Moreover, it is known that if
H[M] is a tilted algebra or a concealed canonical algebra then M is
orbital elementary [27, 44]. Therefore, we obtain the following conse-
quence of [32, Corollary 2.2] and Theorem 1.

COROLLARY 2. Let H be a connected wild hereditary algebra and let M be
a quasi-simple regular H-module such that H[M] is piecewise hereditary.
Then the orbit algebra @(M) is a free algebra in infinitely many variables.

It would be interesting to know whether the converse implication is true.
The second main result of the paper is the following.

THEOREM 3. Let m be a positive integer. Then

(1) For each connected wild hereditary algebra H with at least three
simple modules there exist infinitely many pairwise nonisomorphic connected
wild hereditary algebras C and quasi-simple regular C-modules M such that
CI[M] are tilted algebras of type H with a regular connecting component &
with this property: for any indecomposable module X in &, each simple
C[ M }-module occurs with multiplicity at least m as a composition factor of X.

(ii) For each wild canonical algebra A there exist infinitely many
pairwise nonisomorphic connected wild hereditary algebras C and quasi-simple
regular C-modules M such that C[ M ] are concealed canonical algebras of type
A whose family & of all stable tubes has this property: for any indecompos-
able module X in &, each simple CIM l-module occurs with multiplicity at
least m as a composition factor of X.



QUASITILTED ONE-POINT EXTENSIONS 789

As a direct consequence we obtain the following fact.

COROLLARY 4. (i) For each connected wild hereditary algebra H with at
least three simple modules there exist infinitely many pairwise nonisomorphic
tilted algebras of type H with regular connecting components without simple
modules.

(ii) For each wild canonical algebra A there exist infinitely many
pairwise nonisomorphic concealed canonical algebras of type A without simple
modules in the tubes.

It follows from the theory of quasitilted algebras that if a one-point
extension H[M] of a connected wild hereditary algebra H by a quasi-sim-
ple regular H-module M is tilted (respectively, quasitilted of canonical
type) then the connecting component (respectively, the family of tubes) of
the Auslander—Reiten quiver of H[M] has no projective modules but may
contain injective modules.

THEOREM 5. Let H be a connected wild hereditary algebra and M is a
quasi-simple regular H-module. Assume that H[ M is a tilted algebra (respec-
tively, quasitilted algebra of canonical type) whose connecting component
contains at least one injective module (respectively, r tubes contain at least
one injective module). Then there exists a preprojective tilting H-module Q
such that H' = End,(Q) is a connected wild hereditary algebra, M' =
Hom (Q, M) is a quasi-simple regular H'-module, and H'[M'] is a tilted
algebra with a regular connecting component containing at least one simple
module (respectively, concealed canonical algebra with at least r tubes con-
taining simple modules).

We also note that such a hereditary algebra H' can be obtained from H
by a finite sequence of reflections in the sense of [2, 6].

For basic background from the representation theory we refer to the
books [3, 13, 49], for special results on wild hereditary algebras to the
survey [25], and on quasitilted algebras to [17].

The outline of the paper is as follows. Section 2 is devoted to basic
properties and characterizations of tilted algebras and quasitilted algebras
of canonical type needed for our considerations. In Sections 3 and 4 we
study properties of special (saturated) regular tilting modules over wild
hereditary algebras and the dimension-vectors of the indecomposable
modules in the regular connecting components of the associated tilted
algebras. Sections 5 and 6 are devoted to the proofs of Theorems 1, 3, and
5 in the tilted case. Finally, Sections 7 and 8 are devoted to the proofs of
Theorems 1, 3, and 5 in the canonical case. In the paper, we present also
some examples and complementary results illustrating our main results.
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2. QUASITILTED ALGEBRAS

Let /# be a connected hereditary abelian K-category with finite dimen-
sional homomorphism and extension spaces. By a tilting object in .Z we
mean a multiplicity-free object T (direct sum of pairwise nonisomorphic
indecomposable objects) such that Ext,(7T,T) = 0 and Hom (T, X) = 0
= Ext(T, X) implies X = 0. Then the algebra End(T) is said to be a
quasitilted algebra of type /Z [17]. It has been recently shown [15] that
there are two classes of quasitilted algebras: tilted algebras and quasitilted
algebras of canonical type. We shall present here basic properties of these
algebras which are relevant to our considerations in the paper.

Let H be a basic connected hereditary K-algebra, let #= mod H be
category of finite dimensional left H-modules, and let 7" be a tilting object
(module) in mod H. Then H is the path algebra KA of a finite connected
quiver A without oriented cycles, and the number |A| of vertices of A is
the rank of the Grothendieck group K,(H) of H. Moreover, T is a tilting
H-module if and only if Ext},(T,T) =0 and T is a direct sum of |A,|
pairwise nonisomorphic indecomposable H-modules (see [7, 18]). Further,
A = End,(T) is called a tilted algebra of type A. The tilting H-module T
determines a torsion pair (F(T),9(T)) in mod H, with the torsion-free
part AT) = {X € mod H; Hom (T, X) = 0} and the torsion pair F(T)
={X € mod H; ExtL(T, X) =0}, and a splitting torsion pair ((7),
2A(T)) in mod A, with the torsion-free part #Z(T) = {Y € mod A4;
Tor{!(T,Y) = 0} and the torsion part ZAT) ={Y € mod 4; T ®,Y = 0}.
By the Brenner—Butler theorem, the functor Hom,(7,-) induces an
equivalence of J(T) with #Z(T), and the functor Ext(7,-) induces
an equivalence of SFAT) and 2AT) (see [8, 18]). Further, the images
Hom (T, I) of indecomposable injective H-modules I via Hom (T, -)
belong to one connected component %, of the Auslander—Reiten quiver
I'(mod A) of A, called the connecting component of T'(mod A) deter-
mined by 7, and form a faithful section A, of &;. Recall that a full
connected subquiver 3 of a (connected) component & of I'(mod A) is
called a section if 3, has no oriented cycles, is convex in &, and intersects
each 7,-orbit of & exactly once. Moreover, the section % is faithful
provided the direct sum of all modules lying on %, is a faithful 4-module.
The section A, of the connecting component %, defined above, has a
distinguished property: it connects the torsion-free part Z(7T) with the
torsion part 2AT), because every predecessor in ind A of a module
Hom (T, I) from A; lies in Z(T) and every successor of 7, Hom (T, I)
in ind A lies in 2AT). We have also the following fact established in [50].

PROPOSITION 2. Let A = End,(T) be a tilted algebra and let &, be the
connecting component of T'(mod A) determined by T. Then we have the



QUASITILTED ONE-POINT EXTENSIONS 791

following:

(1) &, contains a projective module if and only if T admits a preinjec-
tive indecomposable direct summand.

(i) %y contains an injective module if and only if T admits a prepro-
jective indecomposable direct summand.

Gii) &y is regular if and only if T is regular.

Recall also that a connected hereditary algebra H = KA admits a
regular tilting module if and only if A has at least three vertices and is a
wild quiver, that is, neither a Dynkin quiver nor an Euclidean quiver (see
[5, 51D.

The following criterion for an algebra to be tilted has been established
independently in [41, 52].

THEOREM 2.2. A basic connected algebra A is tilted if and only if
I'(mod A) admits a component & with a faithful section A such that
Hom (X, 7,Y) =0 for all X and Y in A. Moreover, in this case € is a
connecting component €y of I'(mod A) determined by a tilting module T
over a hereditary algebra H with A = End ,(T).

The structure of the Auslander—Reiten quiver of a tilted algebra A =
End,,(T) is well understood due to results established in [1, 18, 22, 23, 26,
40, 48-51, 55]. First of all, every component of T'(mod A4) different from
the connecting component either lies entirely in %Z(T) or lies entirely in
ZAT). Further, every component of T'(mod A) contained in %(T) is either
preprojective or can be obtained from a stable tube ZA /(7"), r > 1, or a
component of the form ZA,, by a finite number (possibly empty) of ray
insertions. Dually, every component of I'(mod 4) contained in 24(T) is
either preinjective or can be obtained from a stable tube ZA_/(v7), r > 1,
or a component of the form ZA_, by a finite number (possibly empty) of
coray insertions.

Let H be a basic connected wild hereditary algebra, let M be a
quasi-simple regular H-module, and assume that the one-point extension
A = H[M] is a tilted algebra End;«(T*). Then I'(mod A) admits exactly
one preprojective component Z(A4), which coincides with the preprojec-
tive component #(H) of I'(mod H), the connecting component &« of
I'(mod A) determined by 7* has no projective modules (but may contain
injective modules), and the family of components of T'(mod A4) contained
in Z(T*) but different from £(A4) consists of infinitely many components
of the form ZA, and one nonstable component obtained from a compo-
nent of type ZA, by one ray insertion, containing the indecomposable
projective A-module with radical equal M.
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Let n be a positive integer > 2, let p = (p,,..., p,) be an n-tuple of
integers p; > 2, and let A = (A,,..., A,) be an n-tuple of pairwise differ-
ent elements of P(K) = K U{} normalized such that A, = o, A, =0,
and A; = 1. Consider the quiver A(p,,..., p,)

QX1py =1 ajz
02T g . el
01;{/ yu
A2py X2py—1 a2z 21
Qo000 - o——0i——ouw
an,,]n\: : : : \Anx
o0 - 0o
Anp, .y Axn2

and the admissible ideal I(A,,..., A,) in the path algebra KA(p,,...,p,)

of the quiver A(p,..., p,) generated by @, - apa; + a,, - apay
+ Ny, - apay, 3<i<n, for n >3, and I(A, X,) =0 for n =2.
Then

A=A(p, ) =KA(py,-- s p)/I(A, .. A)

is called the canonical algebra with the weight sequence p and the
parameter sequence A. Denote by A, = A,(p,,..., p,) the path algebra of
the full subquiver of A(p,,..., p,) consisting of all vertices except the
unique source w. For n > 3, A is a one-point extension A = Aj[R] of A,
by a quasi-simple regular A,-module R = R(A,,..., A,) with the dimen-
sion-vector

11 1
11 1
dmR=2 @ :

The representation theory of canonical algebras has been established in
[35, 49]. In particular, I'(mod A) has a decomposition

F'(modA) =T, (modA) V Ij(mod A) V I'_(mod A)

where T',(mod A), I'y(mod A), and T'_(mod A) consist of components
formed by the indecomposable modules of positive, zero, and negative
rank, respectively, and I';(mod A) is a P,(K)-family of pairwise orthogonal
standard stable tubes separating ', (mod A) from TI'_(mod A4). Moreover,
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A is of wild representation type if and only if A, is a wild hereditary
algebra. It follows from [11] that the derived category D’(mod A(p, M) is
equivalent (as triangulated category) to the derived category D’(coh X(p,
A)) of coherent sheaves for a weighted projective line X = X(p, A). Fur-
ther, # = coh X is a hereditary abelian K-category having a decomposition

Z=%.U%,

where & = vect X (respectively, &, = coh, X) is the category of vector
bundles (respectively, sheaves of finite length) on X, and there exists a
tilting bundle T € vect X such that A = End (7). Recall also that &,
decomposes into a coproduct 11, «%,, where %, denotes the connected
uniserial category of coherent sheaves concentrated at the point x € X.

Let A = A(p, A) be a canonical algebra, let X = X(p, A) be the associ-
ated weighted projective line, and let & = coh X. Following [37], by a
quasitilted algebra of canonical type A we mean an algebra of the form
End(T), where T is a tilting object in a hereditary abelian K-category .Z
such that D”(#%) is equivalent to 2°(cohX) =2°(mod A). An important
class of quasitilted algebras of canonical type A is formed by the algebras
of the form C = End,(T), where T is a tilting bundle from %, = vectX,
called concealed canonical algebras of type A. For such an algebra C, we
have again a decomposition

I'(modC) =T, (modC) V I)(modC) VvV I'_(modC),

where T(modC) is a P,(K)-family of pairwise orthogonal stable tubes
separating I', (mod C) from I'_(mod C). Consider now a decomposition
X=X Vv X" into disjoint subsets, and let &)= 11, ,.y%, %, =
LI , o %,. Then the additive closure Z(X,X") of the category &}[—1] V
@,V €, in 2°(&) is a hereditary abelian K-category with a tilting object
and D’(#(X',X")) = 2%(#) as triangulated categories. Note that Z(J, X)
= ¢ and (X, J) = #°P. The following description of quasitilted algebras
of canonical type has been established in [37, Theorem 3.4].

THEOREM 2.3. For a basic connected algebra A, the following conditions
are equivalent.
(1) A is representation-infinite and quasitilted of canonical type.

(ii) A is isomorphic to the endomorphism algebra of a tilting object in a
category (X', X"), for a disjoint decomposition X = X' V X" of a weighted
projective line X.

(iii) A is a semiregular branch enlargement of a concealed canonical
algebra.

(iv) T(mod A) admits a sincere separating family of semiregular tubes.
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Recall that a family 7 of tubes in I'(mod A) is called semiregular if no
tube in 7 contains both a projective module and an injective module. It is
known that the family of tubes .7 is semiregular if and only if 7~ decom-
poses into a disjoint union J =.9" V.9 of tubes such that all tubes in "
(respectively, in 7") are obtained from stable tubes by a finite number of
coray (respectively, ray) insertions. We refer to [37, Section 3] for a
definition of a semiregular branch enlargement of a concealed canonical
algebra. It is also known (see [36, 45, 53]) that an algebra A4 is concealed
canonical if and only if T(mod A) admits a sincere separating family of
stable tubes.

The structure of the Auslander—Reiten quiver of a quasitilted algebra A4
of canonical type is well understood due to results established in [36, 37,
43]. Namely, we have a decomposition

I'(mod 4) =TI, (mod A) V I'y(mod A) V I'_(mod A),

where T(mod A) is a P,(K)-family of semiregular tubes separating
I', (mod A) from I'_(mod A). Further, every component in I (mod A) is
either preprojective or can be obtained from a stable tube ZA, /(7"),
r>1, or a component of the form ZA,, by a finite number (possibly
empty) of ray insertions. Dually, every component in I'_(mod A) is either
preinjective or can be obtained from a stable tube ZA, /(7"), r > 1, or a
component of the form ZA,, by a finite number (possibly empty) of coray
insertions. Moreover, in contrast to the tilted case, I'(mod A) admits
exactly one preprojective component %(A) and exactly one preinjective
component @(A). Moreover, we have the following consequence of the
proof of Theorem 3.4 in [37].

PROPOSITION 2.4. Let X be a weighted projective line, let X = X' vV X"
be a disjoint decomposition of X, let & = cohX, let T be a tilting object in
the category (X', X"), and let A = End s 5 (T). Then we have

(i) T,(mod A) contains a nonzero projective module if and only if T
admits an indecomposable direct summand from %.

(i) Ty(mod A) contains a nonzero injective module if and only if T
admits an indecomposable direct summand from €[ —1].

(iii) Ty(mod A) consists of stable tubes if and only if T € €, = vect X.

Let H be a basic connected wild hereditary algebra, let M be a
quasi-simple regular H-module, and assume that the one-point extension
A = H[M] is quasitilted of canonical type A = A(p, A). Then the prepro-
jective component (H) of T'(mod H) is the preprojective component of
I'(mod A) and the family I'y(mod A) of semiregular tubes has no projec-
tive modules but may contain injective modules. Therefore, A is isomor-
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phic to an algebra of the form End_«(T") where T is a tilting object in the
opposite category & = (X, 0) of the category & = coh X, for a weighted
projective line X = X(p, A). Moreover, I', (mod A) consists of the prepro-
jective component #(A) =.%(H), an infinite family of stable components
of type ZA,,, and one nonstable component obtained from a component of
type ZA,, by one ray insertion, containing the indecomposable projective
A-module with radical equal M.

3. SPECIAL REGULAR TILTING MODULES

Let A be a connected wild hereditary algebra with n > 3 simple
modules and let X be a quasi-simple regular A-module with Ext!(X, X)
= 0. We denote by X* the right perpendicular category of X [12]
consisting of all modules Y in mod A such that Hom ,(X,Y) =0 and
Extl(X,Y) = 0. Recall that X* is equivalent to the module category
mod H for a connected wild hereditary algebra H with n — 1 simples (see
[55]D. We shall identify mod H with the full subcategory X = of mod A.
For a H-module M by dim M we mean the dimension-vector of M
considered as an A-module and by dim;, M we mean the dimension-vec-
tor of the H-module M. Moreover, let Z be the middle term of the
Auslander—Reiten sequence 0 - 7,X > Z - X — 0 in mod A4. In this
section we are interested in regular tilting A-modules of the form X &
74P, a > 0, where P is a preprojective tilting H-module.

For a nonprojective indecomposable H-module Y we want to compare
the dimension-vectors of the Auslander—Reiten translations 7Y and 7,Y.
Consider the torsion class £ = {M € mod A4 | Ext'(X, M) = 0} in mod A4
determined by the partial tilting module X. For an indecomposable
module M in £ we denote by 7,M the largest torsion submodule
to(z,M) of z,M. Observe that X - C Z.

LEmMA 3.1. (i) For an indecomposable nonprojective H-module Y there
exists a short exact sequence

(m) 0-> 7, X >7,Y>7.Y—>0,
where s = dim BExt! (.Y, 7, X).

(ii)  For an indecomposable module M in & which is not Ext-projec-
tive, there exists a short exact sequence

(n") 0—»>7.M—>1 M- 7,X" -0,

where t = dim, Hom ,(M, X).
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Proof. (i) This coincides with Lemma 2 in [9] and (ii) immediately
follows from Lemma 2.3 in [23].

LEMMA 3.2. Let Y be an indecomposable H-module with ;Y + 0 for
some i > 1. Then

i—1
dim 7)Y =dim7iY — ) (r},Y,Z)dim7/7/X
j=0
where Z is the middle term of the Auslander—Reiten sequence in mod A

ending at X.

Proof. We proceed by induction on i. Assume first that i = 1. Since Y
is not projective in mod H C &, it follows from the above lemma that there
exists a short exact sequence 0 —» 7.Y —» 7,Y - 7, X' = 0 with ¢ =
dim, Hom ,(Y, X). Applying the functor Hom (-, 7,X) we obtain an
exact sequence

0 = Ext)(7, X', 7,X) — Ext}(7,Y,7,X) - Ext}(7,Y,7,X) - 0,
and consequently
Extl(7.Y,7,X) = BExty(7,Y,7,X) = Ext}(Y, X).
Hence, for s = dim, Ext!(Y, X), we obtain
t —s = dimy; Hom (Y, X) — dimy Ext(Y, X) = <Y, X).

From Lemma 3.1() we have an exact sequence 0 —» 7,X° = 7,Y —» 7. Y
— 0. Therefore, we get

dim 7, Y = dim7,Y — (Y, X ) dim 7, X.

Applying the functor Hom (Y,-) to the Auslander—Reiten sequence
0 - 7,X > Z — X — 0 we obtain that Hom (Y, Z) = Hom ,(Y, X) and
Ext!(Y, Z) = Ext(Y, X) because Y € X* =" (7,X) and consequently
(Y,X)=<Y,Z). Hence we have

dim7,Y = dim7,Y — Y, Z) dim 7, X.

Assume now that the required formula holds for some i > 1 and
i+1

7,71Y # 0. Then, applying the above formula for the module 7},Y, we get

dim TH(TIEIY) = dim TA(T;JY) —{74Y,Z)dim7,X.
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Let @, be the Coxeter transformation in K,(A). Then, applying [49, (2.4)],
we obtain the equalities

dim 7,(,Y) = @,(dim ;;Y)
i—1

= ®,(dim7{Y) — Y (7Y, Z)D,(dim 7}/ X)
j=0

i—1
= dim T/§+1Y— Z <T,{IY,Z> dim Tf’l_jX.
j=0

Therefore, we have

i
dim 7" 'Y = dim 7;"'Y = ¥ (7Y, Z) dim 7;* '7UX.
Jj=0

This finishes the proof.

COROLLARY 3.3. Let Y' be an indecomposable H-module which is a
regular A-module, and 7.;/'Y" # 0. Then
dim 7,'Y’ = dim 7, 'Y’ + iil (rf7Y', Z)dim 7,/ X.
j=0
Proof.  Applying the above lemma to Y = 7;,'Y’ we obtain
dimY’ + iil (7Y, Zydim 77X = dim 7i7,'Y".
j=0
Then the required equality follows by application of ®;* and [49, (2.4)].

Let P,,..., P,_, be a complete set of indecomposable projective objects
in X*= mod H. Since at most finitely many indecomposable preprojec-
tive H-modules are preprojective A-modules (see [51]), there exists a
positive integer r such that the modules 7,/P,, 1 <l <n —1, t > r, are
regular A-modules. Since Z is a regular H-module [43, 55], we conclude
that there exists s > r such that Hom (15;'P,, Z) = Hom,(7;'P,, Z) # 0
forall t > sand [ = 1,...,n — 1 (see, for example, [25]). Further, we know
that in the 7,-orbit of X there exist at most finitely many nonsincere
modules.

LEmMMA 3.4. Let P be an indecomposable projective H-module and let m
be a positive integer. Then there exists a positive integer b = b(P, m) such that
for all a > b we have

() 74P is a quasi-simple regular A-module.

(i) The dimension-vectors of all modules 7i(t3;*P), i € Z, have all
coordinates greater than or equal to m.
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Proof. Tt follows from our choice of r that all modules 7;'P, ¢ > r, are
regular A-modules. Furthermore, each regular component in I'(mod A4)
contains at most finitely many modules of the form 7;'P, ¢ > r. Applying
now [16, Theorem 2] we conclude that all but finitely many modules 7P,
t > r, are quasi-simple A-modules. This shows that there exists b, > r
such that all modules 7;'P, t > b,, are quasi-simple.

We know from the exponential growth of the dimension-vectors of
regular A-modules (see [25]) that there exists a positive integer s, such
that, for all integers i with |i| > s,, all coordinates of the dimension-vec-
tors of modules 7 X are greater than or equal to m. Take now b, = s +
2(s, + 1), where s is chosen as above. Take a > b, and write a = s + e.
Hence e > 2(s; + 1). Let P’ = 7;;°P. Then, applying Corollary 3.3 and [49,
(2.4)], we get the equalities

dim 7j(7,°P) = dim 7j(7°P") = ®}(dim 7;,°P")
. 671 . .
= @i |dim 7P + ¥ (P, Z) dim X
j=0
e—1

=dim7."P' + ), (v} °P',Z)dim ] 'X.
j=0

By the choice of s we have {7/ “P', Z) = dimy Hom, {7} °P', Z) > 0.
Moreover, by the choice of s,, we know that all coordinates of the
dimension-vector of at least one of the modules 7/7/X, j =0,...,e — 1,
are greater than or equal to m. Therefore, the dimension-vectors of all
modules 7i(7;,*P), i € Z, a > b,, are greater than or equal to m. Then, for
b = max(b,, b,) the lemma holds.

Let #(X, m) = max{b(P,, m), 1 <] <n — 1}. Then we have

COROLLARY 3.5. For a > t(X, m), the module X ® 7;,H is a regular
tilting A-module such that each indecomposable direct summand of Ty“H is
T,-Sincere.

We call a regular tilting A-module T = X & 7,°P, with a > (X, m), a
saturated completion of the module X. Observe that such a tilting module
is a direct sum of pairwise nonisomorphic quasi-simple regular 4A-modules.

COROLLARY 3.6. Let m be a positive integer. Then there are infinitely
many 7,-orbits of quasi-simple regular A-modules Y with Ext'(Y,Y) = 0 and
all coordinates of the dimension-vectors of all indecomposable modules T\Y,
i € Z, are greater than or equal to m.
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Proof.  Consider the family 7,°P;, 1 </ <n — 1, a > t(X, m). Then all
such modules 7,°P, are quasi-simple regular 4-modules and all coordi-
nates of the dimension-vectors of all modules of the form 7i(7,*P)), i € Z,
are greater than or equal to m. Since each regular component of I'(mod A)
contains at most finitely many modules from X *, we conclude that the
assertion of the corollary follows.

4. REGULAR CONNECTING COMPONENTS

The main objective of this section is to study the dimension-vectors of
indecomposable modules in the connecting components determined by the
saturated regular tilting modules. We start with a short proof of the
following lemma established already in [46].

LeEmMA 4.1. Let A be a connected wild hereditary algebra, let T be a
regular tilting H-module, let B = End ((T), and let & be the connecting
component of T'(mod B) determined by T. Then all but finitely many inde-
composable modules in & are sincere.

Proof. let T=T,® - & T, where T,,...,T, are indecomposable
and pairwise nonisomorphic. For each i € {1,...,n}, there are at most
finitely many nonsincere modules in the 7,-orbit of T,. Therefore, there
are at most finitely many indecomposable preinjective H-modules [ with
Hom (T;, I) = 0 and at most finitely many indecomposable preprojective
H-modules P with Ext},(T,, P) = D Hom (P, 7, T,) = 0. Finally, observe
that each indecomposable B-module in # is either of the form Hom (T, I)
with I preinjective or of the form Ext}, (T, P) with P preprojective. Then
the claim follows.

Let H be a connected wild hereditary algebra with n > 3 simple
modules and let X be a quasi-simple regular H-module with Ext},(X, X)
=0. Let X*= modC for a connected wild hereditary algebra C with
n — 1 simple modules. Consider a saturated completion 7 = X & 7.°C of
X, as defined in the previous section. Let B = End,(T) be the associated
tilted algebra and let # be the regular connecting component in I'(mod B)
determined by 7. Let P,,..., P,_, P, be pairwise nonisomorphic inde-
composable projective B-modules with P, = Hom (T, X). Then we have
the following

PROPOSITION 4.2. (a) All indecomposable modules in & are sincere
B-modules if and only if X is a Ty-sincere module.

(b) Assume that X is not Ty-sincere. Then
(1)  all nonsincere indecomposable modules in & are almost sincere,
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(ii)  the number of nonsincere indecomposable modules in % is equal
to the sum of numbers of zero coordinates of the dimension-vectors of all
modules in the Ty-orbit of X.

Proof. let T=Xo®r.C=X0V,0--0V,_, with V,...,V,_,
indecomposable. Since V,,...,V,_, are 7y-sincere quasi-simple regular
H-modules, we have Hom ;(V}, I) # 0 for all preinjective indecomposable
H-modules I and Ext};(J;, P) # 0 for all preprojective indecomposable
H-modules P and all / = 1,...,n — 1. Invoking now the description of the
indecomposable modules in the connecting component # and the formu-
lae for the dimension-vectors of indecomposable B-modules [18] we con-
clude that Hom z(P,, M) # 0 for all indecomposable modules M in & and
I < n — 1. Therefore, every indecomposable module in & is either sin-
cere or almost sincere. Similarly, if X is 7y-sincere, we conclude that
Homz(P,, M) # 0 for any indecomposable H-module M in &, and conse-
quently all indecomposable modules in & are sincere.

Assume that X is not 7,-sincere. Let 7, X, ..., 7, X, for 0 < i, < -+
< i,, be all nonsincere modules in the 75-orbit of X. Let OQ,,...,0, be a
complete set of pairwise nonisomorphic indecomposable injective H-mod-
ules. Then, for each i € {i,,..., i}, dim 7,'X has zero coordinates at the
place j if and only if Hom,(X,7;Q;) =0, and hence if and only if
Hom z(P,, Hom (T, 7/,Q,)) = 0. Therefore, the sum of the numbers of
zero coordinates of the dimension-vectors of all modules in the family
77X, i > 0, is equal to the number of nonsincere indecomposable mod-
ules in & of the form Hom (7, I) for I, a preinjective H-module. Dually,
one shows that the sum of the numbers of zero coordinates of the
dimension-vectors of all modules in the family 7/, X, i > 0, is equal to the
number of nonsincere indecomposable modules in & of the form
Ext}, (T, P) for P, a preprojective H-module.

COROLLARY 4.3. Let m be a positive integer and let T = X © 7.°C be a
saturated tilting H-module with a > t(X, m). Then dimy Homz(P,, M) > m
for all indecomposable B-modules M in € and alll = 1,...,n — 1.

Proof. Let M be an indecomposable module in . If M = Hom (T, I)
for an indecomposable preinjective H-module I, then, for [ € {1,...,
n — 1}7

Homg(P, M) = HomB(HomH(T,V,),HomH(T,I)) = Homy(V}, I)
and hence

dimy Homg(P,, M) = dimy Hom (V,,I) = m.
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If M = Ext},(T, P) for an indecomposable preprojective H-module P,
then, for I € {1,...,n — 1}, we have

Hom (P, M) = Homy(Hom,(T,V,),Exty (T, P))
= Exty, (V;, P) = D Homy (P, m,V)),
and hence dim; Homgz(P;, M) = dim, Hom (P, 7,V}) = m.
We shall illustrate the above considerations by the following example.

EXAMPLE 4.4. Let A be the path algebra of the wild quiver
1&E2«3.
Since H has three simple modules, it follows from [55] that all indecom-
posable regular A-modules X with Ext (X, X) = 0 are quasi-simple. Fix

a quasi-simple regular 4-module X with Ext}(X, X) = 0. We have three
cases to consider.

(1) Assume that at least two modules in the 7,-orbit of X are
nonsincere. Since A has three simples, it follows from [24] that X is an
elementary module. In [42] it is shown that there exists a unique 7,-orbit of
elementary A4-modules without self-extensions, and this orbit contains a
module E with dim E = (5,4,0). Then dim 7;E = (1,2,0) and E and 7;E
are the unique nonsincere modules in the 7,-orbit of X (see also [48,
Section 6]). Therefore, if 7 is a saturated completion of X and B =
End (7), then the regular connecting component & of I'(mod B) contains
exactly two nonsincere indecomposable modules. Moreover, since dim E
and dim 7E have zero coordinates at the same place, it follows from the
proof of Proposition 4.2 that the nonsincere modules of # lie in one
Tg-oOrbit.

(i) Assume that the 7,-orbit of X contains exactly one nonsincere
module Y. Then direct checking (see also [48, Section 6]) shows that
dimY e {(m + 1,m,0), (r,r + 1,0)|m =5, r > 2}. Thus for any satu-
rated completion T of X the connecting component of I'(mod End (7))
contains exactly one nonsincere module.

(iii) Assume that X is 7,-sincere. Then for any saturated completion
T of X the connecting component of I'(mod End (7)) consists entirely of
sincere modules.

5. PROOF OF THEOREMS 1 AND 3: TILTED CASE

The aim of this section is to prove Theorems 1 and 3 in the tilted case.
Let H be a connected wild hereditary algebra and let M be a quasi-
simple regular H-module. We assume that H[M] is a piecewise hereditary
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algebra of type #= mod A, for some connected wild hereditary algebra
A. The following proposition establishes the proof of Theorem 1 in the
tilted case.

PrROPOSITION 5.1. Let m be a positive integer. There exists a positive
integer r such that, for each i > r, H[7;, M is a tilted algebra with a regular
connecting component &, and dimg Hom i (P, N) > m for all indecom-

posable modules N in &, and all indecomposable projective H-modules P.

Proof. By [32, Corollary 2.2] there exists a positive integer s such that
the algebras H[71/,M], i > s, are tilted. Therefore, we may assume that
H[M] is tilted. Hence there exists a tilting 4-module 7= X & P with
End (T) = H[M], where X is a quasi-simple regular A-module, with
ExtY{(X, X) = 0, and P is a preprojective tilting module in X * = mod C,
for some connected wild hereditary algebra C. Since End.(P) = H is
hereditary, P is the direct sum of all indecomposable modules lying on a
section of the preprojective component of I'(mod C). Then for the positive
integer (X, m), defined in Section 3, and for every a > t(X, m), we
conclude by Lemma 3.4 that 7, = X & 7,°P is a regular tilting 4-module
with End (T,) = H[Hom ,(7;°P, X)] = H[rj, M] (see proof of [17,
Proposition 5.3]). Moreover, for each indecomposable direct summand V'
of 7P, the dimension-vectors of all modules 7}V, i € Z, have all coordi-
nates greater than or equal to m. Then, as in the proof of Corollary 4.3, we
infer that dim Hom .4, (Hom (7,,V), N) = m for all indecomposable
modules N in the connecting component of T'(mod H[7M]) and all
indecomposable direct summands V' of 7.“P. This finishes the proof.

We shall prove now the tilted part of Theorem 3.

PROPOSITION 5.2. Let m be a positive integer and let H be a connected
wild hereditary algebra with at least three simple modules. Then there exist
infinitely many pairwise nonisomorphic wild hereditary algebras C and quasi-
simple regular C-modules M such that C[ M ] are tilted algebras of type H with
a regular connecting component & and all coordinates of the dimension-vec-
tors of all indecomposable modules in % are greater than or equal to m.

Proof. By Corollary 3.6 there exist infinitely many quasi-simple regular
H-modules Y;, j € N, lying in pairwise different 7,-orbits such that the
coordinates of the dimension-vectors of all indecomposable modules of the
form TIQYJ-, i € Z, j €N, are greater than or equal to m. Let C,je N, be
connected wild hereditary algebras such that Y;* = mod C;. By [16, Propo-
sition 4.2] we may assume that the algebras C;, j € N, are pairwise
nonisomorphic. For each j € N, take a saturated completion TV =Y, &
TE;JC]- with ¢; = t(Y}, m). Then the tilted algebras B; = End,(T"), j € N,

satisty the assertions of the proposition.
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6. PASSING FROM NONREGULAR TO REGULAR
CONNECTING COMPONENTS

Let H be a connected wild hereditary algebra and let M be a quasi-
simple regular H-module such that H[M]is a tilted algebra, say of type A.
In general, the connecting component of I'(mod H[M]) may contain
injective modules (but clearly does not contain projective modules). We
know from Proposition 5.1 that H[r/, M], for i > 0, are tilted algebras with
regular connecting components without simple modules. We shall show
that if the connecting component of H[M] contains at least one injective
module then applying suitable reflections to H we obtain a tilted algebra
with a regular connecting component containing at least one simple
module. This is strongly related to the problem of distribution of simple
modules and projective modules in the Auslander—Reiten components of
selfinjective algebras of the wild tilted type (see [10, Section 5)).

PROPOSITION 6.1. Assume that the connecting component of
I'(mod H[M]) contains at least one injective module. Then there exists a
preprojective tilting H-module Q with H' = End,(Q) hereditary such that
H'[Hom (Q, M)] is a tilted algebra with a regular connecting component
containing a simple module.

Proof. We know that H[M] = End (X @ P) where X is a quasi-sim-
ple regular A-module with Ext}(X, X) = 0 and P is a preprojective tilting
module in X * = mod C with End.(P) = H. Since the connecting compo-
nent of I'(mod H[M]) contains an injective module, P contains indecom-
posable direct summands from the preprojective component #(A) of
I'(mod A). Since there are only finitely many indecomposable C-modules
in 2(A), then there exists an indecomposable preprojective C-module Y
such that Y is in £(A) and no proper successor of Y in modC is
contained in #(A). Consider the (unique) section 3 in the preprojective
component Z(C) of I'(modC) containing Y at its unique source. Let
Q' = ®, Y with Y} =Y. Define Q = .Y, ® (& 5. y,Y). Then T"
= X @ Q is a regular tilting 4-module and End ,(T") = H'[Hom ,(Q, M)]
with H' = End,(Q). We claim that the (regular) connecting component
of T'(modEnd (T’)) contains a simple module. We have Ext}(X @
(&,.,Y),Y) = 0; hence Ext!(T",Y) is a simple module in the connecting

component of End ,(T") = H'[Hom ,(Q, M)].
We illustrate the above procedure by a concrete example.

EXAMPLE 6.2. Let A be the path algebra of the wild quiver

1&E2« 3.
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Then T'(mod A) has the preprojective component Z(A) of the form

(2,1,1) (4,3,0) (12,8, 3)
SN S NS
(2,1,0) (6,4,1) (16,11,3)  (42,29,8)
NS NS NS AN
(1,0,0) (3,2,0) (9,6,2) (23,16, 4)

where the indecomposable modules are replaced by their dimension-vec-
tors. Let E be the quasi-simple regular A-module with dim £ = (5,4, 0)
(see (4.4)), and consider the Auslander—Reiten sequence 0 > E - Z - X
— 0. Then dim X = dim7,E = ®;!(dim E) = (15,10,4), and hence
dim Z = (20, 14,4). Furthermore, X is a quasi-simple regular A-module
with Ext,(X, X) = 0 (because E has this property) and X * = mod C for
a connected wild hereditary algebra C with two simple modules. We know
from (4.4) that the 7,-orbit of X has exactly two nonsincere modules,
namely E and 77E. As a consequence we obtain that the projective
module P;, of dimension-vector (2,1, 1), and its shift 722P3, of dimension-
vector (12,8,3), are the unique indecomposable preprojective 4-modules
lying in the perpendicular category X * . Clearly then P; and 7,?P; form
a complete family of indecomposable projective objects in X+, and
consequently C = End (P; & 7;%P;). Since Hom ,(7;°P;, P;) =0 and
dim; Hom ,(P,, 7,>P;) = 3, we conclude that C is the path algebra of the
wild quiver

We know also that Z is a quasi-simple regular C-module. Since
dim Hom ,(P;, Z) = 4 and dim ,(7,%P;, Z) = dim, Hom (P;,7}Z) = 2,
because dim 77Z = (3,2,2) (see [48]), we conclude that Z as a C-module
has dimension-vector (4, 2). Consider the A-module T =X & P with P =
P, ® 7,°P;. Then T is a tilting A-module and B = End (T) = C[Z].
Moreover, the four indecomposable preprojective A-modules of dimen-
sion-vectors (1,0,0), (2,1,0), (3,2,0), and (4,3,0) together with 7, X are
the unique indecomposable objects in the torsion-free class AT) = {M
mod A | Hom (T, M) = 0} in mod A determined by 7. Therefore, the
connecting component & = &, of I'(mod B) determined by T is a prein-
jective component containing all indecomposable injective B-modules. The
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preprojective component (C) of T'(mod C) is of the form

) 76 (132 Ps) 7o (3 P3)
5 AT AT

P3 TCP3 TC P3

and hence Y = 7,°P; has this property: Y is in £(A4) and no proper
successor of Y in modC is contained in 2(A). Hence the modules
Y, =Y and Y, = 7. P; form the unique slice X in £(C) having Y as its
unique source. Take now Q = 7Y, ® Y, = 7.(7,°P;) @ 7.P; and T’ =
X @& Q. Then T’ is a regular tilting A-module and B’ = End (T") =
C'[Hom (Q, Z)] with C" = End(Q) = C. Since Q = 7:C we conclude
that B’ = C[7-Z]. Then it follows from the proof of Proposition 6.1 that
B’ is a tilted algebra (of type A) with a connecting regular component
containing the simple module Ext!,(T”, 7 *P;).

We shall exhibit now a class of tilted algebras A = C[r-M] such that
C is a connected wild hereditary algebra, M is a quasi-simple regular
C-module, T'(mod A) admits a regular connecting component without
simple modules, and C[M] is not tilted. Hence, we may have immediate
jumps from the nontilted algebras C[M] to the tilted algebras Clr.M]
having regular connecting components.

Let H be a connected wild hereditary algebra with n > 3 simple
modules. It follows from [28, (2.1)] (or Corollary 3.6) that there exist
infinitely many 7,-orbits of quasi-simple 7,-sincere modules without self-
extensions. Invoking [16, Theorem 2] we conclude that there exist infinitely
many 7,-orbits of quasi-simple 7,-sincere modules X such that Ext}, (X,
X) =0 and Hom (X, 73 X) # 0. Take such a quasi-simple H-module X
and consider the Auslander—Reiten sequence 0 - 7, X - Z - X — 0.
We know that X *= modC for a connected wild hereditary algebra C
with n — 1 simple modules and Z is a quasi-simple regular C-module, and
let P be the minimal projective cogenerator in X * . Then we have

PROPOSITION 6.3. (1)) T=X® P is a regular tilting H-module with
End,(T) = C[Z], and the connecting component of C[Z] does not contain

any simple module.

(i) Clr;Z]is not a tilted algebra.
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Proof. (i) Since X is 7y-sincere, X = modC consists entirely of
regular H-modules. In particular, T is a regular tilting H-module, and
consequently C[Z] = End,(7) is a tilted algebra with regular connecting
component & determined by 7. Moreover, it follows from [10, Proposition
2.5] that there are no simple modules in #.

(i) Recall from [17, (II1.2.13) and (IIL.3.3)] that if a one-point
extension C[N] of C by an indecomposable regular C-module N is
quasitilted then N dominates all indecomposable regular C-modules; that
is, for any right minimal morphism f: N* - R with R an indecomposable
regular C-module, the kernel of f is projective. Therefore, in order to
prove that C[7;Z] is not tilted, it is sufficient to show that 77Z does not
dominate all indecomposable regular C-modules. Observe first that, for all
integers m, 7//P is a minimal projective generator in (7;/X)* = modC
and End,(+/X & 7//P) = End,(7//T) = C[Z]. Since the dimensions of
the modules 7,/ X, i > 0, grow exponentially, replacing (if necessary) X by
some module 75,/ X, we may assume that dim, X > dimy 7/ X. It follows
from our choice of X that r = dim, Hom (X, 75 X) > 0. We know from
[23, (1.7)] that dim; Hom (X, 75 X) = dimy Ext},(Z, Z). Hence we ob-
tain

r =dimg Exty,(Z,Z) = dimg Exti(Z,Z) = dimy Hom(Z,7.Z).

Further, it follows from the proof of Lemma 4.4 in [30] that there exists a
short exact sequence

0 (15X) > 1.Z > 12X > 0.

Hence, dimg7.Z =rdimyg 7, X + dimy 75X, and clearly dim, Z =
dimg 7, X + dimg X.

Let f},..., f, be a K-basis of Hom(Z, 7.Z). Since End-(Z) = K, the
morphism f = (f,...,f,): Z" = 7-Z is a minimal right add Z-approxima-
tion of 7.Z (in the sense of [3, Chapter XI]). Observe that f is not a
monomorphism. This follows from the inequalities dim, Z" = r dim, X +
rdimy 7, > dimg 75 X + r dimg 74, X = dimy 7. Z. Further, since C[Z]is
a tilted algebra, Z dominates all indecomposable regular C-modules.
Applying now [17, (IT1.3.1)] we conclude that for the minimal right add
Z-approximation f: Z" — 7.Z, we have K = Ker f is projective. Since 7,
is an autoequivalence of the category of all regular C-modules, we infer
that 7. f: (1 Z)" — Z is a minimal right add 7, Z-approximation of Z, and
obviously 7oK is contained in Ker 7. f. Therefore, Ker 7o f is not projec-
tive, because C is hereditary and 72K is not projective. Applying [17,
(IT1.3.1)] again we then conclude that 77 Z does not dominate the indecom-
posable regular C-module Z. Hence, the one-point extension C[r;Z] is
not a tilted algebra.
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7. PROOFS OF THEOREMS 1 AND 3: CANONICAL CASE

The aim of this section is to prove Theorems 1 and 3 in the canonical
case.

Let H be a connected wild hereditary algebra and let M be a quasi-
simple regular H-module. We assume that H[M] is a piecewise hereditary
algebra of type /# = coh X for some weighted projective line X = X(p, A)
with a weight sequence p = (p,,..., p,) and a parameter sequence A =
(A, ..., A). Denote by A = A(p, A) the associated canonical algebra.
Recall that A = End_(T), where T is a tilting bundle of the form 7 =
@(¢) ® P, with @ (¢) as the canonical line bundle and P a minimal
projective generator in the perpendicular category @5 (c)* . Moreover,
&()* = mod A, for the wild hereditary algebra given by the associated
star quiver, and A = A [R] for the corresponding quasi-simple regular
A-module R.

The following proposition establishes the proof of Theorem 1 in the
canonical case.

ProOPOSITION 7.1. Let m be a positive integer. There exists a positive
integer r such that, for each i > r, H[t}; M1 is a concealed canonical algebra
with a P (K)-family &, of stable tubes such that dim, Hom (P, N) > m for
all indecomposable modules N in &, and all indecomposable projective
H-modules P.

Proof. By [32, Corollary 2.2] there exists a positive integer s such that
the algebras H[r,M], i > s are quasitilted. Therefore, we may assume
that H[M] is quasitilted. It follows from [37, Section 3] that H[M] =
End, (T) for some tilting object T in 7 =#°". Let T=T,® - &
T,, where T,,...,T, are pairwise nonisomorphic indecomposable objects
such that rad Hom, (T, T,) = M. Then P, = Hom,(7,T),1 <i <n,isa
complete family of indecomposable projective H[M J-modules. Since
Hom (P, ;) = 0 for i <n, we deduce that Hom,(T,,T;) = 0 for

i <n, and hence T = oA 1Ti is a tilting object in T,“. Moreover,
End,(T) = H. Observe also that 7, belongs to a component of the form
ZA, in the Auslander—Reiten quiver of I'(Z") (see [37, 43]). We claim
that 7, is quasi-simple. Indeed, if it is not the case, then the category 7,*
is not connected (see [43]), and so H = End,.(T) is not connected, a
contradiction. Since 7, is a quasi-simple object in a component of type
ZA.,, it follows from [44, Lemma 6.8] that 7" = mod C for a connected
wild hereditary algebra C. Since End (T) is hereditary and H[M] =

End, (®T,), we infer that T is a slice module in the preprojective
component L(C) of I'(mod C). Since all indecomposable preprojective
C-modules have no selfextensions, the projective component #(C) con-
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tains at most finitely many objects from the family 7 of I'(Z"). Hence
there exists a positive integer ¢ such that 7;'T € vect X' = vect X. Hence,
H[r,;M] = H[Hom (rz'T, M)] = End,.(rz'T @ T,) is a concealed
canonical algebra. Therefore, we may assume that H[M] is a concealed
canonical algebra. Let 9 be a stable tube in I'(mod H[M]). Since 9 is
sincere, there exists a quasi-simple module X in .7~ with Hom (P, X)

# 0. Since pdy, X < 1, X admits a minimal projective resolution of the
form

0->PY->PeP?”-Xx-0,

where [ > 1 and P©, PM are projective H-modules. Moreover, we have a
short exact sequence

0->M->P —S,—0.

Let p = L.em.py,..., p,). Then there exists a positive integer r > p such
that dim, Hom (7P, M) = m for all a > r — p and all indecomposable
projective H-modules P. Let a > r — p and let P be an indecomposable
projective H-module. Applying the functor Hom (7P, —) to the above
exact sequences we obtain monomorphisms

Hom (7P, P,) = Hom (74P, X)
and
Homy (7P, M) = Homy (74P, B,),
and consequently
m < dimg Hom, (7P, M)
= dimy Hom (74P, M) < dimg Hom (74P, X).

Take an arbitrary quasi-simple module Y in 9. Then Y = fr;,'[’M]X for

some b < p. From the Auslander—Reiten formulae we obtain the inequali-
ties

dim . Hom ;5 1(75°P, Y) = dim g Hom (7100, (75“P) > Trran)Y)
> - > dimg HOIIIH[M](T[Z'[M](T[}“P),TIZ[M]Y)
= dim g Hom (7, P, X ) = m,

because b — a > r — p. Therefore, for each i > r, the algebra H [rhM] =
End, (7.'T ® T,) is a concealed canonical algebra with P,(K)-family &
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of stable tubes such that dim; Hom (P, N) > m for all indecomposable
modules N in &, and all indecomposable projective H-modules P.

It follows from [35, Theorem 6.3(ii)] that if U is an indecomposable
regular A -module, then 7,"~'U = 7,'(7,’U) for all i>0 and r> 0.
Moreover, if U is quasi-simple regular in mod A, and not in the compo-
nent of T'(mod A,) containing @ (c), then U is quasi-simple in vect X.
Indeed, suppose there exists an irreducible monomorphism f: U’ — U in
vect X. Then one checks directly that U’ is in @ (c)* = mod A, and that
f is an irreducible monomorphism in mod A,.

LEMMA 7.2.  Let Y be a quasi-simple regular A -module with Ext'AO(Y, Y)
= 0 and such that Y is quasi-simple in vectX with 7,"Y = 7,"Y for all

r > —2. Consider the Auslander—Reiten sequences 0 — 7,Y > M > Y — 0
in#Zand 0 > 7, Y > M' =Y — 0 in mod A. Then

dim Ext} (M', M) = dim, Hom, (Y, 7 Y)
< dimy Hom,(Y, 7;Y) = dimy Extj(M, M).

Proof. The equality dim Exty (M', M") = dim, Hom, (Y, 77 Y) fol-
lows from [23, Lemma 1.7]. Similarly, we have

dim, Hom,(Y,7Y) = dimy Ext,(M, M)
since Y is a quasi-simple object in vect X with Hom (Y, 7, Y) = 0. Hence,
it remains to show the inequality dim, Hom, (Y, 7{ Y) < dim, Hom,(Y,
72Y). Since we may assume that 7,"Y = T\, Y for all r > —2, it follows
from [35, Proposition 5.3] that there exist exact sequences
(m) 0->7Y-> 7Y T%ﬁx(g)ql -0
with g, = dim; Hom(Y, @ (c)) and

(€) 0 72Y > (1Y) - 7,0, ()" = 0

with g, = dimg Hom,(7, Y, #y(c)). Since 7, is an equivalence on .7 we
get from (n) a short exact sequence

(m) 0= 7m Y- Y - Tz%ﬁx(g)ql - 0.

Combining (¢) and (n') we get the following commutative diagram with
exact rows and columns
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Applying the functor Hom (Y, -) to the second row we obtain an exact
sequence

0 0

! !

0 — 72Y — 7u(naY) — mO0x(” — 0

| l l

0 — 7Y — Y — Q - 0
| !
3 0x(£)? == m3,0x()"
| |
0 0

0 — Hom,(Y, 77 Y) = Hom,(Y,7}Y),
and consequently we have
dim HomAO(Y, 7Y) = dimy Hom,(Y, TAZOY) < dimg Hom,(Y,7}Y).

We shall prove now the canonical part of Theorem 3.

PROPOSITION 7.3.  Let m be a positive integer. There exist infinitely many
pairwise nonisomorphic connected wild hereditary algebras C and quasi-simple
regular C-modules m such that C[ M] are concealed canonical algebras of type
A and all coordinates of the dimension-vectors of all indecomposable modules
in the P(K)-family & of stable tubes in T'(mod C[M]) are greater than or
equal to m.

Proof. By [16, Theorem 2] and Lemma 7.2 there exist infinitely many
quasi-simple regular A -modules Y;, i € N, with Ext} (Y,,¥,) = 0 and

dim, Hom, (Y;,7}Y;) # dim, Hom(Y;, 70 Y;)

for all i #j. Moreover, we may assume, shifting if necessary in the
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7 -direction that

(1 dimy HomAO(TX(fY,», R)>mforall [ >0and i €N,
(@ 7'Y,=7'Y, forallt>0andi€N,

L

(see [35, Theorem 6.3]). Let 9 be a stable tube in I'(mod A). Then there
exists a unique quasi-simple module X in .9 with Hom,(P,, X) # 0. Thus
X admits a minimal projective resolution of the form

0->PP—>P —>X-0,

where P is a projective A,-module. Moreover, we have the canonical
short exact sequence

0->R—->P,—>S,6 —0.

Let t+ > 0 and i € N. Applying the functor Hom (7,'Y;, -) to the above
short exact sequences we obtain exact sequences

0 = Hom,(7,'Y;, P{") — Hom,(7,'Y;, P,) — Hom,(7,'Y;, X),

15 w L

0 — Hom,(7;'Y;, R) — Hom,(7;'Y;, P,),

15 w

and consequently dim, Hom ,(71'Y;, X) > m.

Let p = Lem(py,...,p,) and let ¢ > p. As in the proof of Proposition
7.1 we infer that dim, Hom (71'Y;, E) > m for all quasi-simple modules
of all stable tubes in I'(mod A). Since mod A, = @ (c)*, we may con-
sider the modules Y/ = 7,7Y,, i €N, as quasi-simple objects of the
category vect X. Then dim Hom(Y;, E) > m for all quasi-simple objects
E in coh, X and i € N. Moreover, Y;* = C, for a connected wild heredi-
tary algebra C;, i € N (see [44, Proposition 6.8]). We shall identify Y;*
with mod C;. Fix i € N. Consider the Auslander—Reiten sequence 0 —
7«Y; > M; > Y/ > 0 in Z=cohX. Then Y/ ® C; is a tilting vector
bundle with End (Y; ® C,) = C,[M,]. From Proposition 7.1 there exists a
positive integer r; such that the algebra C[7¢i M;] = End (Y & 7."C)) is
a concealed canonical algebra such that dim K Homc(P N) > m for all
indecomposable modules N in the P,(K)-family &, of stable tubes in
I'(mod C/[7¢i M;]) and all indecomposable projective C;-modules P. More-
over, it follows from the construction of Y; that for the indecomposable
projective Cj[r&M;J-module P with rad P’ = 7(iM;, the same property
holds. We have from [14] the following exact sequence of Hochschild

cohomologies induced by the one-point extension C;[M,]
0 = End(M;)/K - H'(C[M;]) » H'(C)
- Ethc,(Mi’ M;) - HZ(Ci[Mi]) - H*(C;) = 0.

Considering the corresponding exact sequence for the one-point extension
A = Ay [R] we obtain H'(A) = 0. Since H'(C[M,]) = H'(A) =0 and
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H*(CIM,D = H*(A), we obtain the equality
dimy H'(C;) = dim Exty(M;, M;) — dimyg H*(A).
Moreover, it follows from Lemma 7.2 that
dim Exte(M;, M;) = dim Hom,(Y;, 73Y;)

> dim HomAO(Y’ Y ) = dim HomAD(Yl—, TAZOYI-).
Since dim, Hom, (Y, 70 Y;) # dimy Hom, (Y}, 7{ Y)) for i #j, we con-
clude that there exists an infinite sequence (i,), n € N, such that
dimy H'(C,) # dimy H'(C,) for all r # s. Therefore the algebras C, ,
n € N, are pa1rw1$e nonlsomorphlc This finishes the proof.

8. PASSING FROM NONSTABLE TO STABLE TUBES

Let H be a connected wild hereditary algebra and let M be a quasi-
simple regular H-module such that H[M] is a quasi-tilted algebra of
canonical type A = A(p, A). In general, the P,(K)-family of tubes of
I'(mod H[M]) may contain injective modules (but clearly does not contain
projective modules). We know from Proposition 7.1 that H[rj,M], for
i > 0, are concealed canonical algebras of type A whose P,(K)-families of
stable tubes do not contain simple modules. If A4 is a quasitilted algebra of
canonical type and the P,(K)-family of tubes in I'(mod A) contains at
least one injective module, applying [37, Theorem 3.4], we conclude that
there exists a concealed canonical algebra C such that A is a tubular
coextension [K,, E,]---[K,, E,IC of C, where E,,..., E,, r > 1, are pair-
wise nonisomorphic quasi-simple C-modules in the P,(K)-family of stable
tubes of T'(mod C) and K, ..., K, are branches (see [49, (4.4) and (4.7)].
We shall show that in this case by applying suitable reflections to H we
obtain a concealed canonical algebra whose P,(K)-family of stable tubes
contains at least r simple modules. Clearly, from this statement and its
proof, the second part (canonical case) of Theorem 5 follows. This is again
related with the problem of distribution of simple modules and projective
modules in the Auslander—Reiten components of selfinjective algebras of
canonical type (see [39]). One could follow the idea of the corresponding
proof of Proposition 6.1 and show that there exists a concealed canonical
algebra whose P,(K)-family of stable tubes contains at least one simple
module. Our intention is to describe the transformation from nonstable
tubes to stable tubes more explicitely and prove the following stronger
result.



QUASITILTED ONE-POINT EXTENSIONS 813

ProposiTION 8.1. Let H[M]=[K,,E,1---[K,, E|1C with r > 1 be a
tubular coextension of a concealed canonical algebra C. Then there exists a
preprojective tilting H-module Q with H' = End,(Q) hereditary such that
H'[Hom ,(Q, M)] is a concealed canonical algebra and the P (K )-family of
stable tubes of T'(H'[Hom ;(Q, M)]) contains at least r simple modules.

Proof. Let A = H[M]and let H be the path algebra KA of the wild
quiver A. Then A4 = K /J, where the quiver () is obtained from A by
adding one (extension) vertex w, being a source of ), and J is an ideal in
K generated by linear combinations of paths in () having o as their
source. For each vertex a of Q, we denote by S(a) the simple A-module
associated to a and by P(a) and I(a) the projective cover and injective
envelope of S(a) in mod A, respectively. Moreover, it follows from the
above description of 4 = KQ/J =[K,, E,]---[K,, E;]C that there are
pairwise disjoint convex linear subquivers A,,...,A, of A such that
K, =KA,,...,K,=KA,. For each i €{1,...,r}, denote by w, the coex-
tension vertex of [ E;]C, being also one of the ends of the linear quiver A,,
and denote by m; the number of vertices of A,. Clearly, then E, is a direct
summand of I(w;)/S(w,), for each i €{1,...,r}. Since A = H[M] =
[K,,E,]---[K,, E;]C the preprojective component P(H)=.2(A) of
I'(mod A) contains sectional paths

S:oP(w) =20 > Z0 > - 5ZO 1<i<r,
i i 1 2 m

such that, for each i € {1,...,r}, 3, consists of the representatives of the
T-orbits of the indecomposable projective modules associated to all
vertices of A,. Then the quivers 7, %;, 1 < i < r, together with the projec-
tive modules P(a), a € A\(A, U --- U A)), form a (complete) section 3,
of (H). Denote by Q the direct sum of all modules lying on X. Clear-
ly, then H' = End,(Q) is a hereditary algebra of wild type 3°°. More-
over, T=Q ® P(w) is a tilting A-module such that B = End (T) =
H'[Hom ,(Q, P(w))] = H'[Hom ,(Q, M)]. We claim that B is a concealed
canonical algebra (clearly of type A = A(p, A)) and the P,(K)-family of
stable tubes in T'(mod B) contains at least r simple modules. For each
i €{1,...,r}, denote by &, the full translation subquiver of #(H) formed
by all predecessors of X, in 2(H), equivalently in I'(mod A4). Observe
that every indecomposable module X in %, is a module over KA;, and
there is a monomorphism X — (&7, Z"y, for some positive integers s,
and consequently X is cogenerated by @, Z(". Moreover, every mor-

phism from the indecomposable projective module P(a) in & (equiv-
alently, with a being a vertex of A;) to an indecomposable successor Y of
3, factorizes through the module Q”, for some positive integer m. This
shows that the tilting A-module T is separating; that is, every indecompos-
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able A-module belongs either to the torsion-free part
F(T) ={M € mod A|Hom (T,M) = 0} = Cogen,T
= Cogen( é é Zj-(i))
i=1 j=1
or to the torsion part
I(T) = {M € mod A |Ext}(T,M) = 0} = Gen(T).

Note that SA(T) is the additive category of %, U --- U %,. Further, it
follows from the Brenner—Butler theorem that the functor Hom (7, -)
induces an equivalence of J(T') with the torsion-free part

#(T) = {N € mod B|Torf(T,N) = 0}
of mod B and the functor Exti(T, -) induces an equivalence of F(T) with
the torsion part
2(T) ={NemodB|T & N =0}

of mod B. For each module N in mod B we have also the canonical exact
sequence

0—>tN—>N->N/tN— 0,
where (N is the largest torsion submodule of N with respect to
(AT), Z(T)) and clearly N/tN is torsion-free. In particular, every simple
B-module belongs to 2AT) or Z(T). Observe also that, for each vertex
a €A U--UA, the projective module P(a) is not a direct summand of

T and therefore (see [18, Corollary 6.3]) we have in mod B a connecting
Auslander—Reiten sequence of the form

0 - Hom (T, 1(a)) - M(a) - Ext(T, P(a)) — 0,

and the canonical sequence 0 — tM(a) —» M(a) - M(a)/tM(a) — 0 of
M(a) is of the form

0 — Ext(T,rad P(a)) - M(a) —» Hom (T, I(a)/S(a)) — 0.

Fix i € {1,...,r}. Let & be the tube of T'(mod A) containing the injective
modules I(a), a € A;. Then . admits a maximal infinite sectional path

U = U — o > U - X0 - X0 - X0 oo

where U = I(w,), U, ..., U are representatives of the 7,-orbits of the
injective modules I(a), a € A U® — U{ is the unique arrow in
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starting at U", and there exists an Auslander—Reiten sequence in mod A
of the form

0->X® - X ->YD 0.

Denote by Z; the full translation subquiver of 7 given by all indecompos-
able factor modules of the modules U(”,..., U = I(w,), X{" lying in 7.
Clearly, &, is a finite translation subqulver of 7 consisting of modules
from 9(T), because the modules of the P,(K)-family of tubes in I'(mod A4)
are not predecessors of preprojective modules and P(w). We claim that
I'(mod B) contains a full translation subquiver &, of the form

HomA(T, Uli)) e EXt}q (T7 Zw)
NS NS
-1)

Homu (T, Uz(i)) ExtL (T,

(
\ /
NS N A

Hom (T, I{w;)) = Homu (T, UY)) ExtL (T, 2} = Extl (T, P(wi))
Homy (T, X

obtained by glueing the image Hom (7,2;) of &, by the functor
Hom ,(T, -) and the image Ext (T, @) of &, by the functor Ext' (T, -), via
the connecting Auslander—Reiten sequences

0 - Hom (T, 1(a)) - M(a) - ExtY (T, P(a)) =0

with M(a) = Hom (T, I(a) /S(a)) ® Ext'(T,rad #(a)), a € A,. Assume
first that A, consists only of the vertex w; or equivalently that m, = 1.
Then P(w;) = S(w,), rad P(w;) = 0, I(w,)/S(w,) = X{?, and hence we
have the connecting Auslander—Reiten sequence of the form

0 — Hom (T, I( w;)) = Hom (T, X{") — Ext}(T, P(w,)) — 0.

Assume now that m; > 1, and let b, be the end of the linear quiver A,
different from the coextension vertex w;. If b; is a sink of A,, then again
P(b;) = S(b,), I(b,)/S(b,) is indecomposable, and we have the connecting
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Auslander—Reiten sequence of the form
0 — Hom (T, I(b;)) —» Hom (T, I(b;) /S(b;)) = Extl(T, P(b;)) — 0.

Finally, assume that b; is a source of A,. Then rad P(b,) is indecompos-
able, I(b,) = S(b,), I(b))/S(b;) = 0, and hence we have the connecting
Auslander—Reiten sequence of the form

0 — Hom (T, I(b;)) — Exty(T,rad P(b;)) = Ext}(T, P(b;)) — 0.

Passing from the end b; to the end w; along the quiver A; we now
conclude that the middle terms M(a) of the connecting Auslander—Reiten
sequences

0 - Hom (7T, 1(a)) = M(a) = Ext}(T,P(a)) =0

are isomorphic to Hom (T, I(a)/S(a)) & Ext'(T,rad P(a)), for all ver-
tices a of A,. Invoking now the fact that 2AT) is closed under factor
modules, we deduce that Ext'(7,%,) is a full translation subquiver of
I'(mod B). Similarly, using the fact that %(T) is closed under submodules,
we infer that also Hom (7', &;) is a full translation subquiver of T'(mod B).
Therefore, &, is a full translation subquiver of TI'(mod B). Moreover,
observe that Ext),(T, Z{) is a simple B-module. Indeed, since Ext}(T, Z})
belongs to ZA(T), every factor module of Ext (T, Z") also belongs to 2AT)
and hence is of the form Ext'(T, M) for some module M from F(T). On
the other hand, Z,(,j) is a sink of the translation quiver &, Hom 4(%), %)) = 0
for all i #j from {1,...,r}, and consequently, applying the Brenner—
Butler theorem, we obtain
Hom »(Ext},(T, Z{0)), Ext!(T, M) = Hom ,(Z{), M) = 0

for any indecomposable A-module M from S(T) nonisomorphic to Z(’)
Clearly, this shows that Ext}(T, Z})) is a simple B-module.

Our next aim is to show that the simple B-module Ext!(T, Z) is not

injective. It is enough to show that Ext,(Hom ,(T, Y{?), Ext!(T, Z,(,il))) # 0.
We have

Exty(Hom,(T,Y")), Ext}(T, Z{)) = Ext;(Y", Z{)),

by Hoshino’s formula [20]. Moreover, since Z(’) lies on the end of the

sectional path starting at Z{” = P(w;) and w; is the end of the linear
quiver A;, we deduce that there exists an exact sequence

0-Z9 > I(w) > X" - 0.
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Hence, we obtain Ext3(Y", Z()) = Ext(Y\"), X{7) # 0, and this implies
our claim. In particular, we obtain an Auslander—Reiten sequence

0 — Ext;(T,z,g;'g) - W, - T,;Ext;(T,z,gg) -0
in mod B, with W(’) , indecomposable. Since the sectional path

Hom (T, X{1) — Exty(T, Z0) — -+ — Ext}(T, 2.,

- Ext}(T, Z{))

is given by irreducible epimorphisms, we then conclude that Hom ,(T, X{?)
and Ext}(T,Z®"), 1 <j<m, are noninjective. Moreover, since the
branches K,,..., K, are hereditary algebras, we know that all modules
X, ;”, g > 1, are noninjective, and consequently we have also in T'(mod A4)
an infinite sectional path

Yl(t) N Yz(t) 5 eee Yq(t) N Yq(fr)l N

with Y = 7, X for any ¢ > 1. Clearly, the modules Y, g > 1, belong
to I(T). We shall prove now that there are in T'(mod B) infinite sectional
paths

EXtL(T,Z}i)) = WO(’; — Wl(’i} - I/VS(’]) - VVs(i)l,j - e
s > 1,1 <j < m,;, and Auslander—Reiten sequences

0 —» Hom (T, X?) = Hom (T, X?,) ® WY, | » W} -0,
s>1,
0->WO , »WheWwW? ., »W -0, s>=11<j<m,

0w - W< , ©Hom,(T,Y") - Hom(T,Y{,) -0,

s+1,m;

s> 1.

Clearly, then we have 73 Extl(T,Z{)) = 7, W), = Hom (T, Y"). We
proceed by induction on s. Assume that we have defined indecomposable
noninjective modules W(’) 0<p<s—1,1<j<m, for some s> 1,
satistying the required COIIdlthIlS Observe that the module Hom (T, X, (’))
is noninjective in mod B, because we have in Z(T) a nonsplittable short
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exact sequence
0 — Hom (7T, X”) — Hom (T, X{"),) & Hom ,(T,Y,",)
— Hom(T,Y") — 0,
where Y{? = 0. Consider the indecomposable B-modules

W = 15, Hom (T, X”, and WY, =15

[O2
s—1,j°
1<j<m,.
We have then Auslander—Reiten sequences
0->wo  »whew? —-wh -0 1<j<m,
0= W0, = WD, ® Hom (T.Y%,) - W, ., — 0.
0 = Hom,(T, X)) » WY & E > W) -0,
for some B-module E. We have a sectional path of irreducible morphisms

B (T, Z40) = Wi = = = W0, > W

with nonzero composition, and hence W, # 0. Consider the following
commutative diagram with exact rows

0 — Hom (T, X )———— W9, | 6 E W 0

0 —> Hom (T, X0 ) — WO, , /WD, ) & (E/tE) — W /tW) —0

Observe that the lower exact sequence is an Auslander—Reiten sequence
in (T), and hence we obtain W} /tW,{ = Hom (T,Y") and W, |/
WO, | ® E/tE = Hom (T,Y"”)) ® Hom (T, X{”). Moreover, from our
inductive assumption, we have an exact sequence

0 — Ext}(T,Z{") » W%, | —» Hom,(T,Y",) - 0,

and hence W, ,/tW", | = Hom (T,Y”)). Obviously, then we have
E/tE = Hom (T, X{”). We claim that tE = 0. Observe that W) =
Ext!(T, Z{"). Hence tE = 0 if and only if (W, = W), | = Extl(T, Z{").
Let N be an indecomposable module from &, for some 1 <j < r. Since
Ext}(T, N) is a torsion B-module, we have Homz(Ext! (T, N), By) = 0.
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Then applying the Auslander—Reiten formula, we obtain isomorphisms of
vector spaces

Hom(Ext)(T,N), WY, = HomB(Extil(T, N), 5 Hom (T, Xs(i)))
= Hom, (Ext}(T, N), 75 Hom (T, X))
= D Extjy(7; Hom,(T, X{"), 75 Ext}(T,N))
= Homj (7 Exty(T, N),Hom,(T, X")).

Observe that 7, Ext! (T, N) either belongs to the torsion part 2(T) or

is of the form Hom (7, I(a)), for some vertex a € A;. Moreover, in-

voking the Brenner—Butler theorem, for each vertex a € A;, we have
Hom z(Hom (T, I(a)), Hom (T, X")) = Hom ,(I(a), X7)). Since the
tubes in T'(mod A) are standard and pairwise orthogonal we conclude that,
if Hom z(Exty(T, N),W,)) # 0, then j =i, N=P(a), a € A;, and the
injective modules I(a) lies on the sectional path U — -+ — U = I(w,).
Moreover, in this case,

dim; Hom ,(Ext} (T, P(a)), W) =1,
dim, Hom ,(Ext}(T, P(a)), W, |) =1,

and consequently tE = 0. In particular, we obtain E = Hom ,(7, X") and
s W, = WS /Wi = WO /tW ) = Hom (T, Y"). Therefore, we have
the required Auslander—Reiten sequences

0- HomA(T’Xr(i)l) - VV&'(i)l,l ® HomA(T’Xv(i)) - I/Vs(ll) - 0,
0 - w9 , — Hom,(T,Y,")) ® W) — Hom,(T,Y") — 0.

Now let M be an indecomposable B-module such that 0 # tM # M, and
let N be an indecomposable direct summand of M /tM. We claim that
there exists i € {1,...,r} such that Homz(Hom (T, Y"), N) # 0. Ob-
serve that tM belongs to the additive category add (&, &, W{).
Consider the commutative diagram

0—>tM—> M — M/tM —> 0

|1

0—tM—>M —N——0

induced by the canonical projection p: M/tM — N. Since M is an inde-
composable B-module, the lower exact sequence is not splittable, and
hence Extp(N, tM) # 0. Thus there are i € {1,...,r}, j € {1,...,m,;}, and
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a nonsplittable short exact sequence
0->WHh—>L—>N-0
in mod B. We then obtain a commutative diagram with exact rows
0— Wo(f} — Wl(f} — Hom (T,Y{") —0

l ]lv

0 — W —— 1L 0

Since Ker f = Kerg and Homg(Hom (T,Y"),W(?) =0, we conclude
that g # 0 and hence Hom z(Hom ,(T, Y"), N) # 0, as required. We also
note that N = Hom ,(7, V) for some indecomposable A-module V' from
A(T), and then Hom z(Hom (T,Y"), N) = Hom (Y, V). This shows
that if we have an Auslander—Reiten sequence

0-U—->V->W->0
in J(T) such that Hom (Y”,W) = 0 for any i € {1,...,r}, then
0 - Hom,(7T,U) —» Hom (T,V) - Hom (T,W) — 0

is an Auslander—Reiten sequence in mod B. Recall now that the Aus-
lander—Reiten quiver T'(mod A) of A4 is of the form

I'(mod A) =T, (mod 4) Vv I';(mod A) vV I'_(mod A4),

where ' (mod A) consists of the preprojective component #(A) =2(H)
and infinitely many components with stable parts of type ZA,, T _(mod A)
consists of a preinjective component Q(A) and infinitely many compo-
nents with stable parts of type ZA,,, and T'\;(mod A) is a P,(K)-family of
coray tubes (coray insertions of stable tubes) separating I", (mod A4) from
I'_(mod A) (see [37, 43]). In particular, we have Hom ,(Y?, L) = 0 for
any i € {1,..., r} and every indecomposable A-module L from I', (mod A4)
or a stable tube of I'(mod A4). Then it follows from the above considera-
tions that Hom ,(T,9(T) N %(A)) is a preprojective component Z#(B) of
I'(mod B), and, for a component # in I', (mod A) different from #(A4)
(respectively, stable tube of T'y(mod A4)), Hom (T, %) is a full component
of T'(mod A). Further, for each i €{1,...,r}, there are je{l,...,r}
(possibly i = j) and n(i, j) > 0 such that U = 7,"¢)Y D and Hom ,(T,
UP) = 75D Hom (T, Y{"), and consequently the images Hom ,(T,.9)
of nonstable tubes .7 of I'y(mod A) via Hom ,(T, -) are modified to stable
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tubes of I'(mod B) by insertions of translation quivers Ext!,(T, &) and the
rectangles %" formed by the modules W), 1 <i <r, 1 <j < m,. There-
fore, I'(mod B) is of the form

I'(mod B) =I' (mod B) Vv I';(mod B) V I'_(mod B),

where I',(mod B) is the image of I',(mod A) N JA(T) via the functor
Hom ,(7,-) and I')(mod B) is a sincere P,(K)-family of stable tubes
separating ', (mod B) from I'_(mod B). In particular,

B = 1'[Hom,, (0. M))]

is a concealed canonical algebra of type A = A(p, A), and Hom,(Q, M) is
a quasi-simple regular H'-module. Moreover, the family T'y(mod B) of
stable tubes contains r simple B-modules Hom (T, Z\)), ..., Hom (T,
Zf,{f). This finishes the proof.

We illustrate the above procedure by a concrete example.

ExampLE 8.2. Let A be the bound quiver algebra K()/J, where () is
the quiver

and J is the ideal in K} generated by ya, 08, and na — nB. Denote by
H the path algebra KA of the full subquiver A of () given by the vertices
1,...,9. Then H is a wild hereditary algebra and A = H[M], where M is
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the indecomposable H-module of the form

K? 0
N N
0 K K K 0
N N\
K 0.

Moreover, A is a tubular coextension [K;, E;1[K,, E,IK,, E,1C, where C
is the path algebra of the Kronecker quiver given by the vertices w and 4,
E,, E,, and E; are the quasi-simple regular C-modules

K K K
E, oll1 Es: 1111 Es: 1llo
K K K

and K, K,, and K; are the branches given by the quivers
Aqc: N\/y As: H=ws, Az: 6=uws 8

respectively. Hence A is a quasitilted algebra of wild canonical type
(4,2,5) and thus is not tilted. In particular, M is a quasi-simple regular
H-module. Further, the P,(K)-family of tubes in I'(mod A) has exactly
three nonstable tubes, namely a tube 7] (with four corays) containing the
injective modules (1), 1(2), and I(3), a tube 7, (with two corays) contain-
ing the injective module /(5), and a tube 7; (with five corays) containing
the injective modules 1(6), I1(7), I(8), and I1(9). A simple calculation shows
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that the preprojective component #(H) of I'(mod H) admits a full
translation subquiver of the form

P(1) 7 P(1) 7 P(1)
N SN
P(2) mP(2) T P(2)
NN
P(3) T P(3)
NS
P(5)— P(4)— 7t P(5)
7N\
P(6) T P(6)
NN
P(7) 5 P(7)
NN
P(8) T P(8) > P(8)
N NS N\

P(9)

\‘
=]
v
—
Ne)
S’
\‘
i
N
v
——
©
A

TI}3P(9)

and the section 2 of £(H), described in the proof of the Proposition 8.1,
is given by the modules 7,,2P(1), 7,,°P(2), 7, P(3), P(4), 7, P(5), 7y, P(6),
7, P(7), 7;P(8), and 7;,°P(9). Hence, for Q being the direct sum of all
modules on X, the algebra H' = End,(Q) is a hereditary algebra of wild

type 2P, and the H'-module Hom ,(Q, M) is isomorphic to the represen-
tation of %P of the form

" Kt Ke* K
1
(w

K2 Y K

K« K« K¢ K
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Therefore we have that the algebra B = End (T) = H'[Hom,(Q, M)],
for T = Q ® P(w), is the canonical algebra A(p, A) with p = (4,2,5) and
A = (A;) = (1). Obviously, we have in I'(mod B) exactly three stable tubes
with simple modules, obtained from the coray tubes .77, 7,, and 75 by the
completion procedure described in the proof of Proposition 8.1.

We shall exhibit now some examples of concealed canonical algebras
A = C[roM] such that C is a connected wild hereditary algebra, M is a
quasi-simple regular C-module, and C[M] is not quasitilted. Hence, we
may have immediate jumps from the nonquasitilted algebras C[M] to the
concealed canonical algebras Cl7-M].

ExampPLE 8.3. Let A = A(p, A) be a wild canonical algebra with a
weight sequence p = (py,...,p,), r =5, and let A = A [R] be the stan-
dard presentation of A as the one-point extension of the wild hereditary
algebra A, and the quasi-simple regular A -module R. We shall prove
that Agl7y R] is not quasitilted. Hence, for C = A, and M = 7, R,
C[TCM ] is concealed canonical but C[M] is not quasitilted. Denote by P,
the unique simple projective A,-module. Then we have dim, Hom, (PO,
R) = 2 and dimy Hom, (P, 7, R) = r — 2. Further, we obtain

dimy End, (R) — dimy Ext} (R, R) = q, (dim R) =4 —r,
and hence
dim Hom, (R, 7, R) = dim Ext) (R,R) =1 — 3,

because End, (R) = K. Hence, the minimal right add R-approximation
of 7\ R is of the form f: R"° > 7\, R. Moreover, f is not injective
because r > 5, and then dimg HomA (P, R =20r=3)>r—2=
dim, Hom, (P,, 7, R). Applying now the arguments as in the final part of

the proof of Proposition 6.3 we conclude that the kernel of the minimal
right add 7, R-approximation 7 f: (1-/(UR)”3 — R is not projective.
Therefore, AO[TXUR] is not quasitilted, again by [17, (IT[.2.13) and (IIL.3.1)].
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