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Abstract

In this paper we consider the problem of estimating an unknown joint distribution
which is defined over mixed discrete and continuous variables. A nonparametric kernel
approach is proposed with smoothing parameters obtained from the cross-validated
minimization of the estimator’s integrated squared error. We derive the rate of
convergence of the cross-validated smoothing parameters to their ‘benchmark’
optimal values, and we also establish the asymptotic normality of the resulting nonparametric
kernel density estimator. Monte Carlo simulations illustrate that the proposed estimator
performs substantially better than the conventional nonparametric frequency estimator
in a range of settings. The simulations also demonstrate that the proposed approach
does not suffer from known limitations of the likelihood cross-validation method
which breaks down with commonly used kernels when the continuous variables
are drawn from fat-tailed distributions. An empirical application demonstrates that the
proposed method can yield superior predictions relative to commonly used parametric
models.
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1. Introduction and background

Nonparametric kernel methods are frequently used to estimate joint distributions,
however, conventional approaches do not handle mixed discrete and continuous
data in a satisfactory manner. Although it is widely appreciated that one can use a
frequency estimator to obtain consistent nonparametric estimates of a joint
probability density function (PDF) in the presence of discrete variables, this
frequency-based approach splits the sample into many parts (‘cells’) and the number
of observations lying in each cell may be insufficient to ensure the accurate
nonparametric estimation of the PDF of the remaining continuous variables.
Furthermore, it is not uncommon to encounter situations in which the number of
cells exceeds the number of observations hence the conventional frequency estimator
cannot even be applied.

Aitchison and Aitken [4] proposed a novel nonparametric kernel method for
estimating a joint distribution defined over binary data in a multivariate binary
discrimination context. They also proposed a data-dependent likelihood-based
method of bandwidth selection which has been shown to be consistent by Bowman
[5]. One advantage that their method has over the conventional frequency estimator
is that it does not split the sample into cells in finite-sample applications. A weakness
of their method becomes apparent, however, in mixed discrete and continuous
variable settings. This weakness results in part from the use of likelihood cross-
validatory bandwidth selection which is known to break down when modeling ‘fat-
tailed’ continuous data with commonly used compact support kernels such as the
Epanechnikov kernel or thin-tailed kernels such as the widely used Gaussian kernel
(see [13,14]). For related work on issues surrounding the kernel estimation of
distributions defined over discrete data the reader is referred to Hall [11] and Hall
and Wand [15]. In related papers, Grund [9] and Grund and Hall [10] investigated
the kernel estimation of a PDF defined over k-dimensional multivariate binary data
using least-squares cross-validation. In particular, they looked at both the situation
with fixed k& and the case where k— oo as the sample size n— co. For an excellent
survey on kernel density estimation methods see Izenman [18], while more in-depth
treatments of the subject can be found in [7,17,20,22].

While there exist a number of theoretical papers on the properties of cross-
validation methods with only discrete variables (e.g., [9-11]), or with only
continuous variables [16], little attention has been paid to the more general and
interesting case of mixed discrete and continuous variables. The exceptions are the
papers by Tutz [23] and Ahmad and Cerrito [3] who have considered cross-validation
for estimating conditional density functions and regression functions (with mixed
variables), respectively. However, both Tutz [23] and Ahmad and Cerrito [3] only
demonstrate that their estimators are consistent—they have not established the
asymptotic distributions of their estimators. It is appreciated that establishing the
asymptotic distribution of an estimator is typically a more formidable task than that
of establishing consistency alone.

In this paper we aim to close this gap by providing the theoretical foundations for
a consistent kernel estimator of a joint PDF defined over mixed discrete and
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continuous data employing least-squares cross-validation selection of the smoothing
parameters. In particular, we obtain rates of convergence of the smoothing
parameters to some benchmark optimal values, and we establish the asymptotic
normality of the estimator. We also provide simulations and applications of the
proposed approach designed to examine its finite-sample performance. To the best of
our knowledge, our work is the first to establish asymptotic normality results for
kernel density estimators with mixed discrete and continuous variables using cross-
validation methods.

The rest of this paper proceeds as follows. In Section 2 we restrict attention to the
multivariate discrete variables case and consider estimating a joint PDF using least-
squares cross-validation. We establish the convergence rate of the cross-validated
smoothing parameters and the asymptotic normality of the resulting kernel
probability estimator. Section 3 builds on these results for the general mixed
discrete and continuous variables case. We again obtain convergence rates for the
cross-validated smoothing parameters and establish the asymptotic normality of the
resulting estimator. Section 4 reports on simulations designed to illuminate the finite-
sample performance of the estimator. Section 5 considers an empirical application
which demonstrates how the proposed approach can be used to yield superior
predictions relative to commonly used parametric models of binary choice. Finally,
Section 6 concludes and discusses a number of possible extensions.

2. Estimating a joint density with categorical data

In this section we consider the estimation of a joint PDF defined over discrete
data. Let X denote a k x 1 vector of discrete variables. For expositional simplicity
we consider the case where X is a k-dimensional binary variable, X € {0, l}k (we
discuss the more general case at the end of Section 3). We denote {0, l}k by 2 and let
p(-) denote the probability function of X. We use X;, and x; to denote the tth
component of X; and x (i =1, ...,n), respectively. For x;, X;,€{0,1}, define a
univariate kernel function /(X;,,x,) = 1 — Aif X;, = x;, and [(X;,, x,) = 2 if X;, #x,
where 4 is a smoothing parameter.

For multivariate data we use a standard product kernel given by

k
L(X;,x,2) = [ [ 1(X0i,x0) = (1= ), (2.1)

t=1

where dj, =k —1(X;; — x;) equals the number of ‘disagreement components’
between X; and x, 1(4) is the usual indicator function, which equals one if 4
holds, and zero otherwise. Note that dj, takes values in {0, 1,2, ..., k}.

We would like to emphasize that we use a scalar 4 for expositional simplicity. In
practice, one would use a different smoothing parameter A for each different
component of x, i.e., 4 should be a k-dimensional vector, and any multidimensional
search algorithm will do so. Dealing with a k-dimensional vector 4 will make the
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notation and proofs much more cumbersome. Therefore, only the scalar 4 case is
treated in this paper.
We estimate p(x) by

5(x) = & Z L(X;,x, 2). (22)

n=

The sum of squared differences between p(-) and p(-) is given by

L= [px) —px)P =D )P =2 plop(x)+ Y ol (23)

xXeg Xeg Xeg xXeg
Using Eq.(22) we have Y., [p(x)) =n230 0, L,(sz)7 where ngjz) =
Yveq LicLjv. We estimate 37 p(x)p(x) = E[p(X)] by n™' 3L, pi(X;) =

[n(n—1)]"' 0, > i—1jwi Lijs where p_i(Xi) = (n— 1! >oi1jwi Ly is the leave-
one-out kernel estimator of p(X;), L; = L(X;, X;, 4). The last term on the right-hand
side of Eq.(2.3) is unrelated to 4, therefore we choose 4 to minimize the cross-
validated integrated squared error given by

yer 1 Z Z )z S L (2.4)
i=1 j=1j#i

We let / denote the cross-validated choice of 2. The following assumption is used
to derive the rate at which 1 converges to zero along with the asymptotic normality

of Vi(p(x) — p(x)).

Assumption (A). (i) X; is independent and identically distributed (i.i.d.) as X, (ii) p(x)
is not a constant function in xe &, (iii) mingc 5p(x) >4 for some 6>0.

Theorem 2.1. Under Assumption (A), we have

(1) }_ ( 71)7
(i) For any xe D, /n(p(x) — p(x))—>N(0,p(x)(1 — p(x))) in distribution.

The proof of Theorem 2.1 is given in Appendix A. This theorem demonstrates that

our cross-validation choice of 1 converges to zero at the rate of n!, the same rate as
the maximum likelihood cross-validation choice of 4 (see [11]). Next, we turn our
attention to the mixed discrete and continuous variables case.

3. Estimating a joint density with mixed data

We now consider the case involving mixed discrete and continuous data. As in
Section 2, X € & represents the discrete variables, and we use Y e %’ to denote the
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continuous variables. Let Y;, denote the r/th component of Y;, let w(-) be a univariate
kernel function, and let W(-) be the product kernel function for the continuous
variables. We define

dif —p Yz_Y] o ,pp Yi,t_Yj,t
Wiy = Win 1) = o (Y0 1w (*5). G.1)

where £ is the smoothing parameter. We only consider a scalar /& case for
expositional simplicity. In applications, / should be a p x 1 vector. We further define
Z=(X,Y), and we use f(z) =f(x,y) to denote the joint PDF of (X,Y). We
estimate f(z) b

1 n
= - Z Kh.iza (32)
ni=

where Kj, ;- = Lix Wi, Wiiy =h? W(%) and L;, = L(X;,x, ) is that defined in
Eq. (2.1). Using the notation [dz =73 _, [dy, the integrated squared difference
between /{-) and f(-) is

d= [~ d: = [P a:—2 [ford+ [pePe  63)
Using Eq. (3.2) we have [[f{z)]"dz= L3 DI ,”], where K/(”,) LY W,Ezl])
with L§]g) =Y ey LixLix and W}EZU) [ WiiWhjydy. We estimate [f(2)f(z) dz

= EmZ)] by n! Zn ’ ( i) = mz Z] 1,¢,Kh ifs where f—i(zi) =
i i K Kng = LgWag, Ly = L(X;, X;, ) and W5 = h~? W(X52). Given
that the last term on the right-hand side of Eq. (3.3) is unrelated to (4,4), we
therefore choose (/l h) to minimize

n n

Vih.2) = 2 Z Z /n] 1) Z Z K (3:4)

i=1 j=1j#i

Let (1,h) denote the above cross-validated choices of (Z,%). The following

assumptions are used to derive the rates of convergence of (1, 4) to (2, h,), and f{z)
to f(z), respectively.

Assumption (B1). (i) {Z;}}_, = {X;, Y:}\_, is i.i.d. where Z = (X, Y), (ii) let f(y|x)
denote the conditional density function of Y given X = x. f(-|x) is four times
continuously differentiable on the support of Y for all xeZ. f(y|x) and its
derivatives are all bounded and continuous on the support of Y for all xe 2, (iv)
there exists x, x' € 2 such that f(x, y) #f(x',y) for y on a set with positive Lebesgue
measure.

Assumption (B2). (i) The kernel function w(-) is nonnegative, bounded and
symmetric around zero, also [w(v)dv =1, [ w(v)v* dv< co. (ii) /i lies in a shrinking
set H, = [h, h], where h=>C~'n’~ 1/1’, h<Cn~? for some C,5>0.
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The conditions given in Assumption (B2)(ii) are similar to those used in [16], and
are equivalent to n' =%}’ > C~! and n’h< C. Thus, by choosing a very small value of
0, these conditions are virtually equivalent to the standard assumptions that 41— 0
and nh’ - o0 as n— 0.

In Appendix B we show that the leading term of CV (h, 1) is CVp(h, 1) given by

CVi(Jh) = Bih* — Byah* + B32* + By(ni?) ™", (3.5)

where the B;’s are constants (j = 1, ...,4). Let (h,, 4,) denote the values of (A, A) that
minimize CVp(h,2). Then some simple calculus shows that

hy = cin V0P and 4, = con Y0, (3.6)

where ¢ and ¢, are constants defined in Appendix B.

The next theorem establishes the rate of convergence of (1, 1) to (4, 4,) along with
the asymptotic normal distribution of f{z).

Theorem 3.1. Under assumptions (B1) and (B2), and if f(z) = >0, we have

() (h = ho)/hy = Op(n~*/*0)Y and j. — ), = O,(nP/442)) where o = min{2,p/2}
and B = min{1/2, 4/(4 +p)}.

() Val?(fz) — f(z) — 2B, (z) — iB2(z)) > N(0,V(2)) in distribution, where
B1(2) = (120 {Vf [ w(v)0* dv], Bo(2) =Y e, [f(¥,9) =f(x,p)], and
V(z) =f)[f W(v) dv].

The proof of Theorem 3.1 is given in Appendix B. Comparing Theorems 3.1 and
2.1, we see that, for the mixed variable case, the convergence rate of J.is much slower
than that of 1 for the discrete variable only case.

Let f(z) denote the density estimator with A =0 and 4 = cn~/4+) (¢>0 is a
constant). Then f{z) is the conventional frequency kernel estimator for f'(z). It is well
established that nh?(f(z) — f(z) — B*%1(z)) = N(0, V(z)) in distribution. We see
that our cross-validation-based estimator has the same asymptotic variance as that
of the conventional estimator. However, as we show in Section 4, our cross-
validation based estimator can substantially outperform the conventional frequency-
based estimator in finite-sample settings.

The general multivariate discrete variable case: We have only considered the case
whereby the discrete variable X is a multivariate binary variable. We now discuss the
general multivariate discrete variable case. Let x, be the rth component of x and
suppose that x, can assume ¢, >2 different values (1 = 1, ..., k). Following Aitchison
and Aitken [4], we define the kernel weight function l( i X ) =1—211f X;p = x;
and /(Xi;, x;, A) = A/(¢; — 1) if X;,;#x,. In this case the product kernel becomes

k
L(X;,x,2) = [ [ 10,50, 2) = (1 = 2) e jet (3.7)

=1
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where ¢y = Hlle [1/(¢; — 1)] is a constant, and dj, is the same as that defined in
Eq. (2.1). Comparing Eq. (3.7) with (2.1) we see that, for the general multivariate
discrete variable case, the only difference is that the kernel function has an extra
multiplicative constant ¢y. By inspection of the proofs of Theorems 2.1 and 3.1, we
know that this extra multiplicative constant does not affect any of the results in the
appendices. Therefore, the conclusions of Theorems 2.1 and 3.1 remain unchanged
when one has a general multivariate discrete variable, provided one uses the kernel
function defined in (3.7) in such instances.

4. Monte Carlo simulation results

For the simulations that follow, we draw 1000 replications from each DGP. For
each of the 1000 Monte Carlo replications, smoothing parameters are selected via
cross-validation, and then we estimate the joint distribution. We use the second-
order Gaussian kernel for the continuous variable, while the kernel for the discrete
variable is that defined in Eq. (2.1). The cross-validated choices of (/1,/) are based
upon minimizing the cross-validation function with respect to 4 and / using a
conjugate gradient search algorithm. We also compute the conventional frequency
estimator for comparison purposes whereby univariate cross-validation is conducted
for the continuous variable using only those observations lying in each cell. For each
replication we compute the MSE defined by n=!' 377, (f(X:, ;) — f(X:, Y;))* where
f(X;, ;) is the true DGP and f{X;, Y;) is its kernel estimate. Median values and the
S5th and 95th percentiles of the MSE generated from the 1000 replications are
summarized in tabular form.

4.1. Finite-sample performance: independent identical distributions

We first assess the potential finite-sample efficiency gains exhibited by our
method relative to the conventional frequency estimator. For the frequency method,
A =0, and the smoothing parameter / is selected via the method of least-
squares cross-validation method (using the data in each discrete cells). We
begin with a case for which the density for the continuous variable is the
same regardless of the realization taken on by the binary variable, hence
Y ~N(u, ¢?) independent of X. We consider two cases, one for which Pr[X = 1] =
0.7, and one for which Pr[X = 1] = 0.9. Results are summarized in Table 1, and
columns with headings ‘LSg.,’ contain results for the conventional frequency
estimator, while the ‘LS’ denotes the proposed least-squares cross-validation
method.

From Table 1 we see that, as expected, our cross-validation method performs
much better than the conventional frequency estimator. The median MSE of the
proposed method is only 1/2 to 1/3 of the median MSE of the conventional
frequency-based method.
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Median MSE values

Pr{X =1]=0.7 Pr{X =1]=09
n MSE(LS) MSE(LSpreq) MSE(LS) MSE(LSreq)
50 8.23e-04 1.67¢-03 7.39¢-04 2.20e-03
(5.23¢-04,1.33¢-03) (9.52¢-04,2.97¢-03) (4.12¢-04,1.20e-03) (1.13¢-03,3.74e-03)
100 4.61e-04 9.79¢-04 4.73¢-04 1.40e-03
(3.05¢-04,7.13¢-04) (6.05¢-04,1.63¢-03) (3.02¢-04,7.73¢-04) (8.20e-04,2.44¢-03)
200 2.57e-04 5.40¢-04 2.61e-04 7.64e-04

(1.71e-04,3.82¢-04)

(3.35¢-04,9.06e-04)

(1.66¢-04,4.24¢-04)

(4.52¢-04,1.34¢-03)

The 5th and 95th percentiles appear in parentheses. ¥ ~Gaussian (g, 2).

Table 2
Median values of 7 and MSE
Prix=1]=0.7 Prix=1]=09
n MSE(LS) MSE(LSjieq) MSE(LS) MSE(LSheq)
50 7.50e-04 1.53e-03 7.77e-04 2.33e-03
(4.60e-04,1.15¢-03) (7.73e-04,2.57¢-03) (4.51e-04,1.28¢-03) (1.23e-03,3.94¢-03)
100 4.27e-04 8.73e-04 4.48e-04 1.31e-03
(2.70e-04,6.49¢-04) (5.15e-04,1.47¢-03) (2.48e-04,7.31e-04) (6.75e-04,2.26¢-03)
200 2.47e-04 4.89¢-04 2.72e-04 8.14e-04

(1.60e-04,3.69¢-04)

(2.92¢-04,8.29¢-04)

(1.71e-04,4.23e-04)

(4.66€-04,1.33¢-03)

The 5th and 95th percentiles appear in parentheses. ¥ ~Gaussian (i, iy, 67, 63).

4.2. Finite-sample performance: shifted conditional densities

Next, we consider the case where the density for the continuous variable is shifted
both in mean and variance conditional on the values assumed by the binary variable.
Y ~N(py,07) when X =0 and Y ~N(u,,03) when X =1 with (u, 1) = (—1,1)
and (g1,02) = (1,2). We consider two cases, one for which Pr[X = 1] = 0.7 and the
other for which Pr[X = 1] = 0.9. Results are summarized in Table 2.

Examining Table 2 we again observe that the finite-sample efficiency gains
associated with the proposed method relative to the conventional frequency
estimator are substantial. The median MSE of the proposed method is around
1/2-1/3 of the median MSE of the conventional frequency-based method.

4.3. Finite-sample performance: least-squares versus likelihood cross-validation with
fat-tailed distributions

It is known that likelihood cross-validation can breakdown with commonly used
kernels when one or more of the continuous data types are drawn from fat-tailed
distributions, a situation frequently encountered when dealing with economic and
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financial data. In order to verify that the proposed method does not suffer from this
defect, we consider a continuous variable ¥ drawn from the Cauchy distribution and
a discrete variable X that is independent of Y having Pr[X = 1] = 0.7. Results are
summarized in Table 3. Columns labeled ‘ML’ correspond to likelihood cross-
validation and those labeled ‘LS’ again are those for the proposed least-squares
cross-validation method.

Based on Table 3 we observe that, when the continuous variable is drawn from the
Cauchy distribution, the likelihood cross-validation (ML-CV) method breaks down
as expected while the proposed method does not. The ML-CV choice of 4 for the
Cauchy example is an order of magnitude larger than that given by the proposed
least-squares cross-validation (LS-CV) method, while the median MSE of the ML-
CV estimator does not decrease as n increases which illustrates the inconsistency of
the ML-CV estimator for fat-tailed distributions. To further demonstrate the extent
of the over-smoothing exhibited by ML-CV when the underlying DGP is Cauchy, we
evaluate the estimated density on a grid with support [—3.5,3.5] and plot the median
values from the Monte Carlo simulation in Fig. 1. From Fig. 1 we see that the
ML-CV method completely breaks down, giving a flat estimated density curve, while
the proposed method is well behaved.

4.4. Discussion

The three simulation exercises described above illustrate how the proposed
method can be of value in common situations where interest lies in estimating a joint

Table 3
Median values of 7 and MSE

Likelihood cross-validation (Y ~Cauchy, X ~ Binomial)

n h(ML) MSE(ML) MSE(MLyey)

50 5.58 3.50e-03 6.98¢-03
(2.73,13.80) (2.186-03,4.92¢-03) (4.026-03,9.98¢-03)

100 8.79 4.22¢-03 3.68¢-03
(3.90,20.90) (2.81e-03,5.38¢-03) (5.64e-03,1.12¢-02)

200 10.20 4.46e-03 9.75¢-03
(5.01,27.20) (3.24e-03,5.61e-03) (6.94-03,1.18e-02)

Least squares cross-validation (Y ~Cauchy, X ~Binomial)

n h(LS) MSE(LS) MSE(LStreq)

50 0.67 6.91e-04 1.21e-03
(0.50,0.84) (4.62¢-04,1.02¢-03) (7.54¢-04,1.91¢-03)

100 0.57 4.08¢-04 7.23e-04
(0.44,0.67) (2.71¢-04,6.00¢-04) (4.67¢-04,1.11e-03)

200 0.48 2.28¢-04 3.92e-04
(0.40,0.55) (1.59¢-04,3.34¢-04) (2.56¢-04,6.09¢-04)

The Sth and 95th percentiles appear in parentheses.
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f(xy)
f(xy)

Fig. 1. Estimated joint PDF with a Cauchy continuous variable, n = 200. The figure on the left is that for
likelihood cross-validation while the figure on the right is that for the proposed method. The solid curve
represents the true Cauchy density function

distribution defined over a mix of continuous and binary data. The conventional
frequency estimator is clearly less efficient in finite-sample applications. Also, we
note that the proposed method does not suffer from the known limitations of
likelihood cross-validation in the presence of ‘fat-tailed’ distributions which can be
encountered when analyzing economic and financial data for instance. Note that we
have only considered the simple case with one binary discrete variable and one
continuous variable. With multivariate discrete data, the relative efficiency gains
exhibited by the proposed method can be even more substantial.

5. An empirical application—modeling labor market participation

We now apply the proposed approach to modeling discrete choice, and we use
Gerfin’s [8] cross-section data set containing n = 872 records and seven variables
used to model the labor market participation of married Swiss women. Gerfin [8]
uses a Probit model along with three semiparametric specifications, and finds that
the Probit specification cannot be rejected and that all models yield similar results.
He concludes that “more work is necessary on specification tests of semiparametric
models and on simulations using these models”. We simply use this data set to see
whether predictions given by the Probit and semiparametric specifications can be
substantially improved upon (we do not include Gerfin’s [8] semiparametric results
here as they all yielded similar results). Data for this study can be found at
ged.econ.queensu.ca/jae/1996-v11.3/gerfin/.

The variables used by the Gerfin [8] study are

. LFP: Labor force participation dummy (0/1).

. FOREIGN: Dummy if observation is not Swiss (0/1).

NYC: Number of young children (younger than 7) (0, 1,2, 3).

NOC: Number of older children (0,1, ...,6).

EDUC: Years of formal education (1,2, ...,21).

AGE: Age in years (20,21, ...,62).

. LNNLINC: Log of non-labor income (7.1869 — 12.3757 with 840 unique values).

N VU AW~
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Table 4
Confusion matrix and classification rates for the kernel and Probit models
Kernel Probit
Act/Pred 0 1 Act/Pred 0 1
0 360 111 0 358 113
1 115 286 1 179 222
% Correct 74.1% %Correct 66.5%
%CCR(0) 76.4% %CCR(0) 76.0%
%CCR(1) 71.3% %CCR(1) 55.4%

Act = actual sample realization, Pred = predicted outcome.

Let U denote variables 2-7. We compute the conditional probability of LFP given
U defined as

ALFP|U) _JLEP.U)

: 3.8
A(0) 08

where f)(-) is the marginal density function of U.

We treat the variables AGE and LNINC as continuous and the rest as categorical,
and bandwidths are chosen via cross-validation using a conjugate gradient search
algorithm.' Note that the use of a multivariate search algorithm naturally yields
different smoothing parameters for each variable as discussed in Section 2. Using the

cross-validated bandwidths, we then predict LFP = 1 if f(LFP = 1|U)> f{LFP =
0|U), otherwise we predict LFP = 0.

We compare the predictions based upon our estimator with those from the Probit
model used in [8], and the confusion matrices and classification rates for both
approaches are summarized in Table 4 (a confusion matrix is one whose diagonal
elements are correctly predicted outcomes and whose off-diagonal elements are
incorrectly predicted outcomes). As can be seen from Table 4, the proposed method
correctly predicts 74.1% of all observations while the Probit model correctly predicts
66.5%. We also report the correct classification rates for each value assumed by
the categorical dependent variable. For example, CCR(0) = 76.4% means that,
considering the subset of observations for which LFP =0, we correctly predict
76.4% of them. To address potential concerns that these results might be an artifact
of within-sample ‘over-fitting’, we randomized the data and split it into independent
estimation and evaluation samples.? The predictive ability of the model as measured
by performance on the independent data mirrors the within-sample results reported

'Some discrete variables take more than two different values, thus we use the kernel function defined in
Eq. (3.7).

2For example, we considered estimation samples of size n; = 700 and prediction samples of size
ny =172, ny =750 and ny = 122 and so on.



Q. Li, J. Racine | Journal of Multivariate Analysis 86 (2003) 266-292 277

in Table 4 for a large number of different splits indicating that this is indeed a general
improvement in predictive ability and not simply an artifact of over-fitting.

This application is simply intended to illustrate how the proposed method can be
used to obtain superior predictions of categorical variables relative to predictions
based upon commonly used parametric specifications such as the Probit model.

6. Possible extensions

There are numerous ways in which the results developed in this paper can be
extended including (i) semiparametric estimation of a density function with mixed
data, (i) consistent model specification tests with mixed discrete and continuous
regressors, including testing for a parametric or a semiparametric density functional
form, and (iii) estimation of a joint density function with mixed discrete
and continuous variables when the discrete variables contain ordered categorical
data.

With ordered categorical data, it is known that boundary kernels [6], local
polynomials [1,2], penalized likelihood [21], and local likelihood methods have better
properties than standard kernel estimators as they are designed explicitly to
counteract boundary bias associated with standard kernel estimators. It will be
fruitful to extend the current results to the case of ordered categorical data.
Specification tests (with mixed data types) based on a data-driven choice of
smoothing parameters are expected to be significantly more powerful than existing
tests based on frequency estimators as the former do not use sample splitting in
finite-sample applications.

Recently, Racine and Li [19] have considered the problem of nonparametric
estimation of regression functions with mixed discrete and continuous regressors and
have established the asymptotic distribution of their proposed estimator. Yet
another extension is to consider semiparametric regression models with mixed
regressors, including partially linear models and additive models, along with
specification tests for parametric/semiparametric regression functional forms. The
authors are currently working on a number of related extensions having widespread
potential application.
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Appendix A

This appendix’ contains the proof of Theorem 2.1. In Lemma A.0 we first show
that 2 = 0,(1). Then Lemmas A.1-A.5 use the property that 2 = o(1) to obtain a /
power series expansion of CV' (1), which is then used to prove Theorem 2.1.

Some Notation. We will use the summation indices i, j, and / to denote

: n n n
observations, ~whereby 3, =370, D000 = it Djmje 22 2injel =
n n n . . .
Doict Djmtjri Dale1jwijxj - We use the summation indices x, xi, and x; to denote
the sum over the support of x,x;,x2€Z,1.e., > . => .-

From Eq. (2. 4) we get
—2L;] - Z Z L

‘ - 2 E: u
i J#Fi i J#FI

=, + by, — L3, (Al)

where the definitions of I, (j = 1,2, 3) should be apparent.

Proof of Theorem 2.1. (i) Using Eq. (A.1) and by Lemmas A.2, A.4 and A.5, we have
CV<}L) :Iln + 12n - I3n
=412 — Azin" + 0,(2% +n7'2) + (terms unrelated to 1), (A.2)

where Ay = 2k = /Iz, while 4; and A, are two constants defined in Lemmas A.2 and
A.5, respectively. Minimizing Eq. (A.2) over 1 leads to 1= [dy/(24))n" +
0p(n1) = Op(n ).

(i) Define p(x)=n"'>1(dix=1)=n"'>,;1(X; = x), which is a frequency
estimator of p(x) (corresponding to 4 =0). It is well established that /n(p(x) —
p(x))>N(0,(1 — p(x))p(x)) in distribution. Now, using Eq. (A.3) (see below) and
the fact that 1 = 0,(n""), we have j(x) — p(x) = 0,(1) = O,(n""). Hence, we have

Va(p(x) = p(x) = Va(p(x) = p(x)) + Op(n~'?) > N(0, (1 = p(x))p(x)) is distribution. O

Below we prove some lemmas that are used to prove Theorem 2.1. We will
write B, = D, + (s.0.) to indicate that D, is the leading term of B, (D, and
B, have the same order), and (s.0.) denotes terms having order strictly smaller
than D,,.

Defining 1, —; = 1(d;x =), the discrete variable kernel L(X;, x,A) defined in
Eq. (2.1) can be written as a power series expansion in A (0<i<k).

L(Xi,x,2) = 1g—o(1 — 2)F + 1421 (1 = 2 A+ 14 (1 = 2)* 7222+ 0,(2).
(A.3)

A longer version of Appendices A and B containing more detailed proofs of the main results are
available from the authors upon request.
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In Lemmas A.1-A.5 we evaluate the orders of I;, (I = 1,2,3) defined in Eq. (A.1).
I, contains terms with two and three summations. We will use the U-statistic
H-decomposition together with the expansion found in Eq. (A.3) to obtain the
leading order terms of Ij,.

Lemma A.0. / = o,(1).

Proof. Note that ) p(x)p(x) = E[p(x)]. We observe from Eq. (2.3) that I,(1) =
S0 = 2E[B(x)] + Elp(X)). Now define 7,(4) = 32, [F(x)* = 207" 32, pi(Xi) +
E[p(X))]. Obviously n~' 3=, 5_i(X:) — E[p(X)] = 0,(1), which implies that (a): [,(1) =
I,(A) + 0,(1).

Next, 0<1I,(1)<I,(0) =o0,(1) because =0 corresponds to the usual fre-
quency estimator and it is well established that Z,(0) = 0,(1). Thus, we have (b):
1,(2) = 0,(1). )

Conditions (a) and (b) leads to (c): I,(4) = 0,(1).

Finally, for A#0(1), using the H-decomposition of U-statistic theory, it is easy to
show that I,(1) = E(I,(1)) + 0,(1) = lzil CAl 4+ 0,(1)#0,(1) because C;#0 for
some 0</<2k.

Hence, we have (d): 1,(4) = O,(1)#0,(1) for A#o(1). Conditions (c) and (d)
imply that 7 = o,(1).

Note that Lemma A.0 implies the consistency of p(x), i.e., p(x) — p(x) = 0,(1).

Lemma A.1. I;,(1) = —2kin~" 4+ O,(n=3*). + n~'2%) + (terms unrelated to 7.).
Proof. By Eq. (A.1) we know that I, n? > L @) = 2 S L2

Using the expansion given in Eq.(A.3) we obtain a 4 power expansion of
E[I,)].

ElL,) =n"" Z E[L n! Z {E[L}1(dix = 0)] + E[L] 1(di > 1)]}

A=) DT p)+ 02 =0 (1= 2k2) + O(n ' 02).

Similarly, we have (again using the expansion found in {Eq. (A.3)),
I, — E[1,)] nl{z n ' > L1 (dy=0) Z E[L2 \(dy= 0)]}+ 0,(n"12%)
= (1 =% " [p(x) = p(x)] + Op(n™'7)

= (1 = 2k)n™ 2" + 0,(n132),
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where p(x) =n"'3", 1(X; = x) (because 1(diy =0) = 1(X; = x)) is a frequency
estimator of p(x) and ¥, = n'/2>" __,[p(x) — p(x)] is a zero mean O,(1) random
variable.

Summarizing the above we have shown that

L, =E(Ly,) + [, — E(I)] = n (1 = 2k2) + 0,(n=32 )+ n~12%)
+ terms unrelated to A.

Lemma A.2. Define H,(X;, X;) = L} —2L;.
Then — E[H,(Xi, X;)]| = A\J> + O(2%) + (terms unrelated to J.), where —A; =

IPE[p(X)] = 2kE[p1(X)] + El(p1 (X))’ /p(X)]. p1(x) = X pyeaa, -1y POY)-

Proof. E[H,(X;, X;)] = E[Ll(.jz)] —2E[L;]. We compute E[Lf.j2>] and  E[Ly]
separately.

In the proof below we will use Eq. (A.3) frequently. Since the proof is relatively
tedious and lengthy, we will often incorporate the indicator function restriction
in the summation index, for example we will write » ., 1(dy,» = 1)p1(x1) =

thdxl,x:lp(xl) to save space.

We consider E[L;] first. Define ps(x) =3 (., _op(xX')(s=1,2). Using an
expansion of Eq.(A.3), we get (note that L;=L(X; X;,A), and L, ,, =
L(x1,x2,2))

E[Lij] :E[L(/Yi’ /Y]a’l)] = Z Z p(xl)p(x2)Lx1,x2
C 0 Y ple) kA0S )

{xl«,d,\'l X :0}

x> plw)+0(2)
{x2,dy; v, =1}

+ 2= pa) YD pla) + O

{xz,d\»l \-2:2}
Z[pxl 1>+ 201 = 2 1prlpl(xl)—i—/lz( )
x Y pxi)pa(x1) + O(2)

= E[p(X)] + {E[p1(X)] = kE[p(X)]} + 22{E[p2(X)] — (k = 1) E[p1(X)]
+ [k(k = 1)/2E[p(X)]}-
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Next, using the expansion contained in Eq. (A.3) we have

E[Ll(f)} = Z LX ’('LX Y Z Z Z P X] xl erg,x
=A=2"37 30 s DD plw)

X {Yl x| X*O} {Xz ,d\-z_X:O}

+ a1 = 2 Z{ Y. pl) Y pw)

{xlvd\‘l.‘C:O} {X2~,d,\‘z.x:1}

+ > ) > pln)
{x1,dx =1} {x2,dx, =0}

+ /12(1 o l)2<k*1) Z{ Z p(xl) Z p(XQ)
x| vy =2} {x2,dy, x=0}
+ oy pxa) Y )

{Xlwdxl,,\':o} {Xz.,d,(z_x:Z}
+ > pa) Y, plw) p+0(2)
{X],d,(l"\.:l} {Xz)d‘(z,.\‘:l}

= E[p(X)] + 22{E[pi (X)] — kE[p(X)]}
+ Z2{2E[pa(X)] + E[(p1(X))* /p(X)] — 2(2k — 1)E[p1 (X))]

+ k(2k — DE[p(X)]} + 0(2).
Summarizing the above results, we get
E[H,(X,, X2)] = E[LY)] — 2E[Ly)
= —E[p(X)] + Z{IE[p(X)] = 2kE[pi (X)] + E[(p1(X))*/p(X)]} + O(2)

= A,)? + 0()*) + (terms unrelated to 1). [

Lemma A.3. Define H,(X;,X;) = L} —2Lj;. Then

E[H,(X;, X;)|Xi] = —p(Xi) + O(22).
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Proof. E[H,(X;,X)|X;| = E[L}|X;] - 2E[L;|X;. We compute E[LyjX] and
E [Lij | X;] separately below. Using the expansion given in Eq. (A.3) we have

LX) = 3 p(x)L(X,x)

X

=(1=2" Y p+a1 - Y plo) + 00

{xdx, »=0} {x2,dy; x=1}
= p(Xi) + A[p1 (X)) — kp(X)] + O(27).
Next,

2
E[LSJ)‘XI] = Z E[Lz\’i,xLX;,X|Xi] = Z Z p(x1) Ly, Ly, x
X X1

=(1=2" 3 > )
{x,dx; »=0} {de"'[v"lzo}

+a =N > plx)
{xvdX;,.\‘:O} {xlvd)(,a\‘lzl}

+ Y > p(xl)}+0(iz)

{x.dx,rzl} {x1, dx;, \]:O}
=p(Xi) + 22[p1 (X)) — kp(X0)] + O(2%).

Hence, we have

E[H,(X;, X))|Xi] = E[Li7|Xi] = 2E[L;| X}] = —p(X;) + O(2*).

Note that the terms which are linear in A cancel out in E[Ll(.jz)|X,-] and
2ELy\X). O

Lemma A4. ©,(1) = 412> 4 0,(in~" + %) + (terms unrelated to ).

Proof. By Lemmas A.2, A.3 and the H-decomposition, we have

IZn*nzzZH l’]

i j#I
= E[H,(X;, X; +2n'Z{E Xi, Xj)|Xi] = E[H,(Xi, X))]} + (s-0.)

=412+ 0,(2n~" +)?) + (terms unrelated to ). O

Lemma A.S. [, = Aydn~' + 0,(2*n~") + (terms unrelated to ), where Ay =

2{E[p1(X)] = kE[p(X)]}-
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Proof. Define .o, = (n(n—1))"' 3, D s Lff). Then .7, is a second order
U-statistic. E(.o/,) :E[Ll(jz)] = E[p(X)] + 424 + O()?) is proved in the proof of
Lemma A.2. By the U-statistic H-decomposition, .7, = A/ 4 0,(/) + (terms

unrelated to 2).  Thus, Iy, =n o/, = Asin' + 0,(2*n") + (terms unrelated
tod). O

Appendix B

Note that / = o(1) by Assumption (B2)(ii). Along lines similar to the proof of
Lemma A.0, one can show that /{:op(l). helh,h] and i:op(l) imply the
consistency of f{x,). In Lemmas B.1-B.4 below we use & = o(1) and 1 = o(1) to
obtain expansions of CV(h, ).

From Eq. (3.4) we get
1 2)
D=k KD+ SR 2K S SR
i i J#I i j#EI

EJln*|“l]2n*-]3n> (Bl)

where the definitions of J;, (I = 1,2,3) should be apparent.

Proof of Theorem 3.1. (i) By Lemmas B.1 and B.5, we have (ignoring the terms
unrelated to (%, 1))

CV(h,2) =Jin+ Jon — J3u
= Bih* — ByJ? + B3J* + By(ni?) ™ 4 O, (I + 2)° + 2(nh?) ™" + (nh?/?)7)
= CVi(h,2) 4 Oy (B + 2) + A(nk?) ™" + (nk?/?)™h), (B.2)
where CV(h,2) = Bih* — ByJh* + B32* + By(nh?) ™" is the leading term of CV/(.,.).

Letting (%,, 4,) denote the values of (%, A) that minimize CVp(h, 1), simple calculus
shows that

hy = cin” V4P and 4, = con” Y4 (B.3)

where ¢ = {pBy/(4[B, — B3/(4B5)))}"/**) and ¢, = ¢3B,/(2B3). Obviously (, 1)
will converge to (h,,4,). To obtain the rates of (};— ho)/ho and . — )y, we need to
consider the higher order terms in the expansion of CV(h, 4). By inspection of the
proofs of Lemmas B.1-B.5, we know that

CV(h,2) = CVi(h, 1) + Cih® + Coh* A+ C3h? 2% + Cy2 + Csi(ni?) ™!
+ V() £ (s.0.), (B.4)

where C;’s are some constants (j =1, ...,5) and 77, is a zero mean O,(1) random
variable (77, is a degenerate U- statlstlc—see Lemma B.4’s proof for further
explanation). We need to consider two cases: (i) p<3 and (ii) p=>4.
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Case (i) p<3, (nh?/?)"" has an order larger than A° (because (nh?)~' = O(h*)).
Following exactly the same arguments as in [19],* using Eq.(B.4) one can
show that

(h—hy)/hy = O,(K*) and 1 —2, = O,(n"'/?). (B.5)

For case (i) of p>4, h® has an order at least as large as O ((nh”/?)™"), and again
by following the same arguments as in [19], one can show that

(h—ho)/hy = O,(B?) and 2 — 2, = O,(h%). (B.6)
Summarizing Egs. (B.5) and (B.6), and noting that 4, = O(n~"/(4*P)), we have
(h=ho)/he = Op(n™*/®™) and 2 — 1, = 0,(n"), (B.7)

where o = min{2,p/2} and = min{1/2,4/(4 + p)}.

(i) Define f{z) in the same manner as f(z) but with (/1) being replaced
by the nonstochastic smoothing parameters (%,,4,). Then it is straightforward to
show that

nhh (f(z) — 281 (z) — 1oB2(z)) > N(0, V(z)) in distribution (B.8)

by Liapunov’s central limit theorem. Using Eq.(B.7) and a standard Taylor
expansion argument, it is easy to show that

N2) = f2) = 0,((nhy)~'7?). (B.9)
Egs. (B.7), (B.8) and (B.9) imply that

Valr (fiz) — IPB,(z) — iB(z)) > N(0, V(z)) in distribution. O  (B.10)

Below we present some lemmas that are used for proving Theorem 3.1. The idea of
the proof is similar to that contained in Appendix A, but now our cross-validation
function CV(h, 1) is more involved as it depends on both A and 4. In the proofs
below, we first use Eq. (A.3) to obtain an expansion of CV'(h,/) in a power series of
J up to the order of A% plus some 0,,(&2) terms. Then we apply the standard change-
of-variable argument to the continuous variable to obtain an expansion of CV'(h, 1)
in a power series of 4%, up to the order of 4*, plus some 0,(h*) terms.

Lemma B.1. Jy,(Z,h) =n2Y, K,Szlf = (nh?)"'[By — Bs/+ O(J2)], where By and Bs
are two positive constants.

4 A PDF file of this paper is available from econweb.tamu.edu/li/papers/htm
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Proof. First note that W,’) &y Wi, dy =h" [ W?(v) dv. Hence,

ho=n YK =t S = | [ Wi [ >
i i i

= / W2 (v) dv} (") "' [1 = 2ki + O(2%)] = (") "' [By — Bsi+ O()] by Lemma AL,

where By = [[ W?(v) dv]>0 and Bs = 2k[[ W?*(v) dv]>0. O

Lemma B.2. Define #,(Z;,Z;) = — 2K, ;.

ht/

Then E[#,(Zi,Z;)] = By + Bilhi* — Bydh* + B3A* + 0,(2% + M* + h),
where B; (j =0, ...,3) are some constants with B; >0 and B3> 0.

Proof. E[#,(Z;,Z;)] = EK, <>] 2E[K) ;). We compute E[Kj ;] and E[K, hl]] sepa-

h.ij
rately below. We will use f(y|x) to denote the conditional probability density

function of Y given X = x. Define Gj,(x1,x2) = [ Wi(y1, y2)f (71 |x1)f (»2]x2) dy1 dy,
where Wj,(y1,y2) = h P W (¥32). We will first use Equation (A.3) to expand E[Kj, ;]

in terms of A/ (I=0,1,....k)

ElKisl = 3 3 pp(en) L [ W 1 k) d
—Z Zp p(x1) Ly x, Gi(x, x1)

= "ZLD PGu(x,x) + 21 = "7 p(x) D plx)Gulx, x1)

x {x 1dv,x| =1}

2{ Yooy > P(M)Gh(xm)} +0(2)

{x1,dyx =2}
=To+ AT, — kTy) + 22{T> — (k — )T} + [k(k — 1)/2]T»} + 0(2*),
where
Z [p(x G;, (x, x) ZP Z p(x1)Gp(x, x1),
{\lyd.\‘..\(l:l}

= Zp(x) Z p(x1)Gp(x,x1). (B.11)

{xl 7d\',xl :2}
For ease of reference we summarize the above result in the following equation:

E[Ky] = To + A(T1 — kTy) + 22{Ts — (k — )T, + [k(k — 1)/2]T>} + O(%).
(B.12)
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Eq.(B.12) gives an expansion of E[K;| in A° (s=0,1,2,3). Ty, 71 and
T, in Eq. (B.12) can be expanded as power series in /& because Gj(xj, x2) depends
on h.

From the definition of Gj(x,x;) and the fact that W(:) is a symmetric
function, it is easy to see that it admits the following expansion (in terms of powers
of h):

Gi(x,x1) = Go(x,x1) + 2 Ga(x,x1) + h*Ga(x, x1) + 0,(h*), (B.13)

where Go(x,x1) = [fIxX)f Wlx)) W (v) dvdy = [f(y]x)f (v]x1) dy, Ga(x,x1) =
(1/2) [f(¥]x) ’fo(y|x1)vW( )dvdy, and Gi(x,x;) involves the fourth order
derivatives of f(y|x) with respect to y, and factors like [ W (v)v}dv or
[ W (v)v?v; dv, where v, is the /th component of ve R’ (I=1,...,p).

Eq. (B.13) gives an expansion of Gj(x,x;) in A’ (I =0,2,4). If one substitutes
Eq. (B.13) into Eq. (B.11), and then substitutes Eq. (B.11) into Eq. (B.12), one can
get a power series expansion in (h2)'2° (I,s = 0,1,2, ...). Below we will conduct some

similar calculations for E (K,i lj))

Next, we consider E(K(J)) Define G,(1> (x1,x2) = [fn]x)f 2]x2) W, ()(yl,yz)

dyy dy,. We use Eq.(A.3) to obtain an expansion of E[K, l)] in terms of A’
(I=0,1,....k)

(2)
E[K,)] =E[L j hy ZEL L. W,“]
*Z Z ZP x1)p(x2) Ly x Lo, v/f(y1|x1) (a2lx2) Wy (91,92) dy1 dy:
= Z Z Z p xl X2 Lx1 sz YG/(I (X],Xz)
X X1 X2
D4 w1 = 2kTP) + 21 — 2k — )T + k(2k — )T} + 0(2%),
where
T(z) Z [p(x (x,x) T(z) =2 Z p(x Z p(xl)G,(f)(x,xl),
{‘C1$dY].X:l}
2 2
T =23 "px) Y p)GP(xx)
x {xlydxl.\':z}
+ 3 > s YD p)G (xixa). (B.14)
X {x1dy =1} {x2,dx, x=1}

We summarize the above result in the following equation:

EKD) =T + ATy - 2kT))

+ TP — 2k = 1)TP + k(2k — )T} + 0(2). (B.15)
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From the definition of G,(f)(xl,xz) and the fact that W®@(.) is a symmetric
function, it is easy to see that it admits the following expansion (in terms of
powers of h):

G\ (x1,x20) = G (x1,x2) + B2 G (x1,%2) + h* G (x1,x2) + 0, (h*),  (B.16)

where G (x1,x2)= [ f(ylx1)f (v]x2) WO (v) dv dy = ff y|x1 f(ylx2) dy, G (x1,x2)
=(1/2) [f(r1]x1) vVil f1]x2)o W3 (v) dvdy, and G4 (x1,x2) involve the fourth
order derivatives of f(y|x) with respect to y, and factors like [ W (v)v}dv or
[ W (v)v}v? dv, where v; is the /th component of ve R (I=1,...,p).

From the definition of W(?)(.), it is easy to check that the following relationships

hold:
/W dv*/W =1, /W(z)(v)m/dv:2/W(U)vv'dv,

/W(2>(v)v;1 dv>2/ W(v)v? dv I=1,..,p. (B.17)

From Egs. (B.13), (B.16) and (B.17), we immediately get

G(()2)(x1,xz) = Go(X],Xz), Géz)(xl,xz) = 2G2(X1,X2), Gf,z)(xl,xz) >2G4(X1,X2).
(B.18)

Below we will obtain an expansion of E[#,(Z;,Z;)] = E[ ] 2E[Kj] in the
powers of & and 1. We write E[#,(Z;,Z;)] = Ho(h) + 2H,(h) +)v Hy(h) + 0(2?),
where H;(h) can be written as a power expansion of 4 and where the subscript /
means the power expansion of 2’ (1 =0,1,2). We will first obtain an expansion for
Hy(h), the component of E[#,(Z;, Z;)] = E[Kl.(jz>] — 2E[Kj] that is independent of /.
From Egs. (B.11)—~(B.18), we know that

Ho(h) =T,” — 2T, = Z [p(x X, x) — 2Gy(x, x)]

=2 PO{=Golx,x) + O + 1[G (v 2) = 26s(x. )]}

EBO+Blh4, (B.19)

where By = — 3 [p(x)Go(x,x), By =, [p(x)P[G (x,x) — 2Gy(x, x)]. We see
that, due to cancellations between T, éz) and 27, there is no A* term in the above

expansion.
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Next, we compute H(h), the component of E[#,(Z;, Z;)] that is linear in 4. From
Eqgs. (B.11)—~(B.18) we have

Hi(h) =T = 2kT? = 2[T) — kTy) = [T\ — 2T] + 2k[Ty — T{]
-2 Z ) > pe)IGY (v x1) — Gul(x, X))

X1 d‘l \71
+ 2k Z P()PGa(x, x) — G (x, x)]

= — Bol? + 0, (hY), (B.20)

where B, = 2{k 3" [p(x)]*Ga(x,x) — 32, p(x) 2 vdy, =1 P(X¥1)Ga(x, x1)}. Due to
some cancellations, there is no constant term in the above expansion.

Finally, we compute Hj (%), the component of E[#,(Z;, Z;)] that is linear in /2.
Again from Egs. (B.11)—(B.18), we obtain

Hiy(h) = [T — 2k = )T — k(2k = 1)TP) = 2{Ty — (k = )T + [k(k — 1)/2] To}

Z{ Z p(x1) Z p(xz)Géz)(xl,xz)
X {x1,dy, x=1}

{XZA,d\'z.X:l }

— 2kp(x) Z P(XI)G(()z)(nyl)

{x1,dy =1}

: {zkzZm) Yo )G (x,x) | + 0,0

{xl,zlYI_A:Z}
= B3 + 0,(h?), (B.21)

where the definition of B; should be apparent. Note that Bj is obtained by replacing
Gp(x,x;) and G,SZ)(x,xl) by Go(x,x;) and G(()2>(x,x1) in 7; and Tj<2> (j=1,2,3),

respectively. Also, Go(x,xl):G((Jz)(x,xl) by Eq.(B.18) is used in comput-
ing Bj.
By Egs. (B.19)—(B.21), we immediately obtain
E[ A (Zi, 2))] = EK}3) — 2E[Kij]

=By + Bii* — Byal® + B3A* +o,(h* + 20> +7%). O  (B.22)

Lemma B.3. E[#,(Z:,Z)|Z] = p(X;) + O,(h* + A% + %), where H,(Z;,Z;) =
K\ = 2Ky with Z; = (X;, Y.
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Proof. E[# ,(Z;,Z;)|Zi] = E| ,”]|Z] 2E[Ky;4|Z;]. We consider E[K;;|Z;] and
E[K ,“]|Z] separately below. Define Mj(x, Y;) = [ Wi (Y;,»)f (v|x)dy. We will first
use Eq. (A.3) to expand E[Kj),;|Z;] in terms of A(1=0,1,.. k).

ElKug\Z] = 3 pL( ) [ Wanf by = 3 p LG My, )
= (1= 'p(X)MW(Z) + 21 =" > plx)My(x,31) + O(27)
{x,dxlw\:l}
= Co(Z) + 2C1(Z) + 0(2%),

where Co(Z;) = p(Xi)) M (Z;) and C(Z) = Z{xl’dxiyx:l}p(x)Mh(x, Y:) —

kp(X;)My(Z;).
Summarizing the above result, we have

E[Ky|Zi] = Co(Z)) + 2C1(Zi) + O(27). (B.23)

Using the usual change-of-variable method, it is easy to see that M} (Z;) admits the
following expansion (an expansion in powers of A):

My(Z) = My(Z)) + P Ma(Z;) + O,(h*) = 1 + My (Z,) + O, (h*), (B.24)

where My(Z;) = [f(y|X)W(v)dvdy =1 and My(Z;) = (1/2) [v'Vf (y|X:)oW (v)
dvdy.
Next, we consider E[K, ,521>|Z] Define M(z)( = Wh Y., »)f (v|x) dy. We use

Eq. (A.3) to expand E[ |Z} in powers of A/ (l =0,1,....k).

hiij
2
EIK|Z) =Y E[LuLy W, (Y, Y))|Z))

= Z Z p(xl)LXJu,xLxl,x]‘/[]s2> (x17 Yl)
x X

= (1= )™ p(X)M (X, i) + 2(1 — 2!

x> > )My
{xdx;x=1} {x1,dx =0}

+ Y pe)MP (Y p+ 0GP
{xdy =0} {x1.dg =1}

=CP(Z) + 2P (Z) + 0(22),

where  C7(Z) = p(X)M{? (Z)) and  CP(Z)) = 2{0,, 4y o1y PEOMSD (x, Yi) -
kp(X)MD(Z:)}.
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Summarizing the above result, we have
EIKD|Z) = ¢)(Z) +.CP(Z) + 0(22). (B.25)

It is easy to show that M ,52)(2,-) has the following expansion (a power expansion
in h)

M (z)) = MP(Z) + R MO(Z) + 0,(h*) =1+ M@ (Z) + 0, (h*)

(B.26)
where  M(Z) = [f(IX)W O (v)dody =1 and My (Z) = (1/2) [v/V2x
flX)ew e ()dvdy
By Eq. (B.17), we know that
MPN(Z)) = 2My(Z)). (B.27)

Using Egs. (B.23)—(B.27) we obtain

E[# (21, 2))|Z]) = EIK, h,,\Z] 2E[Ky | Xi]
= [67(20) = 2Co(Z)] + A[CP(Zy) = 2C1(Z)] + O(P)
= [p(X;) + K (0) + O(h")] + 22[0 + WPkp(X;) M2 (Z:) + O, (h")] + O(3?)
= p(Xi)) + O,(h* +2n* + 7). O (B.28)

We observe that, due to some cancellations between E [K(2)|Z ] and 2E[K; ;| Xi],
there are no h*> and / terms in the expansion given in Eq. (B.28).

Lemma B.4. J5,(2,h) = By + Bilh* — Byl + B32? + O,((H: + 2)* + (nh?/?) ")+
terms unrelated to (h, 1), where B; (j =0, ..., 3) are constants defined in Lemma B.2.

Proof. Jo, =n?2Y", Yoiei Hi(Zi,Z)), where H,(Z;,Z;) = ,”j
composition and the results of Lemmas B.2 and B.3, we have

=n )Y HlX X))

i J#i
= E[#(Zi,Z))] 2/nZ{E W(Zi, Z)Z) = [#0(Zi, Z))}

—2Kj,;. By H-de-

+ /) Y0 D ANZ12) ~ [H0(Z, 2)|121) ~ 1021, 2)|Z))

i j>i

+ E[AW(Zi, Z))]}
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= (Bih* — Byih* + B3?)

+{ =@/ (X)) = Ep(X0)] + Op(h* + %)

+ () )
= Bih* — Byal? + B2 + O,((R + 2)* + (nh??)™")

+ terms unrelated to (%, 4),

where 77, is a zero mean O,(1) random variable obtained from the last term in the
H-decomposition, being a degenerate U-statistic. It is straightforward to show
that the second moment of this degenerate U-statistic is of the order

(1/n?)E[H?(Zi, Z;)] = O((n*h*)™") (e.g., Theorem 1 of [12]). Therefore, this last
term in the H-decomposition has an order of O,,((nhp/z)*l). So we write it as
(nh?/2)~'y",,, where ¥, is a zero mean O,(1) random variable. [

Lemma B.5. J3,(4,h) = O,(n~'(h* + 1)) + terms unrelated of (h,1.).

Proof. First define #°, = (n(n —1))"'Y, D K,-]@, which is a second order U-

statistic. The proof of Lemma B.2 implies that E [Ki(/z)] = By + Bil? + By + (s.0.)
for some constants B, (j=0,1,2). Hence, by the U-statistic H-decomposition
we have Jy, =n"'W, =n'[E(W,) + (s.0)] =n" By + Bl + Byl + (s.0.)] =
O,(n~'(h* + 1)) + terms unrelated to (h,2). O
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