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Abstract-Based on the idea of quasi-interpolation and radial basis functions approximation, a 
fast and sccurate numerical method is developed for solving the Black-Scholes equation for valuation 

of American options prices. Since the method does not require solving a resultant full matrix, the 

ill-conditioning problem resulting from using the radial basis functions as a global interpolant can 
be avoided. The method has been shown to be effective in solving problems with free boundary 

condition. As indicated in the numerical computation for the American option pricing, an excellent 

approximation of the solution as well as the free optimal exercise boundary can be obtained. @ 2002 

Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

In 1973, Black and Scholes [l] proposed an explicit formula for evaluating European call options 

without dividends. By assuming that the asset price is risk-neutral, Black and Scholes showed 

that the European call options value satisfies a log-normal diffusion type partial differential 

equation which is now known as the Black-Scholes equation. It is, however, well known that 

the American options pricing can be treated as a free boundary problem in which no analytical 

formula is available. Until recently, there were a number of different numerical methods for 

valuation of the American options, for instance, the finite difference method by Brennan and 

Schwartz [2]; the binomial method by Cox et al. [3]; the projected successful over-relaxation 

method by Wilmott et al. [4]; the front-fixing finite difference method by Wu and Kwok [5]; the 

Monte Carlo simulation by Grant et al. [6]; the integral equation method by Huang et al. [7]; 

the penalty method by Zvan et al. [8]; and, more recently, the linear programming technique by 

Dempster and Hutton [9]. A comparison of some of these numerical methods can be found in 

Geske and Shastri’s [lo] and Broadie and Detemple’s [ll] review papers. 

Some kinds of analytical formulas for valuation of the American options have been proposed 

by Johnson [12], MacMillan [13], and Barone-Adesi and Whaley [14]. These basically transform 

the free boundary value problem to an integral equation whose analytical formula is obtained 
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by either assuming a numerical approximation of the unknown optimal exercise boundary or a 

polynomial expansion of the unknown integrand. 

Recently, Hon and Mao [15] developed a new numerical scheme by applying the global radial 

basis functions (RBFs), particularly Hardy’s multiquadric (MQ), as a spatial approximation for 

the numerical solution of the options value and its derivatives in the Black-Scholes equation. This 

transformed the Black-Scholes equation into a system of first-order equations in time, and the 

numerical solution can then be approximated by using a high-order backward time integration 

scheme like fourth-order Runge Kutta method. Numerical results indicated that this RBFs 

method offers a highly accurate spatial approximation to the solution. 

The RBFs scheme is a truly meshless computational method which does not require the gen- 

eration of a regular grid as in the finite difference or a mesh as in the finite element meth- 

ods. This makes the RBFs particularly efficient in solving this kind of free boundary prob- 

lems. Furthermore, since the MQ-RBFs are infinitely differentiable, the higher-order partial 

derivatives of the options value can be directly computed by using the derivatives of the basis 

functions. 

The RBFs method, however, faces a serious ill-conditioning problem due to the use of the 

RBFs as a global interpolant. While Dubal et al. [16] noted many benefits of using the RBFs to 

solve a three-dimensional nonlinear Poisson equation without the use of domain decomposition 

or block decomposition schemes, the matrix resulting from using the RBFs of nearly 2000 knots 

was extremely ill-conditioned. There are currently several ways to solve the ill-conditioning 

problem of using RBFs for solving partial differential equations (PDEs). For instance, domain 

decomposition is a common technique used in traditional numerical schemes and had been shown 

to reduce the condition number and increase efficiency in using the RBFs for solving PDEs by 

Kansa and Hon [17] and Wong et al. [18]. However, no theoretical discussion of convergence and 

condition number of the preconditioner is given by these methods. 

Wu [19] recently developed classes of compactly supported radial basis functions (CSRBFs) 

in which the unique existence of the solution was assured. It had also been shown by Wu that, 

given any space dimension and under any continuity requirement, a series of CSRBFs in the form 

of polynomials could be constructed. Wendland [20] extended these CSRBFs to classes with 

minimal polynomial degree. The resultant matrices related to the scattered data interpolation 

or solving PDEs by using the CSRBFs are then sparse. Recently, Wong et al. [21] successfully 

applied the CSRBFs to improve the efficiency in the solving of the shallow water equation for 

tide and currents simulation. It was, however, found that the accuracy of these CSRBFs also 

depended on a suitable choice of the value of radius of support. If the value is too small, the 

magnitude order of accuracy is not satisfied. If the value is too large, the accuracy will be 

improved in the expense of a decrease in sparsity of the resultant matrix. 

This paper combines the quasi-interpolation and the RBFs methods to solve the option pricing 

models. Since the undetermined coefficients of the quasi-RBFs interpolants for the solution can 

then be computed by using simple backward and forward substitutions in solving a resultant 

banded symmetric matrix, the ill-conditioning problem resulting from using the global RBFs is 

eliminated. Numerical examples show that the total number of knots can be extended to several 

thousands, which is impossible for the global RBFs approach. A recent application on combining 

the quasi-interpolation technique with the dual reciprocal method to solve stiff problems can be 

found from Hon and Wu [22]. 

The organization of this paper is as follows. In Section 2, we introduce the quasi-RBFs method 

for solving the Black-Scholes equation. Numerical comparison with the analytical formula in 

the European options case is given in Section 3. In Section 4, the method is extended for 

American options valuation. The optimal exercise boundary is also computed using the efficient 

Newton’s iterative method. Numerical comparisons with the binomial method, front-fixed finite 

difference method, and the global RBFs method are also given. Conclusions are presented in 

Section 5. 
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2. QUASI-RBFS FOR SOLVING BLACK-SCHOLES EQUATION 

Consider an interpolation problem: Given a function f(z) E C1 [a, b] and the data { (zj, jj)}~==, 

where a = 20 < zr < ... < XN = 6 with density h = max(sj - “j-1). Beatson and Powell [23] 

proposed the following quasi-interpolation formula for the function f: 

N-l 

P(x) = &To + fop0 + C fj@j(x) + fh7v + ~NPN, (1) 

j=l 

where 

@j(X) = 
4j+1 - tij +j - 4j-1 

2(xj+r - xcj) - 2(Xj - x+1)’ 

4j = 4(IIx - XjIIL 
p. $N-I-#JN = 1 41 43 - 

2 
+ 

2(x1 -xc)’ 
pNN=L+ 

2 2(2N - XN-1)’ 

70 = ; (x - “co) - ; 40, 

Here, ~(lk-zjll) is called a radial basis function due to the radial distance ( [IX--xj I]). Particularly, 

the Hardy’s multiquadric &(x) = Jc2 + 1)x - xj]] 2 is commonly used. Since the undetermined 

coefficients fj are the given function values at xj, the method does not require solving a resultant 

matrix for their values. The quasi-interpolant (l), however, requires the function’s derivatives 

at the endpoints, which may not be attainable for practical applications. Wu and Schaback [24] 

later improved the formula (1) to 

N-2 

i(x) = f0a0 + .flQl + C .fj$j(x) + fN-laN-1 + ~NQN, (2) 
j=2 

where 

42 41 
ao 41 - (x - x0) 

- 41 - 
= 1 + ’ QI1 = (x -x0) - 

2 2(x1 -x0) 2(x2 - x1) 2(x1 - 20) ’ 

(XN -x) - $N-1 _ 4N-1 - $N-2 
aN_1 = 

2(xN - XN-1) 2(xN-1 - XN-2) ’ 
&N = f + ‘;;;-~;~l;). 

X 

The quasi-interpolation formula (2) does not require the function’s derivatives and has been 

proven to be shape preserving and with convergence order of 0(h2 log h). Furthermore, if the data 

form an infinite uniform grid, a higher-order quasi-interpolant based on radial basis functions 4 

can be obtained [24] 

i(x) = C fjQj(X:), (3) 
jGZ 

where (xj, fj) are given data and Qj(x) = Q( 1)x - xj 11) is a linear combination of the func- 

tions 4j(X) as 

+j = (4jtl - 4j)/2(xj+l - xj) - (4j - @j-1)/2(xj - xj-1) 
, 

xj+1- xj-1 
j E z, 

with the radial basis function 4j defined by 

4j = $b( 112 - Xj II) = (112 - Xj II2 + C2)3’2 . (4) 
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The function \kj clearly satisfies 

and hence, the value Qij = S,(CQ) is 

any two points xi and xj increases. 

the summation (5) becomes 

Y. C. HON 

C Qj(X) = 1, 

monotonically approaching zero when the distance between 

Given any E > 0, we can find a positive integer M so that 

i+M 

1 - c @‘j(x) < E, 
j=i-n/r 

(5) 

(f-4 

for any fixed x = xi. This implies that the value of @ig is close to zero if Ii-j1 > M. The resultant 

coefficient matrix {XfJij} is then approximately a banded matrix with bandwidth 2M + 1. Also, 

its first- and second-order derivatives satisfy 

i+M a9 .(Xi) c +-y<E, iEZ, (7) 
j=a-M 

i+M a2*j(X,) 

c ax2 < ET i E Z. (8) 
j=i-A4 

For bounded problems with given data points {Zj}3N,c, four extra points, namely x-2 and x_~, 

XN+~ and xN+z will be added artificially to both endpoints, respectively. Assume that x_~ < 

x-1 < x0 < Xl < .‘. < XN-1 < XN < XN+l < XN+2. For the leftmost four points, from x_~ 

to x1 and the rightmost four points, from ZN_1 to xN+z, the cubic splines @j(x) = (x - x~)~ 

and 4?(x) = (xj - x)~ are chosen, respectively, as the radial basis functions instead of (4). This 

ensures that conditions (5)-(8) still hold. The quasi-interpolation formula (3) becomes 

(9) 

To illustrate how to apply the quasi-interpolation formula given by (9) for solving the options 

pricing model, we consider the following Black&holes equation: 

g + ; a2S2 
a2V ds2+rs&rv=o, (10) 

where T is the risk-free interest rate, D is the volatility of the stock price S, and V(S,t) is the 

option value at time t and stock price S. The terminal condition is given by the maximum payoff 

valuation 

V(S,7) = 
max{K - S,O}, for put, 

max{S - K,O}, for call, 
(11) 

where r is the time of maturity and K is the strike price of the option. A simple transforma- 

tion S = e” changes equation (10) and condition (11) to 

au i ,a2u 
at’2” d22+ r-;u2 -- ( ) au 

ax rU = 0, 

with terminal condition 

(12) 

U(x, 7) = 
max {K - e”, 0)) for put, 

max{e” - K,O}, for call. 
(13) 
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The idea of the proposed numerical scheme is to approximate the unknown function U using the 

quasi-RBFs \k by 

WX, t) = 5 W)$(X), (14) 
j=o 

where Uj is the unknown option value at X = Xj which depends on time t and qj (X) = Q( 11X-Xj 11) 

is a linear combination of the radial basis functions 4(11x - XjII). For the data points {Xj}y=_o 

and the four extra artificial endpoints, it is assumed that x-2 < x-1 < x0 < xi < ‘. . < xN__1 < 

XN < XN+l < XN+2. The termS in the qUa&interpOlatiOn formula (14) are then given as 

Q. = +j+l-+j ?lj - @j-l 

3 2(Xj+z - Xj-1) - 2(Xj+i - Xcj-2) ’ 
j = 0,. . . , N, (15) 

qj = (4j+l - 4j)/2(xj+l - “j) - (4j - 4j-1)/2(Xj - “j-1) 

Xj+l - "j-1 
1 

(16) 
j = -l,O, 1 1”‘) N,N+l, 

where the radial basis function is chosen to be 

(X - Xjj3r for -2<j<l, 

6j(X) = ((x - Xj)2 + c~)~‘“, for 2 5 j < N - 2, 

(Xj - X)31 forN-l<j<N+2. 

(17) 

The functions Q~(x) satisfy 

(18) 
j=O 

c N dlkjozo 
j=O ax , (1% 

c N ax0 
j=O ax 

2 7 (20) 

and the elements KDij = @j(Xt), ‘@$%“, and w decrease monotonically to zero as the 

distance between the two points Xi and Xj increases. For any E > 0, we can determine a value 

of A4 so that 

f - ‘F Qj(Xi) < E, (21) 
j=i-M 

i+M dQj(xi) c - < E, 

j=i-M ax (22) 

i+M d2Qj(xi) c 
j=i-M ax2 

-=c 6 (23) 

for all values of i = 0, 1, . . . , N - 1, N. The coefficient matrices {qij} and its derivatives {%} 

and {g} can then be treated approximately as banded matrices with bandwidth of 2M + 1. 

The positive constant c2 contained in the multiquadric (MQ) function given by (17) is called 
a shape parameter whose magnitude of value affects the accuracy of the approximation. In most 

applications of using the MQ for scattered data interpolation, a constant shape parameter is 
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assumed for simplicity. Kansa [25], Hon et al. [26], and Golberg et al. [27] have shown that the 

use of the MQ for solving partial differential equations is highly effective and accurate. However, 

the accuracy of the MQ is greatly affected by the choice of the shape parameter c2 whose optimal 

value is still unknown. Hickernell and Hon [28] and Golberg et al. [27] had successfully used the 

technique of cross-validation to obtain an optimal value of the shape parameter. Recently, an 

algorithm for selecting a good value of the parameter based on the total number of data points and 

the precision of the machine is given by Rippa [29]. In this paper, the quasi-interpolant (14) with 

the multiquadric function given by (17) is applied as a spatial approximation for the unknown 

function U in (12). While theoretical studies on the choice of the optimal shape parameter are 

still ongoing, we choose c2 to be O.ld,,, where d,,, is the average of the minimum distance 

between any two distinct points xi and xj. 

Collocating (12) at the N + 1 points xi, i = 0, . . . , N, and bearing in mind the approxima- 

tion (14), the following system of linear equations is obtained: 

(24) 

Since the basis function does not depend on time, the time derivative of U is simply the time 

derivatives of the coefficients 

au(xi, t, 

at 

The first and second partial derivatives of U with respect to x are given, respectively, by 

dU(Xi, t) 
dX 

&(q!y; 

j=o 

d2U(XiJ) 

822 
= &y(t) a2;p. 

j=o 

(25) 

(26) 

(27) 

In fact, any order of partial derivatives can be computed from the quasi-RBFs ej which are 

continuous differentiable over the computational domain. In matrix form, equation (24) can be 

expressed as 

*,u - r*u = 0, (28) 

where U denotes the vector containing the unknown option value yi = U(x,, t) and *, \k,, 

and *k,, are the (N + 1) x (N + 1) matrices of 8j (xi), “iFi’, and w, respectively. Here, 

the overdot ( ’ ) indicates the time derivative. Equation (28) can then be rewritten as 

siJ=- +J2V,,U+ [ ( > r-+T2 *[r,u - r*u 1 = PU, (29) 

where P is the (N + 1) x (N + 1) matrix 

P=?+T29,,- 
( > 

.+ XI!,. (30) 

For fixed points xj , equation (29) is a linear system of first-order homogeneous ordinary differen- 

tial equations with constant coefficients. Starting from the terminal condition (13), we can use any 

backward time integration scheme to obtain the unknown coefficients U at each time step r -nAt. 

For notational convenience, let U, denote the vector [U(ZO, t,), U(sl, t,), . . . , U(XN, &)I at each 
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time step t, = r-nAt,n=O,l,..., T where T = r/At. The following implicit numerical time 

integration scheme is used to discretize equation (29) for the valuations of the European and 

American options: 

9U, = \kU,_i - AtP [BU,_i + (1 - 8)&J. (31) 

Let Pi = [\k + (1 - B)AtP] and Pp = [\k - QAtP]. Equation (31) can further be rewritten as 

PiU, = P2U,_i. (32) 

Here, the (N + 1) x (N + 1) coefficient matrices Pi and Pz are approximately symmetrically 

banded with bandwidth of 2M + 1. An efficient solver for this kind of banded matrix can be 

found in the book of Golub et al. [30], in which its numerical solution can be obtained by simple 

backward and forward substitutions. In all of the following computations, the value of 0 is chosen 

to be 0.5. 

3. NUMERICAL COMPUTATION OF EUROPEAN OPTIONS 

For European options pricing, the following boundary conditions are imposed: 

V(0, t) = Ke-T(7-t), 

V(0, t) = 0, 

v(s,t) + 0, as S --f co for put, 

V(S,t) + S, as S + 00 for call. 
(33) 

The exact solution of equation (10) subject to the terminal condition (11) and the boundary 

conditions (33) is given by 

V(S, t) = Ke-T(‘-t)N(-d2) - SN(-dl), 

V(S, t) = SN(dl) - Ke-T(‘-t)N(d2), 

for put, 

for call, 
(34) 

where N(‘) is the cumulative standard normal distribution function with 

dl = lodS/K) + (r + (l/2) a2> (7 - t) 
am 

(35) 

and 
d2 = log(SIK) + (r - (l/2) a2> (7 - t) 

um 
(36) 

For illustration of the accuracy of the proposed method, we consider a European put option 

with K = 10, r = 0.05, u = 0.20, and r = 0.5 (year) as given in the book by Wilmott et 

al. [31]. Let x E [5minrzmax], and hence, S E [e”min,ezm= 1. In this computation, we choose 

x,in = -3.5 and x,,, = 4.5 so that the range for the stock S is sufficiently large to satisfy 

the boundary condition (33). Let N be a fixed positive integer, Ax = (x,,, - x,in)/N and 

xj = 2min + PAX for j = 0, 1,2,. . . , N. With these fixed values of xj, the matrices \k, \k,, 

and 9,, in (29) are constant matrices. With At = r/T, where T is a positive integer, denote 

each time step t, = T - nAt for n = 1,2,. . . , T. From the terminal condition (13) for European 

put option, the initial elements Vc(i) of the initial vector Us are computed by 

~s(i + 1) = U(xi,r) = max{K - eZi,O}, i=O,l,..., N. (37) 

From the backward implicit formula (32), the option values U,, n = 1,2,. . . ,T, can then 

be obtained iteratively. Since the matrices Pi and PZ are approximately banded with band- 

width 2M + 1, the numerical solutions U, can be obtained efficiently by using simple backward 

and forward substitutions. To satisfy the boundary condition (33), at each time step t,, we 

update Un(l) = U(xc, tn) = Ke+‘(‘-tn) and Un(N + 1) = u(zN, tn) = 0. 
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Table 1. Comparison between the exact and the quasi-RBFs solutions for the Euro- 
pean option. K = 10, T = 0.05, 0 = 0.20. T = 0.5, z,in = -3.5 and zmax = 4.5, 
N = 2000, and T = 100. 

Stock 5’ Exact Quasi-RBFs 

2.00 7.7531 7.7531 

4.00 5.7531 5.7531 

6.00 3.7532 3.7532 

7.00 2.7568 2.7568 

8.00 1.7987 1.7988 

9.00 0.9880 0.9881 

10.00 0.4420 0.4420 

11.00 0.1606 0.1606 

12.00 0.0483 0.0483 

13.00 0.0124 0.0124 

14.00 0.0028 0.0028 

15.00 0.0006 0.0006 

16.00 0.0001 0.0001 

0.00004 

The numerical computations are performed on a SUN Spare workstation by using FOR- 
TRAN 77 with double precision. With N equals 2000, T equals 100, and M equals 20 (so 
that E < 10p7), the CPU time of the computation was about 12 seconds. The result of compari- 
son with the exact solution is given in Table 1. 

The numerical comparison shown in Table 1 indicates that the quasi-RBFs method provides 
a highly accurate approximation to the solution of the European option. With Ax = 0.004 
when N = 2000 and At = 0.005 when T = 100, the root-mean-square-error (RMSE) defined by 

V(Sz, 0) - U(log(S,), 0) 

where V is the exact solution computed from (34), U is the numerical approximation, and Si are 
the stock values in the table, has already been reduced to 0.00004. 

4. NUMERICAL COMPUTATION OF AMERICAN OPTIONS 

It is well known that the American options valuation can be treated as a free boundary value 
problem, and until very recently no analytical formula was available. The American options allow 
early exercise at any time t E [0, ~1 with optimal exercise stock value S = B(t). The difficulty for 
most numerical methods to compute an accurate solution for the American options is due to the 
unknown free boundary B(t). To satisfy this early optimal exercise, the Black-Scholes equation 
for the American put options valuation is imposed by Wilmott et al. [31] as 

au 1 2 a2u 
a+ r-g2 -- ( 1 au 

dtfP ax 7-U = 0, x > xopt(t), 
(38) 

U(x, t) = max{U(x, t), U(G .T)), x I Xopt(t)r 

where x,,t(t) = log(B(t)) is th e corresponding optimal exercise point due to the transforma- 
tion S = e” and U(X,T) = K - e” is the maximum payoff value given by the terminal condi- 
tion (13). The region z 5 x,,t(t) corresponds to where the American options should be early 
exercised to attain the optimal value U(x, 7). 
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The difficulty to solve equation (38) is due to the unknown optimal exercise point ~,,~(t). To 

satisfy this early optimal exercise for the valuation of the American put options, we simply update, 

at each time step t, in the valuation of the European option, the elements of U, by U,(i) = 

max{K - e5’, U,(i)}. Th is makes the valuation of the American options relatively simple. To 

demonstrate the accuracy of this quasi-interpolation method for the American put options, we 

consider an American put option with K = 100, T = 0.1, 0 = 0.30, and T = 1 (year). Let z E 

[-5,7] so that S E [em5, e’]. In this computation, we take N = 2000, T = 500, and M = 20 and 

apply the quasi-RBFs method with the implicit time integration scheme to compute the American 

put option values. The CPU time of computation is approximately 47 seconds. Table 2 gives 

the results of comparison among the binomial, front-fixing finite difference (F-F-F), global RBFs, 

and quasi-RBFs methods for the American put option values. 

Table 2. Comparison of accuracy for the American option K = 100, T = 0.1, q = 0.30, 
7 = 1, X,in = -5, Xmax = 7. 

Stock S 
Binomial 

N = 1000 

F-F-F 

N = 134, T = 100 t 

Global RBFs Quasi-RBFs 

N = 101, T = 100 N = 2000, T = 500 
J- 

80 20.2689 20.2662 20.2777 20.2655 

85 16.3467 16.3396 16.3378 16.3427 

90 13.1228 13.1124 13.1142 13.1185 

95 10.4847 10.4733 10.4752 10.4813 

100 8.3348 8.3277 8.3338 8.3363 

105 6.6071 6.5936 6.6010 6.6020 

110 5.2091 5.2004 5.2092 5.2079 

115 4.0976 4.0872 4.0965 4.0935 

120 3.2059 3.2023 3.2108 3.2072 

RMSE 0.0090 0.0054 0.0034 

T Implicit 1 

It can be observed from Table 2 that the quasi-RBFs method with the implicit time integration 

schemes provides a better approximation to the American put option compared with the binomial 

method with N = 1000. Although a total of 2000 knots and 500 time steps was employed, the 

overall CPU time was still less than using the global RBFs with only 101 knots and 100 time 

steps. This is due to the efficient solver for banded symmetric matrix resulting from using this 

quasi-RBFs method. It is also noted here that the use of the quasi-RBFs method avoids the ill- 

conditioning problem caused from using the RBFs globally. Furthermore, since the quasi-RBFs 

basis functions are infinitely differentiable, the computations of the derivatives of the options 

values are readily available from the derivatives of the basis functions. For illustration, Table 3 

shows a comparison among these methods for the Delta values - ““~~‘“’ of the same American put 

option by evaluating equation (26) for (l/S) v at x = log(S). 

It can again be observed from Table 3 that the Delta values obtained from the quasi-RBFs 

method appeared to be the closest to those obtained by the binomial method. 

In most existing numerical methods for the valuation of American options, the determination 

of the unknown optimal exercise boundary B(t) is difficult. From equations (11) and (38), the 

boundary condition at the optimal exercise boundary B(t) for an American put option can be 

stated as 

or equivalently, 

V(B(t),t) = K - B(t), (39) 

LJ(G,t(t),t) = K - xopt(t)r (40) 
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Table 3. Comparison of accuracy for the Delta values. K = 100, r = 0.1, B = 0.30, 
T = 1, 5min = -5, X,,, = 7. 

80 

85 

90 

95 

100 

105 

110 

115 

120 

RMSE 

Stock S 
Binomial F-F-F Global RBFs Quasi-RBFs 

N = 1000 N = 134, T = 100 N = 101, T = 100 N = 2000, T = 500 

-0.8631 -0.8661 -0.8707 -0.8630 

-0.7109 -0.7133 -0.7101 -0.7106 

-0.5829 -0.5848 -0.5836 -0.5827 

-0.4755 -0.4769 -0.4748 -0.4753 

-0.3856 -0.3866 -0.3849 -0.3854 

-0.3108 -0.3116 -0.3104 -0.3107 

-0.2491 -0.2497 -0.2485 -0.2490 

-0.1986 -0.1990 -0.1983 -0.1985 

-0.1575 -0.1578 -0.1573 -0.1575 

T 

0.0016 0.0026 0.0002 

Implicit 

where B(t) = e zopt(t). At each time t,, the approximated optimal exercise boundary B(T-nAt) = 

e”: can be obtained by applying the fast Newton’s iterative method to locate the root XL of the 

function F(z) = U( 2, T - nAt) - K + x as given by 

(41) 

where the function F and its derivative F’ at any value x can easily be computed by using 

the derivatives of the basis functions. This is definitely an advantage of this quasi-interpolation 

method which is not shared by the finite element or finite difference methods. The initial value ~2’ 

at each time step t = t, is taken to be the value of xi-i obtained from previous time step t = r&-l. 

In the computation of the American option, it is observed that the computed value of ezopt(r) 

is 76.33, which is very close to the true optimal value of B(r) = 76.25. The following Figure 1 

Figure 1. Optimal exercise boundary K = 100, r = 0.1, e = 0.30, r = 1, S’min = 1, 
S mBx = e6, N = 2000, and A4 = 500. 
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gives the graph of the optimal exercise boundary B(t) which is as smooth as the one obtained by 

Wu and Kwok [5], who used the front-fixing method to transform the unknown boundary B(t) 

into the continuous Black-Scholes equation so that a continuous curve of B(t) can be obtained 

by using the finite difference method. 

5. CONCLUSIONS 

Numerical results show that the quasi-RBFs method, particularly the use of the multiquadric 

basis functions, offers a very high accuracy in the computations of both European and American 

options. Unlike the finite element method which interpolates the solution by using low-order 

piecewise continuous polynomials or the finite difference method where the derivatives of the so- 

lution are approximated by finite quotients, the proposed quasi-RBFs method provides a global 

interpolation formula not only for the solution, but also for its derivatives. This makes the 

computations of those important indicators like Delta values as a bonus without a need to use 

extra interpolation technique. The free boundary condition in the valuation of American options 

usually places a great difficulty to most existing numerical methods for obtaining an accurate 

approximation. This, however, does not apply to this proposed method. The valuation of Amer- 

ican options has shown to be almost the same as European ones except for the update procedure. 

One disadvantage of the global RBFs method is the full resulting matrix which normally hinders 

its application to large scale problems. The use of this quasi-RBFs method results in a banded 

symmetric matrix whose numerical solution can be obtained efficiently from simple backward and 

forward substitutions. With the encouraging results from our recent numerical computations, we 

believe that this quasi-RBFs method can provide an improved RBFs scheme for solving large 

scale problems. The extendability of applying this quasi-RBFs method to the multiple assets 

Black-Scholes model, however, depends on the modification of the quasi-interpolation formuIa to 

handle multivariables, which is the current focus of the author. 
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