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Abstract

We provide an efficient method to calculate the pseudo-inverse dfdahkacian of a hipartite graph, which is
based on the pseudo-inverse of tieemalized Laplacian.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In [1], an elegant connection is made between random walks on graphs and electrical network theory.
Quantities likeprobability of absorption andaverage commute time in graphs have their counterpart in
electrical networks. Recently, these quantities have been applidl &orative filtering [2] and they
involve theLaplacian of large bipartite graphs. It is shown if][that thealbove quantities can be derived
from the pseudo-inverse of this Laplacian.

In this short note, we give an efficient way to compute the pseudo-inverse of the Laplacian of an
undirected bipartitgraph. Such a grapB = (V, E) is definedby a set of vertice¥ and a set of edges
E between these vertices. Lretbe the number of vertices then thdjacency matrix of the graphs is
amatrixA e R™" with Ajj = 1if (i, j) € E andA;; = 0 otherwise. h thecase of a weighted graph
Ajj > 0if (i, j) € E andA;jj = 0 otherwise.
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We assume in this document that the vertices of the bipartite graph are labelled such that the edges
are between the firsh vertices and th& := n — m remaining ones. If the graph is also undirected then
the adjacency matrixA is symmetric and has thelfowing block form:

Omxm| B
A= ,
[ B kak:|

whereB is am x k non-negative matrix. Without loss of generality we can assumenthat k since

otherwise one only needs to relabel the vertices. Define then the diagonal Bhatiik diagonal entries
Dii = Z?zl Ajj. This is the so-calledliegree matrix of G and the Laplacian matrik of G is then

defined as:

D, |-B
L_D—A_[_B Dz],

whereD4 andD» are the diagonal blocks d@. Notice thatD is invertible whenG is connected.

It easily follows from the definition oD that the symmetric matrik is singular since, (the column
vector ofn 1's) is in the null space okL. We derive in this pper an efficient method to compute the
pseudo-inverse* of this Laplacian matrix. Let us recall that the pseudo-inverse (or generalized inverse)
M* of a matrix M is uniquely defined by the four equationstM™™M = M, MTMM*T = M,

MTM = (MtTM)T andMM* = (MM T [4].

2. Thenormalized Laplacian

Assuming thaD is invertible, one can scale to obtain anormalized Laplacian L, defined as:
L:=D YD ¥2=1|,- D Y2AD /2

which then has the following form:

[ = Im ‘_Dl_l/zBDz_l/2 :l_ ITP ‘_B-l (1)
5,78, el
While computing the pseudo-inverse of the Laplacian requires the eigen-decompositigrihig is
much simpler for the normalized Laplacian since one can make use of the singular value decompaosition

(SVD) of B. The fdlowing result shows the tation between the SVD dB and the generalized inverse
of L.

Theorem 1. Let the SVD of them x k matrix B be given by

i Im, O Im, O ;
B=U| 0 Z|Vi=[U Uy Us]| 0 Z|[V1 Vy]
0 0 00

wherek = my +mp, m=my + my +mg, Uj € R™M \% ¢ RKXMi gnd where X7 € RM*™M has no
singular values equal to 1. Then the matrix L has a decomposition
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I m, —lm,

- [ulo I, > ruT| o
[ = [Jfo V] Iy [{—fo . } @)
—Im, ‘ Im,
-y Im,
and a generalized inverse
lm —2lm,
_. [ulo 21 221 ruT| o
LJF:[0 V] I mg [0 Y, ] 3)
—Zm, 2l
b)) 2

where 21 == (Im, — X?)~tand X, := XX,
Proof. It follows by inspection that * satisfies the four equations for the pseudo-inversél

Corollary 1. The pseudo-inverse L+ can bewritten using U2 := [ Uy Uz ] only asfollows:

by [ng Vo ] @)

3 1
2l ~Lln

2o

21
Proof. This follows from (3) andthe identityUsU] = Im — UU,. O

Corollary 2. The semidefinite matrices L and L* have the following explicit eigen-decomposition:

¥ T T+ ).yt T
C=upzul, CF=upsiy]

where
2lm,
U~ = i |__U1 —U2 —\/§U3‘U1 U2-| P |m2 + X Im
- \/zl_vl Vo 0 |V1 V2J’ L 3 Om
1
Im2 —_— 2
and
1
2'mg
(|m2 + E)_l
£ o ' 5)
Om,
(Im, — 1

Proof. Due to the scalingl(), it follows that|B||> < 1 andhence that. > 0. The decompostion then
follows from (2) andU,:UET =1. O
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It is important tonote that whem >> k computing a pseudo-inverse vid) (s more economical than
via the eigenvalue decomposition of @n + k) x (m + k) matrix, since this would requir®(m + k)
floating point operations (flops) instead of ti¥mk?) needed for the SVD approach (se@ for an
operation count of the so-called economical SVD approach).

3. Projectorsand pseudo-inver ses

For ann x ¢ matrix M one can define the projectofgy on the image oM and I, on the image

of MT, using the pseido inverse oM (see f]):
Iy = MM ™, Iyt = MTM.,
It is often simpler to write it in terms of orthogonal baség andU)y, of the respective kernels & and
MT:
_ T _ T

and these can e.g. be obtained from an orthogonal decompositdn Bhis is especily useful when
the dimension of the kernels is sthcompared to the dimensiomsand ¢ of the matrix M. For an
irreducible undirected bipartite graph, the Laplaclais symmetric and its kernel is known to be of
dimension 1 and spanned byand hencel, = It = I, — %aqe,f

In order to compute the pseudo-inverse of the Laplacian matrisom the normalized Laplacian
matrix, we make use of the following result:

Theorem 2. Given M € R"*¢, then for any invertible matrices D1 and D, we have;
M* = 1Tyt D2(D1M D2) " D11Ty. (6)
Proof. It follows from IIyy = MM ™, ITy;1 = MM that
Iyt D2(D1MD2) " D11y = MTMD2(D1;MD2)*DiMM™
= M*D;}(D1MD2)(D1MD2) " (D1MD,) D, *M*
= M*DY(D1MD) D, M = MFMMT = MF. O

If we apply this result to compute the pseudo-inverse of the Laplacian nhatinen the pseudo-inverse
of L is:

L+ — HLD—l/Z(D—l/ZL D—l/2)+D—1/2HL — HLD_1/2E+D_1/2HL. (7)
Suppose thab is connected, then the kernel bfis spaaned bye, and
1 - 1
Lt = (ln_ﬁeneg) D—1/2L+D—1/2(|n—ﬁa1e§). (8)

If the graphG is not connected, then one can relabel the firstertices and the lagtvertices such that
the permutd matrix B has the form

B

PnBPc=| , ©)
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and where each subgraph

:l_omixmi| Bi -|
L B [Okxk]

is now connected. The complexity of the relabelling is proportional to the number of edges in the graph
(see p]). Moreover the pseudo-inverse of the Laplacian then amounts to a block arrangement of the
pseudo-inverses of the smaller Laplacians. Notice also that for each connected subgraph, the condition
that the corresponding degree matix is invertible is automatically satisfied.

A

Remark 1. If a gaph consists of two (or more) chained bipartite graphs, then the adjacency matrix
has the form

This can also be relabelled in an adjacency matrix of the type found in bipartite grapis=2rand
¢ = 3 this would e.qg yield

B
PTAP = Bl |, PTAP =
B, B
1

B
B] Bs

Bl B
BT
3

The same techniques can therefore also be applied for computing the pseudo-inverse of the Laplacian of
such graphs.

Remark 2. If only ther dominant eigenvectors df*+ are needed, they can be approximated byrthe
dominant eigenvectors af . In fact, ) yields the erct eigen-decomposition &f*. Onecan use the
orthogonal basis); corresponding to thelargest eignvalues of * to approximate the corresponding
dominant eigenvectors af " as follows:

U, := 11, D~Y2(;,. (10)
This initial approximation can be used in an iterated procedure to computediiminant eigenvectors
of L.

4. Concluding remarks

We have presented a method for calculating the pseudo-inverse of the Laplacian of a bipartite graph.
The method will have a good performance when the two subsets are very different in size and/or when
the graph is decomposed into smaller connected bipartite subgraphs.
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