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Abstract 

Chaber, J., Two subclasses of the class MOBI, Topology and its Applications 44 (1992) 77-94. 

Assuming that all spaces are regular we prove that open and compact images of cr-locally compact 

metric spaces are a-locally compact metacompact Moore spaces while open and compact images 

of rr-locally compact metacompact Moore spaces form the class of spaces with a point-countable 

base of countable order and a closure-preserving closed cover by cr-compact sets. Moreover, this 

class is the minimal class of regular spaces which contains all a-locally compact metric spaces 

and is invariant under open and compact mappings. The complete version of these results gives 
a characterization of images of C-scattered metric spaces. 

Keywords: a-locally compact metric spaces, open and compact mappings, neighbornets. 

AMS (MOS) Subj. Class.: 54C10, 54D18, 54D45, 54830. 

For a class 9 of topological spaces, let MOBI be the minimal class of regular 

spaces containing all metric spaces from 9 and invariant under open and compact 

mappings (see [3]). If all metric spaces are contained in 9”, then we write MOB1 

instead of MOBI [l, 5.71. 

It is easy to observe that a regular space is in MOBI(9) if and only if it can be 

obtained as an image of a metric space from 6 under a mapping which is a 

composition of a finite number of open and compact mappings with regular domains 

(see PI). 
The purpose of this paper is to prove a characterization of the class MOBI(a- 

locally compact). This gives a partial solution to the problem of characterizing 

MOB1 in the class of regular spaces (see [6, Problems 5.3 and 71) and extends the 

characterization of MOBI(cT-discrete) from [5]. As a corollary to our result we 

obtain a description of MOBI(C-scattered) which extends the characterization of 

MOBI(scattered) from [4]. 
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Unless stated otherwise, all spaces are assumed to be regular. All mappings are 

continuous and onto. Open and compact mappings are open mappings with compact 

fibers. A sequence (G, : n 3 1) of subsets of a space Z is called decreasing (strictly 

decreasing) if G,,, c G, (G,,, = G,) for n 3 1. 

Recall that a space Z is said to have a base of countable order if there exists a 

sequence (3” : n 2 1) of bases of Z such that each decreasing sequence (G, : n 2 l), 

where G, E Y?,, for n 2 1, satisfies 

if zEn{G,: nal}, then {G,: nal} is a base for z in Z. 

If each decreasing sequence (G, : n 3 1) satisfies 

(6) 

if z, E G, for n 5 1, then (z, : n 3 1) has an accumulation point, (A,) 

then Z is said to be a &-space. If both conditions are satisfied, then Z is said to 

have a A-base (see [lo, 17, 181). 

It is well known (see [l, 181) that all spaces in MOB1 have a point-countable 

base of countable order and that a space from MOB1 is in MOBI(complete) if and 

only if it has a A-base. 

A space Z is said to be cT-locally compact if Z is the union of countably many 

locally compact subspaces. Clearly all a-discrete spaces are a-locally compact. 

A space Z is called C-scattered [16] if every closed subset F of Z contains a 

compact set with nonempty interior (in F). 

We shall often use the following, well-known, 

Lemma 0.1. If Z is a semistratifiable space [ 12, 51, then every compact subset of Z is 

metrizable. If a space Z has either a point-countable base or a base of countable order, 

then every compact subset of Z satisjies, in Z, the second axiom of countability. 

1. The first mapping 

We shall start with some results describing properties related to o-local compact- 

ness. These results show the analogies between a-locally compact and m-discrete 

spaces. 

Proposition 1.1. If Z is a perfectly subparacompact space, then Z is u-locally compact 

if and only if Z has a u-discrete cover by compact sets. 

Proof. The “if” part is obvious. To prove the “only if” part, observe that since the 

space Z is perfect, it suffices to show that it can be covered by a countable collection 

of relatively discrete families of compact sets. Thus we can assume that Z is a locally 

compact space and use subparacompactness (which is hereditary in the class of 

perfect spaces) to construct the required cover. 0 
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Proposition 1.2. If Z is a perfectly metacompact space, then Z has a g-discrete cover 

by compact sets if and only if Z has a closure-preserving cover by compact sets. 

Proof. Let 9 = IJ {9(n): n 2 1) be a cover of Z such that each 9(n) is a discrete 

collection of compact sets. Use metacompactness of Z to construct, for each n 2 1, 

a point-finite open expansion Y(n) = {V(D): DE 9(n)} of 9(n). Clearly 2’= 

lJ,,>,{V\E(n): V~?‘“(n)},whereE(n)=U{U9(m): m<n}isapoint-finiteopen 

cover of the space Z. For each z E Z define C(z) = Z\u { VE “Ir: z .& V}. Observe 

that the set C(z) is contained in a finite union of elements of 9. Since the collection 

{C(z): ZE Z} is a closure-preserving closed cover of Z (see the proof of [13, 3.18]), 

this finishes the proof of the “only if” part. 

Suppose now that Z is a perfect space with a closure-preserving cover Ce by 

compact subsets. Construct, by induction on n 20, for each sequence t = 

(jO,. . . , j,_,) of natural numbers, a discrete collection 9(t) of compact sets and an 

open set U(t) such that U(0) = 0, 9(t) is a maximal pairwise-disjoint subcollection 

of {C\ U( t): C E %} and U( t-j) = U(t) u U’( t-j), where t-j is the extension of 

t by j and U9(t)=n{~‘(t-j): j>O}. 

In order to finish the proof, it suffices to show that each z E Z is in the union of 

a certain 9(t). Assume that z is a point of Z not in the union of any 9(t) and fix 

a C E %? containing z. Inductively choose a sequence (j, : n B 0) such that z g U( t,), 

where t, = (jO, . . . , j,_,) for n 2 1. From our construction, it follows that the collection 

IU g(L): n 2 0) is discrete in Z and that its elements intersect the compact set C 

(see [15]). 0 

Standard arguments may be used to show that in a cT-locally compact space with 

a point-countable base every open cover has a refinement which is the union of 

countably many relatively discrete collections (this covering property is called weak 

e-refinability). Since spaces with a c-discrete cover by compact sets are subparacom- 

pact and spaces with a closure-preserving cover by compact sets are metacompact 

[15], it follows that none of the properties considered in the conclusions of Proposi- 

tions 1.1 and 1.2 is preserved by open and compact mappings (see [3]). Next, we 

shall introduce a more stable property related to cT-local compactness. This property 

is a generalization of the concept of co-countable neighbornet [ 14, 31. 

Recall that a neighbornet for a space Z is a relation V c Z x Z such that for each 

z E Z, z E int V(z), where R(z) = {y E Z: (z, y) E R} for a relation R c Z x Z [13]. 

A neighbornet V is called co-a-compact (co-separable) if V-‘(z) = 

{y E Z: z E V(y)} is contained in a cr-compact subset of Z (is separable) for all z E Z. 

A neighbornet V in Z is called transitive if the relation V is transitive (Vo V = V). 

Transitive neighbornets in Z correspond to closure-preserving closed covers of Z 

(see [13, 3.141). 

Lemma 1.3. If all compact subsets of a space Z are metrizable, then Z has a closure- 

preserving closed cover by u-compact sets zf and only if Z has a co-u-compact neigh- 

hornet, 
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Proof. If 55’ is a closure-preserving closed cover of 2 by a-compact sets, then the 

sets V(z) = Z\U {C E %Y: ZE C} generate a co-a-compact transitive neighbornet V 

in Z (see [13, 3.141). 

To prove the “if” part, let V be a co-c-compact neighbornet in Z. Clearly we 

can assume that V(z) is open for each z E Z and, consequently, V’(A) = 

I_, {V’(y): y E A} = {z: V(z) n A # 0) = {z: V(z) n A# 0} = V-‘(A) for an arbitrary 

A c Z. If z E Z, then V-‘(z) has a countable dense subset A and we obtain V’(z) = 

V-‘( V-‘(z)) = V-‘(A). Thus V2 = Vo V is a co-cT-compact neighbornet and one can 

show, by induction, that the transitive neighbornet W = IJ {V”: n 2 l} is CO-U- 

compact. The collection {W-‘(z): z E Z} is a closure-preserving closed cover of Z 

by a-compact sets (see [14, proposition 11). 0 

Proposition 1.4. If Z is a semistratifiable meta-Lindelof space, then Z has a u-discrete 

cover by compact sets if and only $Z has a closure-preserving closed cover by u-compact 

sets’. 

Proof. Let 9 be a a-discrete cover of Z by compact sets. As in the proof of 

Proposition 1.2, use the meta-Lindelijf property of Z to construct a point-countable 

open expansion “Ir = {V(D): D E 9} of 9. For each z E Z fix a D E 9 containing z 

and put V(z) = V(D). Clearly this defines a co-cr-compact neighbornet and one can 

finish the proof of the “only if” part by applying Lemmas 0.1 and 1.3. 

Suppose now that Z is a semistratifiable space with a closure-preserving closed 

cover 5% by a-compact subsets. Let V be a co-g-compact transitive neighbornet 

generated by % (see the proof of Lemma 1.3). Since R = Vn V’ is an equivalence 

relation, by [13, 4.81 (see Proposition 3.3), the partition of Z generated by R has 

a a-discrete closed refinement. This refinement is a w-discrete cover of Z by 

a-compact sets and one can easily modify it to a a-discrete cover of Z by compact 

sets. q 

Our next result, together with Lemma 1.3, shows that the property of having a 

closure-preserving closed cover by a-compact sets is preserved by any open and 

compact mapping provided that the compact subsets of the domain and range of 

the mapping are metrizable. 

Lemma 1.5. The property of having a co-u-compact neighbornet is invariant under 

open mappings with separable fibers. 

Proof. Let f be an open mapping with separable fibers of a space Y having a 

co-a-compact neighbornet V onto Z. For each z E Z fix a y E_/-](Z) and define 

W(z) =f( V(y)). It is easy to check that this generates a co-a-compact neighbornet 

in Z (see [14, Proposition 21). 0 

’ The author has been informed by H.J.K. Junnila that a modification of the proof from [15] can be 

used to show that spaces having a closure-preserving closed cover by Lindeliif subsets are meta-Lindeliif. 
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From Lemmas 1.3, 1.5, the fact that all spaces in MOBI have a point-countable 

base and Lemma 0.1, we get 

Corollary 1.6. Ail spaces in MOBI( u-locally compact) have a closure-preserving closed 

cover by u-compact sets. 

The first step towards our characterization of the class MOBI(u-locally compact) 

is the characterization of open and compact images of cT-locally compact metric 

spaces. 

Theorem 1.7. For a space X the following conditions are equivalent: 

(a) X is an open and compact image of a w-locally compact metric space, 

(b) X is a o-locally compact metacompact Moore space, 

(c) X is an open finite-to-one image of a u-locally compact metric space, 

Proof. The implication (c)+(a) is obvious and, since open and compact images 

of metric spaces are metacompact Moore spaces, (a)=+(b) follows from Corollary 

1.6 and Propositions 1.4 and 1.1. 

To prove (b)=+(c), let X be a a-locally compact metacompact Moore space. By 

Lemma 0.1 and Proposition 1.1, X has a countable cover by closed metrizable 

subspaces. In [8] it is shown that X is an open finite-to-one image of a metric space 

M. Use the fact that X is a-locally compact to represent M as a countable union 

of inverse images of locally compact subspaces of X under open k-to-one mappings. 

Since open k-to-one mappings are local homeomorphisms, it follows that M is a 

cr-locally compact space. 0 

The complete version of Theorem 1.7 is 

Corollary 1.8. For a space X the following conditions are equivalent: 

(a) X is an open and compact image of a C-scattered metric space, 

(b) X is a C-scattered metacompact Moore space, 

(c) X is an open finite-to-one image of a C-scattered metric space. 

Proof. Since having a h-base is preserved, in both directions, by open and compact 

mappings between spaces with bases of countable order (see [ 181 or [lo]), one can 

add the A-base property to the equivalent conditions in Theorem 1.7. The proof 

will be finished once we show that a metacompact Moore space is C-scattered if 

and only if it is a-locally compact and has a A-base. 

From Lemma 0.1 and the results of [19], it follows that a C-scattered space with 

a point-countable base has a A -base and, by [ 11, Theorem 21, a perfectly subparacom- 

pact C-scattered space has a a-discrete cover by compact sets. On the other hand, 

any a-locally compact space satisfying the Baire category theorem hereditarily with 

respect to closed subsets is C-scattered. 0 
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The main result of this paper is 

Theorem 1.9. For a space Y the following conditions are equivalent: 

(a) Y is in MOBI(o-locally compact), 

(b) Y has a closure-preserving closed cover by a-compact sets and a point-countable 

base of countable order2, 

(c) Y is an open and compact image of a u-locally compact metacompact Moore 

space. 

Proof. The implication (c)+(a) follows from Theorem 1.7 and (a)*(b) follows 

from Corollary 1.6. In the next section we will prove that (b)+(c). 

Before passing to the proof of (b)*(c), we give the complete version of 

Theorem 1.9. 

Corollary 1.10. For a space Y the following conditions are equivalent: 

(a) Y is in MOBI(C-scattered), 

(b) Y is C-scattered and has a point-countable base, 

(c) Y is an open and compact image of a C-scattered metacompact Moore space. 

Proof. As in the proof of Corollary 1.8, the verification of Corollary 1.10 reduces 

to showing that a space Y with a point-countable base is C-scattered if and only 

if it has a closure-preserving closed cover by o-compact sets and a A-base. 

If Y is a C-scattered space with a point-countable base, then Y has a A-base 

(see the proof of Corollary 1.8). Moreover, Y has a well-ordered partition YC such 

that the union of each initial segment in YC is open and each K E rt is contained in 

a compact set (see [ 161). Since Y has a point-countable base, ?“has a point-countable 

open expansion in Y and, consequently, Y has a co-u-compact neighbornet. Thus 

Lemmas 0.1 and 1.3 show that Y has a closure-preserving closed cover by o-compact 

sets. 

If Y has a closure-preserving closed cover by o-compact sets and a A-base, then 

one can apply the reasoning used in the proof of [5, Proposition 1.31 to show that 

Y is C-scattered (see Proposition 3.5). Another way of completing the proof is to 

observe that, by Theorem 1.9, Y is an open and compact image of a a-locally 

compact metacompact Moore space X having a A-base. Since X is C-scattered and 

open mappings preserve this property, it follows that Y is C-scattered. q 

2. The second mapping 

We return to the proof of the implication (b)+(c) in Theorem 1.9. The proof is 

a modification of the construction from [5, 31. 

’ The assumption that Y has a point-countable base follows from the fact that Y is a meta-Lindeliif 

space with a base of countable order (see the proof of 4.5 in [lo]) and, therefore, it can be omitted. 
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Let Y be a space with a closure-preserving closed cover Ce by a-compact sets 

and let ( ?In : n z 1) be a sequence of bases of Y witnessing the fact that Y has a 

base of countable order. 

For each C E % fix a sequence (C(n): n E w) whose terms are compact and cover 

C. Let YC be the collection of all the C(n) and use an arbitrary well-ordering of %? 

to generate a lexicographic well-order < on Yt. Observe that the union of each initial 

segment of Yt is a closed subset of Y. 

For each C E YL put L(C) = C\lJ {C’E YC: C’< C}. Let 2 be the collection of all 

the nonempty L(C) and consider 2 with the natural well-order < inherited from 

YL Clearly 2 is a partition of Y and the union of each initial segment of 9 is a 

closed subset of Y. 

Moreover, we have 

the elements of 2 have compact closures, (a) 

and, since Y has a point-countable base and the elements of 2 are separable metric 

spaces, we can fix for each L E 2’ an open set V(L) so that 

Lc V(L)c Y\iJ{KE.z K-CL}, (P) 

V’(L) = {X E 2’: V(K) n L # 0) is countable. (Y) 

We shall use conditions ((r)-(6) to construct a a-locally compact metacompact 

developable regular space X and an open and compact mapping f of X onto Y. 

Our plan is to follow [5, 31 by constructing the space X as the union of certain 

subsets of Y indexed by a tree of finite sequences of elements of 2’ increasing with 

respect to < and certain subsets of Y added in order to make the fibers of the 

natural mapping f of X onto Y compact. 

We define by induction, for each n > 0, a set P, of increasing n-element sequences 

in 2 and, for each p E P,,,, , a finite subcollection 9?(p) of %,,+r and an open subset 

H(p) of Y 

We start with 

PO = 101, Y?(0)={ Y} and H(0)= Y (0) 

and proceed according to the following four conditions. 

P n+l={~hL: PEP,, and LnH(p)\E(p)f(d), (1) 

where p-L denotes the extension of p by L and E(p) is the last term of p (E (0) = 0). 
Moreover, for ~-LE P,,,, 

ie(p-L) is a finite cover of H(p) I-T L refining Ce( p) and consisting 

of elements of gm+, intersecting L, (2) 

WP-W u WP-L) (3) 

H(p)n Lc H(p-L)c H(p)n V(L). (4) 
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To see that the induction works, observe that (0) and (3) imply H(p) c lJ C!?(p). 

Thus (a) can be used to define 9( p-L) satisfying (2) while H(P-L) can be 

constructed by putting H(p-L) = H n H(p) n V(L), where H is an open set 

separating the compact set H(p) n L from the complement of lJ %( p-L). 
Note that (4) implies that for p = rh K, H(p) n K = H(r) n K. This, together 

with (0), (1) and (4) gives 

H(P) = U {H(q) n L: P= q-L), (5) 

where p c q-L means that the sequence p is an initial segment of q-L. 
In analogy with [5], each sequence BALE P ,,+, should represent a piece of X 

(the locally compact subset H(p) n L of Y). Let * be a point not in Y. The pieces 

needed to make the fibers off compact will be indexed by sequences p-*-L. 
Since we want to keep the space X a-locally compact, we have to make sure that 

each compactifying piece is a o-locally compact subset of Y. By splitting each p-L 
into countably many copies, we will ensure that the compactifying piece indexed 

by P -*-L is equal to H(p) n L. 
Thus we define, for n 2 0 

Pk+, = {(k,, L,, . . . , k,, L,): (Lo,. . . , L,) E P,,,, and ko, . . . , k, E co} 

and extend the definitions of E(p), S(p) and H(p) over 

P=U{Pi: n>l} 

by asserting that they do not depend on the k’s. 
Observe that (y), (1) and (4) imply that E : P-2 is countable-to-one. 

The part of X corresponding to q =p -k-Lc P will be the set X(q) = 
{q-y: y E H(p) n L}. Put S = IJ {X(q): q E P} and let e be the natural mapping of 

S onto Y defined by e( q-y) = y. 
The pieces of X needed to compactify the fibers of e are indexed by 

p* = {p-*- L: p-o-LE P}. 

The part of X corresponding to q* = p-*-LE P* will be the set X(q*) = 

iq*-Y: Y E H(P) n Ll. 
Put 

ll=PuP” 

and extend E over II by asserting that E (n-) is the last term of r for r E II. Observe 

that, by the definition of P*, E : 17~~ 2’ is countable-to-one. 

Finally, define 

X=U{X(?r): TrEII) 

and let f be the natural extension of e over X given by f (n-y) = y. 
Since E is countable-to-one, 9 is a partition of Y and the restriction off to each 

piece X(n) of X is a one-to-one function mapping this piece into E(T), it follows 
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that 

f is countable-to-one. 

For p E P u {0} define 

A(p)={~~lI:pc~}cIl 

and 
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(6) 

where p c v (p c x) means that the sequence p is an initial segment of the sequence 

r (x). 
Note that 

HP) = IT- VEX: TEA(~)} (7) 

and, by (7) and (S), 

f(@P)) = H(P). (8) 

Before describing the topology of X we shall prove a fact which explains the 

role of the base of countable order in our construction and will later be used to 

show that the fibers off are compact. 

Fact 2.1. If F is an injinite subset of e-‘(y), then there exists a p E P such that the set 

F n B(p) cannot be covered by any finite subcollection of {B(p-k-K): 

p-k-K E P}. 

Proof. Suppose that such a p does not exist. By induction on n 2 0 construct a 

sequence (p, : n 2 0) such that p. = 0, p,,+, = prk:K,, and F n B(p,+,) is infinite 

for n 2 0. 

Since f -l(y) n B(p,) Z 0, condition (8) assures that y E H(p,). Using (2) and (3) 

we can find a decreasing sequence (G, : n 2 1) such that G, E %( pn) and y E G, for 

n 2 1. From (S), it follows that {G, : n 2 1) is a base for y in Y and, in particular, 

there exists an n 2 1 such that G, c V(L), where L is the element of 2 containing 

y. Since, by condition (2), G, intersects Kn_,, (p) gives I,< K,_, = E(p,)i 

E(P,+,) = K,. 

On the other hand, from (4), we get H( p,,+,) c V( K,). Thus L intersects V( K,) 

and this contradicts (p). 0 

To define the topology of X we need some more notation. 

For each L E 2’ we can use (cy ) and Lemma 0.1 to find a strictly decreasing 

sequence (U( L,j): j 2 0) of neighborhoods of L in Y such that 

U(L,O)= Y and n{U(L,j):j2O}=L. (e) 

For an open subset U of Y, p = r-k-L E P and j 2 0 define 

B(P, Uj) = B(p) nf -‘( W nf -‘( u(L,j)). (9) 
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Note that B( p, Y, 0) = B(p). The sets B( p, U,j) will generate the topology of X in 

points of X(p). Clearly the traces of these sets on X(p) endow it with the topology 

making f a homeomorphism of X(p) onto H(r) n L. 

In order to define sets generating the topology of X in points of the compactifying 

pieces, we need some more notation. 

For each L E 2 fix a one-to-one enumeration mL : V-‘( L)-w of V-‘(L) (see 

(7)). Whenever we write m,(K), we assume that K E V-‘(L). If r = 

(k,, Lo,. . ., k,, L,)E E_‘(L), then (1) and (4) imply Li E V-‘(L) for i = 1,. . . , n. 

Thus we can define 

m,(r)= i k,+ i m,(L,). 
I=0 i=O 

For q* =p^*-Le P” and j 2 0 define 

fl(q*,j)=E-‘(L)nA(p)\U{A(p^k-K): k+m,(K)<j} 

and 

X(q*,j) = 1~ -y E X: n E Il(q*, j)}. 

BY (7) 

(10) 

X(q*,j)=f’(L)nB(p)\U{B(p-k-K): k+m,(K)<j}. (11) 

We complete the definition of sets generating the topology on X by putting, for 

an open subset U of Y, q* =p-*^LE P” and j 2 0, 

B(q*, IJ,j) = (X(q*,j) nf-‘( U)) u U g3(9*, VA, 
where (12) 

93(q*, U,j)={B(r, U,j+m,(r)): rEII(q*,j)nP}. 

Observe that X( q”) c X( q*, j) and that the traces of the sets I?( q*, U, j) on X( q”) 

endow it with the topology making f a homeomorphism of X(q*) onto H(p) n L. 
Note that if q* =~-*-LE P”, ja 0 and B = B(q*, Y, j), then 

BcB(p)\U{B(p-k-K): k+m,(K)<j or Kc-Z V-‘(L)}. (13) 

Moreover, for each rr E II, j Z- 0 and p E P, the definitions (9) and (12) of B( r, CJ, j) 

imply 

if rr-y E B(p), then B( n, Y, 0) c B(p) (14) 
and 

f(B(n, Vj))c Un IJ(E(r),j). (15) 

Also, if V c U and i 2 j, then 

B(5-, V, i) c B(~T, U, j). (16) 

Condition (16) enables us to define the topology in X by using the sets B( r, U, j) 

as weak bases in points of X(r); that is, a set B c X is open in X if and only if 

for each x = r-y E B there exist a j ~0 and a neighborhood U of y in Y such that 

L?(G-, U, j) c B. 
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Fact 2.2. 7’he function f: X + Y is continuous. 

Proof. The continuity off follows from (15). 0 

Fact 2.3. The sets B(T, U, j) are open in X. 

Proof. First observe that (14) implies that, for each p E P, the set B(p) is open in 

X. Thus, from Fact 2.2 and (9), it follows that, for each p E P, U open in Y and 

j 2 0, the set B(p, U, j) is open in X. 

Consider B(q*, U, j), where q* =~^*^LE P*, U open in Y and js 0. In view 

of (12) and the first part of the proof, in order to prove that B(q*, U, j) is open in 

X, it suffices to consider x = 7~ -yEX(q*,j)nfP’(U). By (10) ~~Il(q*,j). If 

rr = r E P, then x E lJ 93(q*, U, j). Suppose that v = I-^*-L’ # q* is in Il(q*, j)\P. 

From (lo), it follows that L = L’ and p c r. Moreover, since 7~ f q*, there exist k E w 

and K E.Z such that p^k^K c r and k+m,(K)zj. Thus n(rr,j)cII(q*,j) and 

(12) gives B(TT, U,j)c B(q*, U,j). q 

In order to show that X is regular, we shall need the next three facts. 

Fact 2.4. IfqE Pand vc V(E(q)), then B(q)nf-‘(V)c B(q). 

Proof. Suppose x = n-y E B(q) nf -‘( V) and let L = E(T) be the element of 2 

containing y. By fact 2.2, y E v c V( E( q)) which, together with (p), gives E(q) =S L. 

Assume that x & B(q). 

If 7r = p E P, then B(p) n B(q) # $4 and q P p imply that q is a strict extension of 

p and this contradicts E(q) < E(p). 

If “=p -*-LE P*, then B(p) n B(q) # 0 and q P p imply that q is a strict 

extensionofp.LetkEWandKE~besuchthatp^k^Kcq.Takeaj>k+m,(K) 

if K E V’(L) or j=O if K e V-‘(L). By (13), B(rr, Y,j)n B(p-k-K)=0 and, 

since B(q)c B(p^k-K), this contradicts r-y E B(q). 0 

Fact 2.5. For each q*E P* we have n {II(q*, j): jsO}={q*} and n {X(q*, j): 

jSO}=X(q*). 

Proof. This follows directly from (10). 0 

Fact2.6. ForeachrEl7wehaver){L?(r, Y,j):jaO}=X(n). 

Proof. Clearly the intersection contains X(rr). If n =p E P and p-y E 

n{B(T, Y,j): jzO} then, by (15) and (&),y~E(p) and (p) implies E(p)=SE(p). 

Since, on the other hand, p-y E B(p), we get p = p and, consequently, p = p. 

Assume v = p -*-LE P”. Since the elements of %(n, Y, 0) are pairwise-disjoint, 

the first part of Fact 2.5 shows that the intersection is contained inn {X(q*, j): j 2 0} 

and the second part completes the proof. 0 
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From Fact 2.6, it follows that each x E X is the intersection of its neighborhoods, 

hence X is a T,-space. We are ready to show that X is a regular space. 

Fact 2.7. If vc Un V(E(a)), then B(r, V,j+l)c B(%-, Uj). 

Proof. Put B(rr, V,j+ 1) = B. If rr = p E P, then (9), Facts 2.2 and 2.4 give 

B=B(p)nf-‘(V)nf-‘(U(E(p),j+l)) 

= B(p)nf-‘(V)nf-‘(V)nf’(U(E(p),j+l)) 

= B(p) n.T’( f-0 nS_‘( U(E(p),j)) = B(P, UA. 

If 7r =p-*- LE P*, then, by (13) and (15) 

B cf-‘( V) n %)\U {B( p-k-K): k+m,(K)<j+l}. 

Thus Facts 2.4 and 2.3 give 

Bc B(p)\U{B(p-k-K): k+m,(K)<j+l}. 

Hence Fact 2.2, (11) and (12) imply 

Bnf-‘(L) 

cf-‘(V)nf-‘(L)nB(p)\U{B(p^k-K): k+m,(K)<j+l} 

cX(rr,j+l)nf-‘(U)C B(r, U,j). 

Take an x = p-YE B and let K be the element of 5!! containing y. Since y E 

Vc V(L), (p) assures that L< K. If L = K, then, as we have just shown, x E 

B(T, U, j). Assume that L-C K. Since (p) implies En K = 0, we can use (E) to find 

i 5 0 and a neighborhood W of y in Y such that U(L, i) n W = 0. If x is in the 

closure of an element of %( 7r, V, j + l), then, by the first part of the proof, x is in 

the closure of the corresponding element of C8( rr, U, j). Thus, in order to finish the 

proof, it is sufficient to show that the neighborhood B(p, W, 0) of x intersects only 

finitely many elements of 3 (r, V, j + 1). 

Suppose that B(p, W,O) intersects B(r, V,j+l+m,(r))E%(rr, V, j+l). By (15), 

j + 1 + m,(r) < i and the definition of mL( r) assures that there is only finitely many 

such r. Cl 

Fact 2.8. The collection { B( r, Y, 0): T E l7) is point-$nite in X. 

Proof. Let p-y E B( TT, Y, 0). If rr = p E P, then p c p and the number of such p E P 

is finite. If rr = p -*-LE P*, then p c p and L is a term of p. Again, the number 

of such p -*-L in P* is finite. Cl 
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Fact 2.9. The space X is a metacompact Moore space. 

Proof. For each LE dip let (Ur( L, i): i ~0) be a sequence of finite covers of L by 

open subsets of Y such that for each y E L and its neighborhood U in 

Y, St(y, %V(L, i))c U for almost all i20 (see Lemma 0.1). 

Put g(r, i)={B(v, W, i): WE ~(E(T), i)}. Clearly 9(7r, i) is a finite cover of 

X(V). From (16) and Fact 2.8 we infer that 9(i) = U {G3( 7r, i): 7~ E II} is a point-finite 

open cover of X for i 2 0. 

If x = n-‘-y E B = B(n-, U,j) and isj is such that St(y, W^(E(r), i)) c U, then 

(16) implies St(x, g( rr, i)) c B. Thus Facts 2.6 and 2.8 and (16) assure that (g(i): i 2 

0) is a development for X and the proof is finished. 0 

Fact 2.10. The space X is u-locally compact. 

Proof. Fix a rr E II. The restriction of f to X(r) is a homeomorphism of this set 

onto an open subset of E(r) which is a locally compact subset of Y. Thus X(rr) 

is a locally compact subset of Y. 

For nZ_ 1 put 

%‘,,t”,={X(p):p~P and domp=2n} 

and 
ZZ’z = {X(q*): q* E P” and dom q* = 2~). 

It is easy to see that these collections are relatively discrete and their union 

covers X. 0 

We have shown that the space X has the required properties and the function 

f : X + Y is continuous. It remains to prove that f is an open and compact mapping. 

Fact 2.11. The mapping f: X + Y is open. 

Proof. By (8) and (9),f(B(p, U,j))=H(p)n Un U(E(p),j) is open in Y. Foran 

open set B=B(q*, U,j), where q*=p-*:^L, by (8), (11) and (12), f(B)= 

(H(p)n Ln U)uf(U %‘(q*, U,j)). Take a ksj and consider r=p-k^Lc 

fl(q*,j) n P. Since (H(p)nLn U)uf(B(r, Vj+m,(r)))=H(p)n Un 
U(L,j+m,(r))cf(B), it follows thatf(B) is open in Y. q 

Fact 2.12. The Jibers off are compact. 

Proof. Take a y E Y and the LE 6p containing y. If x =p-*-L-y is a point of 

f-‘(y)\S and B = B(I)-*-L, U,j) is a neighborhood of x, then B contains the 

points p-k-L-y E S for k>j (see the proof of Fact 2.11). Thus e-‘(y) is dense 

in f-‘(y). 
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If F is an infinite subset of e-‘(y), then, by Fact 2.1, there exists a p E P such 

that the set F n B(p) cannot be covered by any finite subcollection of {B( p-k-K): 

p-k-K E P}. Since f-‘(y) n B(p) # 0, (8) implies y E H(p) and, by (4) and (p), 

E(p) < L. Sincef-‘(y) n B(p) is, in fact, infinite, we have E(p) < L and, by (1) and 

the definition of P”, q* =p-*^ L E P*. Conditions (11) and (12) imply that 4*-y 

is an accumulation point of F in f-‘(y). 

From the last two paragraphs, it follows that every locally finite collection of 

open subsets of f-‘(y) is finite. Since, by (6), the set f-‘(y) is countable and the 

space is regular, this implies compactness of f-‘(y). 0 

3. Remarks 

We start with some remarks concerning the construction of X. 

Remark 3.1. If the space Y is completely regular (zero-dimensional), then X can 

be constructed to be completely regular (zero-dimensional). 

Proof. Assume that Y is completely regular and fix an LE 2. We shall show that 

a special choice of the sequence ( U( L,j): j 2 0) makes it possible to separate points 

of U {X(T): m E E-‘(L)} from closed sets by mappings into the unit interval 

I = [0, 11. Since this can be done for all LE 2, it will follow that X can be made 

completely regular. If Y is zero-dimensional, the same method produces separating 

mappings into (0, l} (another, more direct, method of proving that X is zero- 

dimensional is to use clopen sets U(L,j) and modify Facts 2.4 and 2.7 as in the 

proof of 4.1 in [S)). 

For the fixed L construct, by induction on j 3 0, sequences (U, : j 3 0) of neighbor- 

hoods of L in Y and (cp, : j 2 0) of mappings of Y into the unit interval satisfying, 

for j 3 0, 

u,= Y, (17) 

cpilL= 0 and (p;lX\ Uj = 1, (18) 

U,+,c U,n U(L,j+l), (19) 

cpi("j+l)c LO, l/j). (20) 

By (19), the sequence (U, : j 3 0) is strictly decreasing and, since it can be sub- 

stituted for ( U( L, j): j 2 0) in (E), we can use the sets U, to define the sets B(n-, U, j) 

for T E E-‘(L) (this affects (9) and, indirectly, (12)). 

Consider a rr E E’(L), x = s--y E X and a neighborhood B = B( r, U, j) of x in 

X. We want to separate x from X\B by a mapping Cc, : X + I. Clearly we can assume 

that UC V(L) and ja 1. 

Let cp : Y + Z be a mapping satisfying 

p(y)=0 and cpIY\U=l. (21) 
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If n =p E P, then we define + on B(p) to be (max{rp, cp,})oJ: In view of (18) and 

(21), $ separates x from B(p)\B. Since B(p) is open in X and, by Fact 2.4, DC B(p), 

we can extend $J over X by setting (cI]X\B= 1. 

Assume that n = q* = p-*- LE P* and put 0 =l_J {B(r): rE n(q*,j) n P}. Since 

X(q*,j) c B(q*, Yj) c X(q*,j)u 0, it follows that the set X’=X(q*,j) u 0 is 

open in X. By (16), B c X’ and Fact 2.7 gives B c B(q*, Y, j - 1). Moreover, by 

(13), B is disjoint from the open set LJ {B(p-k-K): k+ m,(K) = j- l} and, 

consequently, B c X’. 

As in the first part of the proof, it suffices to show that x can be separated from 

X’\B on X’. 

For each rEIl(q*,j)nP put n(r)=j+mc(r) and define + on B(r) to be 

(max{p, a,cri})of: This gives Cc, on the open set 0. Extend (1, by defining it to be p of 

on X(q*,j)\O = X(q*,j)\S. 
It is easy to check that, by (18) and (21), $ separates x from X’\S. Thus it 

remains to show that I,G is continuous (in points of X(q*, j)\O). 

Consider a p-z E X(q*, j)\S and a convex neighborhood J of p(z) in I. Let W 

be a neighborhood of z in Y contained in cp-‘(J). Take an Ia 1 satisfying l/1< 

sup J and find an i > j such that n(r) > 1 for rE II(p, i) c II(q*, j) (see the proof 

of Fact 2.3). We shall show that +( B’) c J, where B’ = B(p, W, i) c X(p, i) u 0 c X’. 

Let X’E B’ and put y’=f(x’). If X’E B’\O, then, by (15), @(xl) = cp(y’)~J. If 

X’E B’n 0, then X’E B(r) for a certain r E II(p, i) n P and I,!J(x’) = 

max{cp(y’), cp,(Jy’)]. If (o(Y) 2 (Pi, then +(x’) = CP(Y’) E J. Assume that CP(Y’) < 

cp,,Jy’). BY (15), we have Y’E U,,, where m = i + mL( r) > n(r) > 1. Thus (20) gives 

cp(y’) < cp,,(,,(y’) = 4(x’) < l/Z and the convexity of J assures that +(x’) E .J. 0 

Our construction is more general than the simple construction described in [7, 

1.21. Thus it may lead to a nonnormal space X even if the space Y is normal. 

If the space Y is a Hausdorff space only, then we cannot make the sequences 

(U( L, j): j 2 0) strictly decreasing, but everything else works to produce a Hausdorff 

space X. This, however, is not satisfying, because an open and compact image of 

a metacompact developable Hausdorff space need not have a base of countable 

order. Since in the verification of Propositions 1.1, 1.2 and 1.4, Lemmas 1.3 and 1.5 

and Corollary 1.6 regularity was not used, it follows that all spaces in MOBI,(o- 

locally compact) (the minimal class of Hausdorff spaces which contains all a-locally 

compact metric spaces and is invariant under open and compact mappings) have 

a closure-preserving closed cover by a-compact sets and a point-countable base. A 

characterization of MOBI,(c+-locally compact) is given by (see [9]) 

Theorem 3.2. For a Hausdorflspace Y the following conditions are equivalent: 

(a) Y is in MOBI,(a-locally compact), 

(b) Y has a closure-preserving closed cover by a-compact sets and a point-countable 

base, 

(c) Y is an open and compact image of a u-locally compact metacompact developable 

Hausdorfl space. 
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Proof. The only implication that has to be verified is (b)+(c). We shall outline 

modifications of the construction from the previous section needed to prove this 

implication. 

For a Hausdorff space Y with a partition 9 satisfying ((Y)-(Y) put PO= (0) and 

use (l), with H(p) = n {V(K): K E rg p}, to define the sets P,,. These sets give P 

and S as in the previous section. For each LE 2’ we add only one compactifying 

piece L. Thus X = Su Y and f is the combination of e and the identity on Y. 

For p E P the open sets generating the topology of X in points of X(p) will be 

of the form B( p, U) = {q ‘?z E S: p c q and z E U}, where U is open in Y. The open 

sets generating the topology in points of L c X will consist of L n I/ and the union 

of all but a finite number of elements of the collection { B(p, U): p E E-‘(L)}. 

It is easy to verify that X is a cr-locally compact metacompact developable 

Hausdorff space and f is an open and compact mapping of X onto Y. 0 

In our reasonings we used partitions 6p for which there existed a neighbornet V 

such that for points y and z from different elements of 9 either z E V(y) or y & V(z) 

(equivalently, Vn VW’ is a subset of the equivalence relation generated by 2). Such 

neighbornets will be called z-separating neighbornets’. If the partition 91’ satisfies 

(cu), then an z-separating neighbornet will be called C-separating. 

The class of spaces with a C-separating neighbornet contains all spaces with a 

c-discrete cover by compact sets (see the proof of Proposition 1.2), all spaces with 

a closure-preserving closed cover by u-compact sets (see the reasoning preceding 

(a)) and all C-scattered spaces (see the proof of Corollary 1.10). We shall show 

that, under some additional assumptions, these inclusions can be reversed. 

Proposition 3.3. If Z is a semistratijable space with a C-separating neighbornet, then 

Z has a u-discrete cover bjj compact sets. 

Proof. It is sufficient to show that if 9 is a partition of a semistratifiable space Z 

and V is an T-separating neighbornet in Z, then 9! has a u-discrete closed refinement 

(see the proof of Proposition 1.4). This is a slight improvement of [13, 4.81 showing 

that the assumption that U n U --I is an equivalence relation is not necessary in 

condition (iv) of this result. 

Let ( V,, : n 2 0) be a co-basic sequence of neighbornets contained in V and assume 

that V,(z) is open for all nz0 and ZEZ (see [13, 4.11). For LEE define D,(L)= 

{z E L: V,-‘(z) c L} = Z\l._J {V,(y): y & L}. Clearly the collection 9,, = {D,,(L): LE 

2} is closed and discrete for each n 2 0. To show that these collections cover Z let 

z be a point of Lc Z and find an n such that V,‘(z) c V(z). Since V,, c V, we have 
v,‘c v-1 and, consequently, V,‘(z) c (Vn V-‘)(z) c L. Thus z E D,(L) and the 

proof is finished. 0 

3 The notion of Y-separating neighbornet is slightly more general than the notion of unsymmetric 
neighbornet [ 131. 
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From Propositions 3.3 and 1.4, it follows that a semistratifiable meta-Lindelof 

space with a C-separating neighbornet has a closure-preserving closed cover by 

a-compact sets. Our next result gives another condition sufficient to produce a 

closure-preserving closed cover by cT-compact sets from a C-separating neighbornet. 

Moreover, it shows that MOBI(a-locally compact) is the class of all spaces with a 

C-separating neighbornet and a point-countable base of countable order (see the 

proof of (c)*(c’) in [S, 2.11). 

Proposition 3.4. If a space Z has a point-countable base and a C-separating neighbornet, 

then Z has a closure-preserving closed cover by u-compact sets. 

Proof. Let V be an T-separating neighbornet in Z for a partition 9 of Z satisfying 

(cI). For each z E Z fix an open set W(z) from a given point-countable base of Z 

such that z E W(z) c V(z). Observe that if W(z) = W(y), then z and y are in the 

same element of 9 and, consequently, {W(z): z E Z} defines a co-a-compact 

neighbornet. By Lemmas 0.1 and 1.3, this completes the proof. 0 

Finally, we have (see [5, 1.31). 

Proposition 3.5. If a &-space Z has a C-separating neighbornet, then Z is a C-scattered 

space. 

Proof. Let 9 be a partition of Z satisfying (CI) and separated by a neighbornet V. 

Moreover, let (Y,, : n b 1) be a sequence of bases of Z witnessing the fact that Z is 

a &.-space. 

If Z is not C-scattered, then there exists a closed subset F of Z such that no 

open subset of F is contained in the closure of a finite union of elements of 9. 

Thus one can construct, by induction, sequences (G, : n 3 0) and (z,, : n s 1) such 

that G, = Z and, for n 2 1, 

(i) z, E Fn G,,_,\U {L,,: O< m < n}, 

(ii) z, E G, E Y& and G,, = G,,_, , 

(iii) G, c V( z,)\U {L,,, : 0 < m < n}, 

where L, is the element of 9 containing z,,,. 

By (ii), the sequence (G,, : n s 1) satisfies (A,.) and, consequently, the sequence 

(z,: n B 1) has an accumulation point z in Z. The second part of (ii) implies that 

z~n{G,,: nzl}. 

Let L be the element of 2.? containing z and choose an n 3 1 such that z,? E V(z). 

Since z E G,, c V(z,,), we obtain L = L,, and this contradicts (iii). q 

Note that Proposition 3.5 can be used to obtain characterizations of first-countable 

C-scattered spaces (C-scattered spaces of countable type) analogous to 4.4 (4.5) 

of [5]. 

In almost all the results of this paper (a-)compactness can be replaced with 

separability. In particular, the class of open and compact images of a-locally 
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separable metric spaces is the class of o-locally separable metacompact Moore 

spaces. Let us finish with a question closely related to [6, 71. 

Problem 3.6. Suppose Y is a space with a closure-preserving closed cover by 

separable subspaces and a point-countable base of countable order. Is Y an open 

and compact image of a u-locally separable metacompact Moore space? 
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