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ABSTRACT 

We introduce a structure matrix S,(D) into the study of the class @r(D) of 
r-multigraphs with the prescribed degree sequence D. Our structure matrix plays the 
role of the one used by Ryser, Fulkerson, and others to investigate classes of matrices 
of O’s and l’s with prescribed row and column sums. We develop a theory that is 
wholly analogous to the classical one. We show that under a type of monotonicity 
assumption on D = (d,, . , d,) the class @r (0) is nonempty if and only if the sum 
d, + ... +d, is even and the structure matrix S,(D) is nonnegative. We also prove a 
generalization of the analogue of Ryser’s maximum term rank formula. This result 
includes both a formula for the maximum number of edges in a matching and a 
formula for the maximum number of edges in a spanning, nearly regular subgraph 
among all graphs with a prescribed degree sequence. 

1. AN OVERVIEW 

Throughout this paper T denotes a positive integer, and 

D = (d,,dz>...>d,) 
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denotes a sequence of nonnegative integers. We let (&CD) denote the class 
of all r-m&graphs with degree sequence D. For each r-multigraph G = 
(V, E) we agree to select V = {1,2, . . . , n} as our vertex set. No edge occurs 
with multiplicity greater than r in the edge multiset E. Loops are forbidden. 
The number of edges, counting multiplicities, that contain vertex i is the 
degree di of vertex i, and D is the degree sequence of G. The structure 

matrix 

S = S,(D) = [s~,~] (i,j = O,l,..., n) 

(of multiplicity r) of D h as as its entries the (n + 1)’ structure constants 

S. ‘J =sij(D,r) = rij - r.min{i,j} + c d, - c d,, 
k>i ksj 

where i,j=O,l,..., n. (Empty summations are assigned the value 0.) The 
sequence D is monotone provided 

The sequence D is nearly monotone provided 

di > dj - 1 for l<i<j<n. 

Thus each monotone sequence is nearly monotone. The vertices of a mul- 
tigraph may always be relabeled so that the degree sequence becomes 
(nearly) monotone. The class @3,.(D) is (nearly) monotone provided D is 
(nearly) monotone. 

Our first theorem gives necessary and sufficient conditions for the 
nonemptiness of the class C$. (D) in terms of the entries of the structure 
matrix S,(D). 

THEOREM 1.1. The nearly monotone class C$.(D) is nonempty if and 

only if d, + d, + ... +d, is even and the structure matrix S,(D) is nonnega- 

tive. 

This result can be deduced as a special case of a powerful theorem of 
Fulkerson, Hoffman, and McAndrew [12]. (In [12] Theorem 5.1 is the 
statement of our Theorem 1.1 for monotone sequences D and r = 1.) We 
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shall give a short, self-contained proof of Theorem 1.1 by induction. The 
advantage of dealing with a nearly monotone sequence instead of a monotone 
sequence in Theorem 1.1 will become apparent in the proofs of our subse- 
quent results. 

Erd& and Gallai [9] (for r = 1) and Chungphaisan [S] (for T > 1) have 
given other necessary and sufficient conditions for the nonemptiness of the 
monotone class C$ (0). We shall indicate how their conditions follow from 
nonnegativity of the structure matrix S,(D). 

Let G = (V, E) and G’ = (V’, E’) be two multigraphs. Then G’ is a 
submultigraph of G provided V’ 2 V and E’ is a submultiset of E. The 
submultigraph G’ is a spanning, nearly regular submultigraph provided 
V’ = V and the degrees of the vertices in G’ differ by at most 1 from one 
another. The degree sum of G, denoted by r(G), is the sum of the degrees of 
all the vertices of G. Thus the degree sum of a multigraph equals twice the 
number of its edges counting multiplicities. 

Our second theorem gives necessary and sufficient conditions for the 
existence of a multigraph in C$ (D) with a spanning, nearly regular submulti- 
graph of prescribed degree sum. 

THEOREM 1.2. Let S = S,(D) = [ sij] denote the structure matrix of the 

nonempty, monotone class C%,.(D). Let r be an even, nonnegative integer, 

and suppose that 

r=nk +a, (1.1) 

where k and a are integers with 0 < a < n. Then there is a m&graph G in 

C3,. ( D) with a spanning, nearly regular submultigraph of degree sum r if and 

only if the inequality 

r < sij + min{i, a} + min{j, a} + k(i +j) 

holds for i, j = 0, 1, . . . , n. 

(1.2) 

A matching in an ordinary graph G is a pairwise vertex-disjoint subset of 
the edge set E. In particular, a matching may be viewed as a spanning, nearly 
regular subgraph of G. The matching number p.(G) of the graph G is the 
maximum number of edges in a matching in G. Suppose that the class C!&(D) 
of graphs with degree sequence D is nonempty. We let 

p =p(D) = max{p(G):G E q(D)}, 

fi=jl(D) =min{p(G):GEC$(D)) 

denote the largest and smallest matching numbers, respectively, among all 
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graphs with degree sequence D. One consequence of Theorem 1.2 is the 
following formula for the maximum number of edges in a matching among all 
graphs with a prescribed degree sequence. 

THEOREM 1.3. Let S,(D) = [sjj] denote the structure matrix of the 

nonempty, monotone class q (0). Then 

(1.3) 

where the minimum extends over i, j = 0, 1, . . . , n. 

The edge [i, j] in an invariant edge of the nonempty class @$,< D) 
provided [i, j] occurs as an edge in every graph in Gi (D). For instance, if 
the entry sef is 0 in the structure matrix S,(D), then [i, j] is an invariant 
edge for all distinct vertices i and j with 1 < i < e and 1 < j < f. 

Suppose that the class Bi( D) is nonempty. Evidently 0 < L; < ii 
< 1 n/2]. If p is an integer with ii < /_L < ii, then some graph in @&( D> 
has matching number p. This follows from the interchange theorem 112, 81 
and the observation that a single interchange can alter the matching number 
of a graph by at most 1. Our final theorem gives sufficient conditions for the 
strict inequality fi < p. 

THEOREM 1.4. Let aI,< D) be a nonempty, monotone class. Suppose 
that the following three conditions hold: 

the class C$( D) has no invariant edges; (1.4) 

L < [n/2]; (1.5) 
d, > 2. (1.6) 

Then we have the strict inequality 

fi < jIi. (1.7) 

Theorem 1.4 becomes invalid if any one of the three conditions is 
dropped. (See Example 5.3). 

Let rU,( D) denote the class of matrices A = [ aij] of order n such that 

ajj E (0, 1,. . ) r) and aij = uji for i, j = 1,2 ,...,n, 

aij = 0 and t aij = di for i = 1,2 ,..., n. 
j=l 
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Thus each matrix in the class ?I,.( D) is a symmetric (0, 1, . . . , r&matrix with 
trace 0 and row sum vector D. There is a natural one-to-one correspondence 
A c, G, between the adjacency matrices in the class %?I,( D) and multigraphs 
in the class @ (0); the element aij of A equals the multiplicity of the edge 
[i, j] in GA. It f 11 o ows that for any result about one class there is a 
corresponding result about the other. We shall use this correspondence freely 
throughout this paper. 

Our definition of the structure matrix S resembles the definition of the 
structure matrix T for the class ?l(R, S) of (0, l&matrices with row sum 
vector R and column sum vector S. Ryser, Fulkerson [ll, 13-15, 26-291, and 
others [5, 6, 16, 171 discovered several remarkable relationships between the 
properties of the class %(R, S) and the entries of the structure matrix T. 
(Also see the survey article by Brualdi [4].) The matrices in the class %?I( R, S) 
are the reduced adjacency matrices of the bipartite graphs with the degree 
sequences R and S, and thus the classical results about ‘U(R, S> have 
interpretations in terms of bipartite graphs with prescribed degrees. Our goal 
in this paper is to prove several analogous results for graphs and multigraphs 
with prescribed degrees. For instance, Theorem 1.1 is the analogue of the 
generalization of the Ford-Fulkerson theorem [lo] enunciated in [23], while 
the maximum matching formula in Theorem 1.3 is the counterpart to Ryser’s 
maximum term rank formula 127; 30, p. 751. 

In Section 2 of this paper we list some elementary properties of structure 
matrices. In Section 3 we prove Theorem 1.1. We prove Theorem 1.2 in 
Section 4. Matchings are treated in Section 5. In Section 6 we relate the 
inequalities of Erd& and Gallai and of Chungphaisan to the nonnegativity of 
the structure matrix. In Section 7 we suggest some directions for research on 
structure matrices. 

2. SOME ELEMENTARY PROPERTIES OF THE STRUCTURE 
MATRIX 

In this section we list several properties of the structure constants 

sij=tij--_*min{i,j} + cd,- cd, 
k>i k<j 

(2.1) 

and the structure matrix S,( 0) = [sij]. Th ese results are the analogues of the 
well-known results concerning the structure constants of the class %(R, S> of 
matrices of O’s and 1’s. (See Ryser 127-291 and Brualdi [4].) 
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LEMMA 2.1. Suppose that S = S,(D) = [sij] is the structure matrix of 
multiplicity r of the nonnegative sequence D. Then 

sij = ?+ij - r * min{i,j} - C dk + C dk, (2.2) 
k<i k>j 

and thus S is symmetric. For i = 0, 1, . , n the entries in row i of S satisfy 

the recurrence relation 

r(i-l)-dj if j<i, 
sij - si j_1 = 

ri - dj if j>i 
(j = 1,2,. . , n). (2.3) 

Forj = 0, 1, . , n the entries in column j of S satisfy the recurrence relation 

r(j - 1) - di if i Q j, 
s. II - si_l,j = 

rj - di if i>j 
(i = 1,2 ,..., n). (2.4) 

Moreover, for i, j = 1,2,. . , n 

i 

r 
(Sij + si-L-1) - (si-1.j + si,j-1) = 

if i #j, 
0 if i=j. (2.5) 

The entries in row 0 and column 0 of S are 

Son = s,o = 0, 

SO ,n-1 = s,-1,o - -d 92, 

so, n-2 = s,,-~,~ = d, + d,_,> 

%I = so0 = d, + d,_, + .a. +d, 

The diagonal entries of S satisfy the recurrence relation 

(2.6) 

sii = si-_l i-1 , + 2[r(i - 1) -di] (i = 1,2 ,..., n). (2.7) 
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Suppose that D is monotone. Then the entries in row i and the entries in 

column j of S each form a convex sequence, that is, 

2s*j d si,j-l + si,j+l (j = 1,2,..., n - 1; i = O,l,. . ., n), (2.8) 

2sij G ‘i-1,1 + ‘i+l,j (i = 1,2,..., n - 1; j = O,l,. . . , n), (2.9) 

and the diagonal entries of S f orm a strictly convex sequence, that is, 

2sii < si-l,f-l + ‘i+l,i+l (i = 1,2,...,n - 1). (2.10) 

We omit the proof of Lemma 2.1; the properties (2.2)-(2.10) are direct 
consequences of the definition (2.1). 

We remark that (2.6) and the recurrence relation (2.5) facilitate the 
computation of the (n + 1)’ entries of the structure matrix S. The following 
example illustrates the above properties. 

EXAMPLE 2.2. If r = 2 and D = (4,4,3,3,2), then 

16 12 8 5 2 0 
12 8 6 5 4 4 1 

2 4 6 9 12 18 
0 4 8 13 18 24 

The sequence 5 = (zl, & , . , &,I is the complement of D (with re- 
spect to r) provided 

& + d,+l_i = r(n - 1) (i = 1,2 ,..., n). (2.11) 

Let G be a multigraph in @,. (0) with adjacency matrix A. The complement - 
of G (with respect to r) is the r-multigraph G with adjacency matrix 

A= r(],, - I,) - A, 

where ],, is the matrix of order n each of whose entries is 1, and I, is the - 
identity matrix of order n. Thus if we relabel the vertices of G in reverse 
order, then G has the complementary degree sequence 5’. Let P = [ pjj] 
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(’ z,j = 0,l n) denote the permutation matrix of order n + 1 with l’s in 
positions (O;‘,), (1, n - l), . . , (n, 0) and O’s elsewhere. Let U = [uij] (i, j 
= 0, 1, . . . ) n) denote the upper triangular matrix of order n + 1 with l’s on 
and above the main diagonal and O’s below the main diagonal. 

Our next result includes algebraic information about structure matrices. 

THEOREM 2.3. ,?A S = S,( 0) = [sij] and s = $,< D)_= [Sij] denote the 

structure matrices of the complementary sequences D and D. Then 

s = PSP. 

The matrix factorization 

S = UTBU 

also holds, where 

B = B,.(D) = [bjj] = [ _‘Dr -D 
~(_L - L) 

] (i,j =O,l,... 

and G- = d, + d, + ... +d,. 

Proof. For i, j 
by (2.11) and (2.2) 

= 0, 1, . . . ) n the (i, j) element of PSP is Sn-i n 

(2.12) 

(2.13) 

I. Now 

S,_i,,_j = r(n - i)( n-j) -r*min(n-i,n-j} 

+ c [r(n - 1) - L-k 
k>n-i 

I - k<lE_j[r(n - 1) - dn+l-kl 

=q_r * min{i,j} - c d, + c d, = sij. 

k<i k>j 

Thus (2.12) holds. 
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For i, j = 0, 1, . . . , n we have 

sij = rij - r *min{i, j} + C d, - C d, 
k>i k<j 

=bj-r *min(i,j) + r- C d, - C d, 
k<i k<j 

= i i 6, = 2 2 ueibijufj, 
e=O f=O e=O f=O 

which is the (i, j) element of UTBU. Thus (2.13) holds. n 

We remark that the factorization (2.13) can be used to show that the rank 
of the structure matrix S is either n or n + 1. Moreover, for a nonempty 
class a,. (0) the structure matrix S always has full rank n + 1 unless D or D 
is (0, 0, . . . , 0). 

The final result in this section motivates our definition (2.1) of the 
structure constants. Our proof uses the usual counting arguments for results 
of this type. 

LEMMA 2.4. Suppose that the (not necessarily monotone) class @ (D) is 
nonempty. Then d, + d, + *** +d, is even, and the structure matrix S,(D) 
= [sij] is nonnegative. 

Proof. Suppose that G E @&CD). Then r(G) = d, + d, + ... +d,, 
which is twice the number of edges of G. Let A be the adjacency matrix of 
G. For i, j = 0, 1, . . . , n consider the decompositions 

A= w ’ 
[ 1 Y z and A= r(Jn - I,) -A = 

where the submatrices W and W’ are of size i by j and the submatrices Z 
andZ’areofsizen-ibyn-j.(Ifi=Oorn,orifj=Oorn,thensome 
of the submatrices are vacuous.) Let r(B) denote the sum of the elements of 
the matrix B. The matrices A and Aare both nonnegative. Hence 

0 < T(Z) + r(W’) = rij - r.min{i, j} + r(Z) - r(W) 

= rij - r*min{i,j} + r(Z) + T(Y) - r(Y) - r(W) 

= rij - r* min(i, j) + C d, - C d, = sij. 
k>i k<j 

n 
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Lemma 2.4 may also be established by the techniques of transversal 
theory (see Mirsky [24, pp. 204-2111) or by network flows (see Ford and 
Fulkerson [lo, pp. 79-901); each of these theories also motivates the defini- 
tion (2.1). 

3. PROOF OF THEOREM 1.1 

One implication follows from Lemma 2.4. Now suppose that d, + d, + 
... + d, is even and that S is nonnegative. We prove that the class ?I .( D) is 

nonempty by induction on the parameter m = (d, + d, + *** +d,)/2. Sup- 
pose that m = 0. Then D = (0, 0, . . . , 0). The structure matrix S = [tij - r 
. minii, j}] is nonnegative, and Ylr( D) consists of a matrix of 0’s. 

We henceforth suppose that m > 0. Without loss of generality d, > 0 for 
i = 1,2,. . , n. We define the index 

e=min{i:d,>dkfork=1,2 ,..., n}. 

Suppose that e = n. Then n is odd, and D = Cd, d, . . , d, d + 1) for some 
odd integer d with 1 Q d < n - 2. In this case we may verify directly that 
the class 5?Ir( D) is nonempty and that the structure matrix S is nonnegative. 
We henceforth suppose the e < n. 

Because D is nearly monotone, 

l<i<e impliesthat di=d,-1. (3.1) 

Let E, denote a unit vector with a 1 in position k and O’s in all other 
positions. We define the sequence 

L~=D-E~-E,. (3.2) 

Now 6 is nearly monotone by our choice of e, and half the sum of the 
components of D equals m - 1. 

Assume that the structure matrix s^ = S,( fi) =]$I is nonnegative. By 

induction there is a matrix A = [ sij] in the class a.( D). Let Eij denote the 
symmetric matrix of order n with 1s in positions (i, j) and (j, i) and O’s in all 
other positions. If ci,, < r, then A + E,, E '?I,.( D). Suppose that ci,, = r-. 
The inequality 0 < s,, = e[r(n - 1) - (d, - l)] - 1 implies that d, - 1 < 
r(n - 1). Thus A,, < r for some index k # e. Without loss of generality 

d, > d,, and thus a^,, > ci,, for some h # n. Now A - E,,, + E,, + E,, E 
'21,(D). 
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It remains to prove that s^ is nonnegative. We have 

i 

sij - 2 if0 < i,j <e, 
A 
sij = sij - 1 ifO<i<e<j<n 

orifO<j<e<i<n, 

and ;ij > sij otherwise. Because S is symmetric and nonnegative, it suffices 
to prove that 

sij 2 2 for O<j<i<e (3.3) 

and 

sij > 1 for O<j<e<i<n. (3.4) 

Suppose that j < i and j < e. If d, - 1 < r(i - l), then by (3.1) 

sij = rii - r-j + c d, - c d, 
k>i k<j 

=j[r(i - 1) - (d, - I)] + C d,, 
k>i 

and the inequalities (3.3) and (3.4) both hold because d, > 1 and d, > 1. 
We henceforth suppose that d, - 1 > r(i - 1). If j < e < i, then by (3.1) 

sij = sic + (e - j)[(de - 1) - r-(i - l)] + 1, 

and (3.4) holds. Finally, suppose that j < i < e. Then by (3.1) and (2.3) 

sij = s~,~+~ + (i -j + l)[(d, - 1) - r(i - I)]. 

Assume that the inequality sij > 2 fails. Then we must have i = j, and 

si i+1 = 0, and d, - 1 = r(i - 1) + 1. The recurrence relation (2.3) implies 
that the diagonal element sii equals 1. But we known that s,,,, = d, + d, + 
... +d, is even, and hence each diagonal entry of S must be even by (2.7). 

This contradiction establishes (3.3). Therefore s^ is nonnegative. n 
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4. PROOF OF THEOREM 1.2 

LEMMA 4.1. Suppose that the sequence D’ = Cd;, d;, . . . , d;) satisfies 

di - d; E {k, k + 1) fir i = 1,2,...,fl 

for some nonnegative integer k. Then there exists a multigraph G in (65,. (D) 
with a submultigraph G’ in @,( D’) if and only if both of the classes @$(D) 
and @(D’> are nonempty. 

Our Lemma 4.1 is the k-factor theorem for r-m&&graphs. See Kundu 
[21], Koren [20], Lo&z [22], Kleitman and Wang [19], and Chen [7] for 
various proofs in the special case r = 1. The generalization to r > 1 presents 
few new difficulties. For instance, either the interchange method of Lovisz or 
the short proof of Chen can be readily adapted to establish Lemma 4.1 in 
general. We omit the proof. 

LEMMA 4.2. Suppose that some multigraph G in the monotone class 
(8,. (D) has a spanning, nearly regular submultigraph H of degree sum r. 
Then some multigraph G’ in G,.(D) has a spanning, nearly regular sub- 
multigraph of degree sum r whose degree sequence is monotone. 

Proof. Let A = [aij] and B = [bij] be the adjacency matrices of the 
multigraphs G and H that satisfy the hypothesis of the lemma. Suppose that 
the sum of row e + 1 of B exceeds the sum of row e by 1. Then b,, < b, + 1, f 
for some index f z e. If aef > b,,, then we define A = A and B^ = B - 
E e+ 1 f + Eef. We henceforth suppose that aef = b,,. By the monotonicity of 
Dth~reisanindexj#fsuchthata,J-b,j>a,+,,j-b,+~,j.Ifb,,,,j>O, 
then we define A = A and B^ = B + E - E,, 1, j. Now suppose that b,, 1, j 
=O.Inthisfinalcasewedefine~=%-E,,l,f+E,iand A=A-Eej 

- Et?+1 f + E,f+ Etz+l j. In all cases the matrices A and B^ are the adja- 
cency matrices of multigraphs that satisfy the hypothesis of the lemma. But 
the sum of row e of B^ now exceeds the sum of row e + 1 by 1. Iteration of 
this process completes the proof. n 

We now prove Theorem 1.2. By Lemma 4.1 and Lemma 4.2 there exists a 
m&graph_ G that satisfies the conditions of Theorem 1.2 if and only if the 
class 63,. (0) is nonempty, where 

L? = ( d;,&,.. .,j,,)=D- (k+ I,..., k + l,_k,.L.,k). 

n-o 

The vector 6 is nearly monotone. By Theorim 1.1 the class @ (6) is 
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nonempty if and only if the structure matrix S,(D) = [iij] is nonnegative. 
Now for i, j = 0, 1, . . . , n we have 

Cij = fj,j - r *min{i, j} + C ZP - C ZP 
y>i p<i 

= rij - r*min{i,j} + C (d, -k) 
p>i 

- max{O,a - i) - C (dp - k) + min{j,a} 
pcj 

=ej-r . min{i, j} + C d, 
p>i 

- C d, + min(i, u} - a + min{j, u} - k(n - i) + kj 

p<j 

= sij - r + min{i, u} + min{j, u} + k(i + j). 

Therefore S,(D) is nonnegative if and only if (1.2) holds and the proof is 
complete. 

The following corollary may be viewed as a structure matrix version of the 
(uniform) k-factor theorem. 

COROLLARY 4.3. Let S,(D) = [si .] denote the structure matrix of the 
nonempty, monotone class @$ (0). Th!en some multigraph in a,.(D) has a 
submultigraph with every vertex of degree k if and only if nk is even and the 
inequality 

1 
k< . ‘ij 

n-i-1 (4.1) 

holds for all i and j for which n > i + j. 

Proof. We select T = nk and a = 0 in (1.1). By Theorem 1.2 some 
multigraph in (3,. (0) has a submultigraph with every vertex of degree k if 
and only if the inequality 

nk < sij + k(i +j) (4.2) 
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holds for i,j=o,l,..., n. If n < i + j, then (4.2) clearly holds. Suppose 
that n > i + j. Then (4.2) holds if and only if (4.1) holds. n 

5. MATCHINGS 

In this section we study the maximum matching number p(D) among all 
graphs with degree sequence D. Our results are the analogues of the results 
of Ryser [27-29; 30, pp. 72-761 for the maximum term rank p(R, S) among 
all (0, l&matrices with row sum vector R and column sum vector S. The 
presence of our parallel theory becomes less surprising when we recall that 
the term rank of a (0,l) matrix A equals the maximum cardinality of a 
matching in the bipartite graph associated with A. Thus the term rank is the 
bipartite analogue of the matching number. Our Theorem 1.3 is the analogue 
of Ryser’s maximum term rank formula. The decomposition in Theorem 5.2 
is analogous to the decomposition obtained by Ryser for (0, ll-matrices. Also, 
Theorem I.4 and the examples we give at the end of this section correspond 
to Ryser’s results in [27; 30, pp. 75-761. 

We begin with a proof of Theorem 1.3. 

Proof of Theorem 1.3. Let E_C be an integer with 0 < p < [n/2]. There 
is a graph in q,(D) with a matching of cardinality /* if and only if some 
graph G in @i (0) has a spanning, nearly regular subgraph of degree sum 
2~. In Theorem 1.2 we select r = 1, k = 0, and T = a = 2~. By (1.2) there 
is a graph in @&CD) with a matching of cardinality p if and only if the 
inequality 

2p, < sij + min{ i, 2P.) + min{j, 2P} (5.1) 

holds for i, j = 0, 1, . . . , n. If i > 2 p or if j 2 2,~~ then (5.1) clearly holds, 
Suppose that i < 2~ and j < 2~. Then (5.1) holds if and only if 2 p < sii + 
i + j. This proves (1.3). n 

A matching M, of cardinality p in a graph G is canonical provided 

Mp = { [LW], [2,2~ - I], . . . , [P., P + 11). 

THEOREM 5.1. Zf some graph in the monotone class q(D) has a 
matching of cardinality p, then some graph in q(D) has a canonical 
matching of cardinality CL. 
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Proof. Let G = (V, E) be a graph in C&$,(D) with a matching M of 
cardinality p. By Lemma 5.2 we may suppose that M involves only the 
vertices 1,2,. . . , 2~. Suppose that M is not the canonical matching M,. 
Then there is a minimal positive integer h such that [h, 2~ + 1 - h] E M. 
For i = 1,2,...,2~ define i* b y i, i*] E M. Let k = 2~ + 1 - h, and [ 
consider the distinct edges [h, h*] and [k, k*] of M. By the minimality of h, 
both h* and k* are strictly between h and k. If neither [h, k] nor [h*, k*] is 
in E, or if both [h, k] and [h*, k*] are in E, then we readily obtain from G a 
graph in @i(D) with a matching 

M’ = M u [h, k] u [h*, k*] - [h, h*] - [k, k*] 

of cardinality p. Suppose that [h, k] E E, but that [h*, k*] P E. Then the 
inequality d,. > d, implies that [h*, j] E E, but [j, k] 6 E for some vertex 

j. We replace E by E U [j, k] U [h*, k*] - [k, k*] - [h*,j] and obtain a 
graph in 6$(D) with the matching M’. If [h*, k*] E E, but [h, k] e E, then 
a similar argument allows us to produce a graph in @i(D) with the matching 
M ‘. In all cases we produce a graph in C!&( 0) with the matching M’ of 
cardinality /J, that has more edges of the form [i, 2~ + 1 - i] than M does, 
Iteration of this process completes the proof. I 

Recall that r(B) denotes the sum of the elements of the matrix B. 

THEOREM 5.2. Let S,(D) = [ sii] denote the structure matrix of the 
nonempty class ‘21 JD), where D is a monotone sequence of positive integers. 
Then there exist indices e and f with 0 < e, f < n such that 

p = isei+2e +f] = 1 
7(W’) + T(Z) + e + f 

2 1. (5.2) 

The matrices W’ and Z in (5.2) are from the decompositions 

and 

(5.3) 

where A is an arbitrary matrix in the class 3 1( D), and the submatrix W is of 
size e by f. The indices e and f are independent of A, but are not necessarily 
unique. Moreover, if A is the adjacency matrix of a graph with a canonical 
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matching of cardinality ji, then 

T(W') = 0 or 1 and jl = I T(Z) + e +f 

I 2 . 
(5.4 

Proof. The first equality in (5.2) follows from Theorem 1.3, while the 
second equality follows from our proof of Lemma 2.4. Suppose that A is the 
adjacency matrix of a graph with a canonical matching of cardinality p. Then 
A has l’s in positions (1,2p), (2,2p - l), . . . , (2p, 1). We refer to these l’s 
as essential. Consider the decomposition (5.3) of A. If sef = 0, then r(W’) 
= 0, and (5.4) holds. Now suppose that sef > 0. Then (5.2) implies that 
2iI + 1 > e + f. Thus no essential 1 appears in the e by f submatrix W. 
Hence X has e essential l’s, Y has f essential l’s, and the remaining 
21. - (e + f) essential l’s must appear in Z. Thus r(Z) > 2p - (e + f 1. 
But sef = T(W’) + r(Z). Hence sef 2 T(W’) + 2/*. - (e + f). Now (5.2) 
implies that ii > p + lr( W’)/2], and (5.4) follows. n 

We have deduced Theorem 5.2 from Theorem 1.3. Presumably it is also 
possible to give a proof of Theorem 5.2 along the lines of the proof of Ryser’s 
decomposition theorem [3O, p. 751; the formula (1.3) would then follow from 
Theorem 5.2. 

Suppose that D is a monotone sequence of positive integers and that the 
strict inequality p(D) < [n/21 holds. W e assert that in this case the indices 
e and f in Theorem 5.3 are both strictly between 0 and n, that is, no 
submatrix in the decomposition (5.3) is vacuous. For assume that e = 0. 
Then the submatrices W and X are vacuous. Because D is a positive 
sequence, each of the n -f columns of Z contains at least one 1. Hence 
r(Z) > n -f. Now (5.2) gives the contradiction 

T(W’) + T(z) + e +f 

1+=[ 2 1 

The cases e = n, f = 0, and f = n lead to contradictions similarly. 
We are now ready to prove Theorem 1.4. 

Proof of Theorem 1.4. Consider the decomposition (5.3) for matrices in 
%,(D). Because ii < [n/2], we know that W is of size e by f, where 
1 < e, f < n - 1. Assume that e = 1. The inequalities n - 1 > d, and 
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d, 2 2 imply that 

slf=f - 1 - c d, + c d, > n -f. 
k<l k>f 

Now (1.5) and (5.2) give us the contradiction 

Thus e # 1. Similarly f # 1 

We now know that 2 < e, f < n - 1 in (5.3). Because the class q(D) 
has no invariant edges, there is a graph G in @i(D) whose adjacency matrix 
A = [u,~] in 8 i(D) satisfies ui2 = $1 = 0. We shall prove that p(G) < in. 
Now T(W’) > 2 in (5.3). Thus r(Z) < 2p - e -_f - 1 by (5.2). Consider 
the p(G) pairs of symmetrically placed l’s in A that correspond to a 
matching of cardinality p(G). No two of these 2p(G) l’s appear in the same 
row or column. At most e of these l’s occur in the first e rows of A (that is, 
in W and X), at most f of these l’s occur in the first f columns of A (that is, 
in W and Y ), and at most 2p - e -f - 1 of these l’s occur in Z. Thus 

2&G)<e+f+(2p-e-f-1)=2p-1, 

a contradiction. Hence /J(G) < p. Therefore 6 < ii. n 

In the following example we show that the conclusion of Theorem I.4 
does not hold if any one of the hypotheses (1.4), (1.5), and (1.6) is violated. 

EXAMPLE 5.3. 

(a) Consider the sequence D = (n - 1, n - 1,2,2,. ,2) with n terms, 
where n 2 6. The class q(D) consists of a single graph G. Thus q(D) has 
invariant edges r_L = ii. Hence neither the hypothesis (1.4) nor the conclusion 
(1.7) holds. However, the hypotheses (1.5) and (1.6) both hold, because 
d, = 2 and @ = p = p(G) = 2. 

(b) Consider the sequence D = (n - 2, n - 2,. . . , n - 2) with n terms, 
where n is even and n > 4. Each graph in @i( D> arises by deleting n/2 
vertex-disjoint edges from a complete graph on n vertices. Hence (8, (0) has 
no invariant edges and 6 = F = n/2. Thus neither the hypothesis (1.5) nor 
the conclusion (1.7) holds, but both of the hypotheses (1.4) and (1.6) hold. 
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cc> Consider the sequence D = (n - 3,1,1,. . , 1) with n terms, where 
n > 6. The hypothesis (1.6) is clearly violated. Each graph in the class q(D) 
arises by including any two of the vertices 2,3,. , n in an edge and then 
including each of the remaining n - 3 of the vertices in an edge with vertex 
1. Thus there are no invariant edges in (q(D), and the hypothesis (1.4) 
holds. Also, ji = p = 2 < [n/2]. Thus the hypothesis (1.5) also holds, but 
the conclusion (1.7) fails. 

6. THE THEOREMS OF ERDGS AND GALLAI AND OF 
CHUNGPHAISAN 

In this section we discuss the relationship between the nonnegativity of 
the structure matrix and the familiar necessary and sufficient conditions given 
by Erd& and Gallai [9] (for r = 1) and by Chungphaisan [8] (for r > 1) for 
the existence of an r-m&graph with a prescribed degree sequence. The 
essential idea is that the Erdiis-Gallai-Chungphaisan inequalities hold for D 

and r if and only if the smallest element in each column of the structure 
matrix S,( D> is nonnegative. 

Throughout this section we assume that D is a monotone sequence with 
d, + d, + **. +& even and d, < r(n - 1). We first recall that 
Chungphaisan’s generalization of the Erdlis-Gallai theorem asserts that under 
these conditions the class C$ (D) is nonempty if and only if the inequality 

c d, < rj(j - 1) + c min{rj, dk} 
k<j k>j 

(6.1) 

holds forj = 1,2, , n. These and many other conditions for the nonempti- 
ness of @$(D) are discussed in [32] in the special case r = 1. 

We now associate with r and D a matrix F and a sequence D* that are 
well known to be closely related to the inequalities in (6.1). The Ferrers 
matrix F = F,(D) of order n is defined as follows. Write di = qir + si 
(i = 1,2, . . , n) where 0 < .si < r. In row i of F the integer r occurs in the 
<ii leftmost nondiagonal positions, and the integer si occurs in the next 
nondiagonal position (i = I, 2, . . , n). The remaining entries of F are 0’s. 
The sequence of column sums of F is denoted by 

D* = (d:, d;, . , d;). 
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For j = 1,. . . , n let o(j) denote the largest nonnegative integer such that 
the integer r appears in each nondiagonal position of the leading submatrix 
of size w(j) by j of the Ferrers matrix F. Also define w(O) = n. Thus 

c dk* = ro(j)j - rmin{w(j),j} + C d,. (6.2) 
k<j k > w(j) 

We immediately note the similarity between the right side of this identity and 
the definition (2.1) of a structure constant. 

EXAMPLE 6.1. If r = 2 and D = (4,4,3,3,2), then 

F,(D) = 

0 

0 
0 1 

0 
0 I 

16 12 8 5 2 0 

D* = (8,4,4,0,0) and (w(O),..., w(5)) = (5,5,2,2,0,0). The contour in 
F,(D) defined by the positions (j, w(j)) is shown. We have also superim- 
posed this contour on the structure matrix S,(D). We observe that the 
contour in S,(D) indicates the last occurrence of the smallest entry in each 
column. 

In general one may use the convexity of and recurrence relations for the 
columns of S,(D) (Lemma 2.1) to prove that for j = 0, 1, . . . , n the element 
socj), j is the last occurrence of the smallest entry in column j of S,( 0). (The 
similar observation by Anstee [l, p. 105; 4, p. 1801 for the class !?l(R, S) was 
the inspiration for this paper.) Moreover, by (6.2) and the definition of o(j) 
we have 

so(j),j = rw(j)j - t-e min{ w(j),j) 

+ c d, - c d,= c d; - C d,. 
k> w(j) k<j kaj k<j 
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Thus we see that the structure matrix S is nonnegative if and only if the 
smallest entry in each column is nonnegative, and this in turn happens if and 
only if 

C d, G C dk* (j = 1,2,...,n). 
k<j k<j 

However, these inequalities are readily shown to be equivalent to the 
inequalities in (6.1). (S ee, e.g., [3, p. 113; 321 for the special case r = 1.) 

7. SOME RESEARCH PROBLEMS 

We conclude with some research problems on structure matrices. 

PROBLEM 7.1. Find a formula involving the elements of the structure 
matrix S,(D) for the minimum matching number k(D) among all graphs 
with degree sequence D. 

Haber [16, 171 solved the corresponding problem for the minimum term 
rank 6 = fi(R, S> among matrices in ‘tr(R, S>. Thus Haber’s formuIa gives 
the minimum matching number among all bipartite graphs with degree 
sequences R and S. Haber’s formula and proof were simplified by Brualdi [4, 
51. We expect that the answer to Problem 7.1 will resemble the Haber-Brualdi 
formula. 

PROBLEM 7.2. Determine necessary and sufficient conditions on D for 
the equality r_L = ii to hold. In other words, characterize the degree se- 
quences for which every graph has the same matching number. 

Brualdi [4] has considered the analogous problem for bipartite graphs. 
Let the path ,nzcmber h(G) [ / 1 cf G e number y(G)] of the graph G be the 

maximum number of edges among all paths [cycles] in G. Suppose that the 
class C&$(D) is nonempty. Let 

?I =x(D) = max[X(G):G E q(D)}, 

7 = r(D) = max{y(G) : G E q(D)}. 
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PROBLEM 7.3. Find formulas involving the elements of the structure 
matrix S,(D) for h and 7. 

Formulas for the minimal values h and i, will presumably be more 
elusive. We remark that a theorem of Kundu [21] on the existence of 
Hamiltonian graphs has the following structure matrix reformulation. (Also 
see [25].) 

THEOREM 7.4. Suppose that the monotone classes q(D) and C$( D’) 
are nonempty, where D’ = 
structure matrix of D. Then 

D-(2,2,.,.,2X Let S,(D) = [sij] denote the 

r = n if and only if s~,~_~ 3 1 for 1 < i < n/2. 

Likewise, a structure matrix characterization of the extremal case h = n 
- 1 can be extracted from the work of Hakimi and Schmeichel [18, 311. 

PROBLEM 7.5. Find relationships between the algebraic properties and 
parameters of the structure matrix S,(D) and the combinatorial properties of 
the multigraphs in the nonempty class G$ (0). For instance, what relation- 
ships hold between the eigenvalues of S,(D) and the multigraphs in the class 

@CD)? 

Because S,( D> is a real, symmetric matrix, its n + 1 eigenvalues are real 
numbers. The remark after Theorem 2.3 implies that 0 is an eigenvalue of 
S,(D) if and only if the nonempty class C&(D) consists of the complete 
r-multigraph on n vertices or the complement of this multigraph. Of course, 
with structure matrices we are unable to distinguish between multigraphs 
with the same degree sequence. The permutation matrix P in Theorem 2.3 is 
equal to its own inverse. Hence by (2.12) the structure matrices S and s 
corresponding to complementary degree sequences are similar. Thus, in 
Problem 7.4 it may also be difficult to distinguish between two multigraphs 
with complementary degree sequences by applying algebraic methods in the 
study of structure matrices. 

The author is grateful to Richard Brualdi for providing extensive muthe- 
mutical and financial assistance during the early stages of the research that 
led to this paper. 
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