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a b s t r a c t

The piecewise algebraic variety, as a set of the common zeros of multivariate splines, is
a kind of generalization of the classical algebraic variety. In this paper, we present an
algorithm for isolating the zeros of the zero-dimensional piecewise algebraic varietywhich
is primarily based on the interval zeros of univariate interval polynomials. Numerical
example illustrates that the proposed algorithm is flexible.
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1. Introduction

Isolating real solutions for an algebraic variety or semi-algebraic set is an important problem in both practice and theory.
There are several classical algorithms, such as Uspensky algorithmbased onDescartes’ rule of signs, Tarski’smethod, and the
cylindric algebraic decomposition method (cf. [1–3] and the references therein). Recently, Xia et al. proposed an algorithm
based on Wu’s method for isolating the real roots of semi-algebraic system with integer coefficients. The algorithm was
made more available in their later work [4,5], where they gave a complete algorithm by using interval arithmetic.
Some fundamental definitions and properties of the piecewise algebraic variety and the real zeros of the zero-

dimensional piecewise algebraic variety are studied. For details, the readers may refer to [6–10]
Let Ω ⊂ Rn be a simply connected region. Using finite number of hyperplanes in Rn, we divide Ω into a finite

number of simply connected regions. Denote by ∆ = {δ1, δ2, . . . , δT } the partition of Ω , where δi, i = 1, 2, . . . , T , are
called the cells. By s we denote a multivariate spline defined in Ω and by s|δi a polynomial representing s in the cell
δi(i = 1, 2, . . . , T ) : s|δi ∈ R[x1, . . . , xn]. Put P(∆) = {s|δi | i = 1, 2, . . . , T }. Thus, S

µ(∆) = {s | s ∈ Cµ(∆) ∩ P(∆)}
is called a Cµ piecewise polynomial ring, where s ∈ Cµ(∆) means that s possesses µ order continuous partial derivatives
over∆.
For F ⊆ Sµ(∆), the zero set of F is defined to be z(F) = {x ∈ Ω | s(x) = 0,∀ s ∈ F}. Obviously, if an ideal I ∈ Sµ(∆) is

generated by F , then z(F) = z(I). Since Sµ(∆) is a Nöther ring, every ideal I has a finite number of generators s1, s2, . . . , sl,
then z(F) can be expressed as the common zeros of the splines s1, s2, . . . , sl.
Let ∆ be a partition of the regionΩ . If there exist s1, s2, . . . , sm ∈ Sµ(∆) such that X = z(s1, s2, . . . , sm) =

⋂m
i=1 z(si),

then X is called a Cµ piecewise algebraic variety (PAV for short) with respect to ∆. If s ∈ Sµ(∆) and X = z(s), then X is
called a Cµ piecewise hypersurface.
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In this paper, we present an algorithm for isolating the zeros of a given zero-dimensional piecewise algebraic variety,
i.e., determining a sequence of disjoint hyperrectangles such that each of themcontains exactly one real root of the piecewise
algebraic variety. Our proposed algorithm which is primarily based on the interval zeros of univariate interval polynomial
has the advantage of handling polynomials with real coefficients.

2. Preliminaries

In this section, some results on the computation of an algebraic variety on a convex polyhedron are presented. For more
details, the readers may refer to [11].
Let δ ⊂ Rn be a convex polyhedron. By Hi(x) = 0 (i = 1, 2, . . . ,m)we denote hyperplanes which divideΩ , wherem is

the number of facets of δ. Let ui be the inward pointing normal of Hi(x) = 0, then we can express Hi(x) as
Hi(x) = ui · x+ ai, ui = (ui1, ui2, . . . , uin), x = (x1, x2, . . . , xn), ai ∈ R.

Obviously, every point in the interior of δ can be regarded as an intersection point of the m hyperplanes Hi(x) − yi =
0, yi > 0, i = 1, 2, . . . ,m.
We consider the following semi-algebraic set (SAS for short) with real coefficients, i.e., the algebraic variety in the interior

of the convex polyhedron δ

SAS :



f1(x1, x2, . . . , xn) = 0,
f2(x1, x2, . . . , xn) = 0,
· · ·

fn(x1, x2, . . . , xn) = 0,
H1(x1, x2, . . . , xn) > 0,
· · ·

Hm(x1, x2, . . . , xn) > 0,
where {f1, f2, . . . , fn} has only a finite number of common zeros.

Theorem 2.1 ([11]). If Î = 〈H1(x)− y1,H2(x)− y2, . . . ,Hm(x)− ym〉, then the reduced Gröbner bases of Î with respect to lex
order with x � y is

{x1 − p1(y), x2 − p2(y), . . . , xn − pn(y), gn+1(y), . . . , gm(y)}, y = (y1, y2, . . . , ym),

where p1(y), p2(y), . . . , pn(y) are polynomials of degree 1 in the variables y1, y2, . . . , yn, . . . , ym.

Put F = {x1 − p1(y), x2 − p2(y), . . . , xn − pn(y)}, and compute gi(y) = fi(x)
F
, i = 1, 2, . . . , n with respect to lex order

with x � y, where fi
F
denotes the remainder on division of fi by the ordered n-tuple F .

Lemma 2.1 ([11]). Let I = 〈f1, f2, . . . , fn〉 be an ideal in R[x], and Ĩ = I + Î , then

Ĩ = 〈g1(y), g2(y), . . . , gm(y), x1 − p1(y), x2 − p2(y), . . . , xn − pn(y)〉.

Theorem 2.2 ([11]). If M = 〈g1(y), g2(y), . . . , gn(y), gn+1(y), . . . , gm(y)〉, then the common zeros of the SAS are given by

{x | (x1, . . . , xn) = (p1(y), p2(y), . . . , pn(y)), y ∈ z(M),∀ yi > 0, i = 1, 2, . . . ,m} .

Since the ideal generated by {f1, f2, . . . , fn} is zero-dimensional, we can transform the system SAS into a system in
triangular form by Wu’s method, Gröbner basis method or subresultant method [4,12]. Thus, by Theorem 2.2, the system
SAS can be reduced to the following simplified triangular semi-algebraic system (STSAS in short)

STSAS :


h1(y1) = 0,
h2(y1, y2) = 0,
· · ·

hm(y1, y2, . . . , ym) = 0,
y1 > 0, y2 > 0, . . . , ym > 0.

Remark 2.1. The computation often becomes unstable if we use floating-point numbers [13,14]. In this paper, we directly
adopt the suggested algorithms by Traverso and Zanoni to deal with unstable systems to compute Gröbner bases [14].

3. Interval polynomial

Interval operations have been first introduced by Moore [15]. It is used to tackle the instability and error analysis of
numerical computation. In this section, some related concepts and results of interval polynomial are presented. For details,
the readers may refer to [16,17].
An interval is a set of real numbers defined by [a, b] = {x | x ∈ [a, b]}. For an interval [a, b], its width is defined by

w[a, b] = b− a.
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An interval polynomial of degree n is a polynomial whose coefficients are intervals

[f ](x) =
n∑
i=0

[ai, bi]xi =

{
n∑
i=0

fixi : fi ∈ [ai, bi], i = 0, 1, . . . , n

}
.

The upper bound function and lower bound function of [f ](x) are defined by:

U[f ](x) =


n∑
i=0

bixi, x ≥ 0;∑
0≤2i≤n

b2ix2i +
∑

0≤2i+1≤n

a2i+1x2i+1, x < 0.

L[f ](x) =


n∑
i=0

aixi, x ≥ 0;∑
0≤2i≤n

a2ix2i +
∑

0≤2i+1≤n

b2i+1x2i+1, x < 0.

The set of real zeros of the interval polynomial [f ](x) is defined as

R(f ) = {x0 ∈ R | ∃f (x) ∈ [f ](x), s.t.f (x0) = 0}.

Obviously, we have

R(f ) = {x0 ∈ R : L[f ](x0) ≤ 0 ≤ U[f ](x0)}.

In this case, the zeros set of [f ](x) is actually composed of several closed intervals. We call each of these intervals an interval
zero of the univariate polynomial [f ](x).

Proposition 3.1 ([18]). If [a, b] is an interval zero of [f ](x), then the endpoints b and a are the zeros of the upper bound function
U[f ](x) and lower bound function L[f ](x), respectively.

Theorem 3.1 ([16]). An interval polynomial [f ](x) of degree n has at most n interval zeros.

We directly adopt this numerical algorithm to find a set of intervals which bound the interval zeros of a given
interval polynomial [f ](x). Furthermore, the interval zeros converge to the exact zeros when computing accuracy tends
to infinity [16].

Algorithm 3.1 ([16]). Algorithm for computing the zeros of interval polynomial
Input An interval polynomial [f ](x), and a small tolerance ε (0 < ε � 1).
Output A set S containing all the interval zeros of [f ](x).
Step 1 Set the initial interval I = [−r0, r0]. Here, r0 = 1+max{|a0|, |b0|, . . . , |an|, |bn|}. Let S be an empty set.
Step 2 For the given interval, compute [f ](I). If 0 6∈ [f ](I), discard this interval and process the next interval. Otherwise go

to Step 3.
Step 3 If 0 ∈ [f ]((a + b)/2), 0 6∈ U[f ](I) and 0 6∈ L[f ](I), or the width of I is less than ε, append I to the set S. Otherwise

bisection I into two intervals at midpoints and for each subinterval, go to Step 2.
Step 4 Union all the neighboring intervals in S.

Therefore, for any polynomial f (x) =
∑n
i=0 fix

i, it can bewritten in the formof an interval polynomial [f ](x) =
∑n
i=0[fi]x

i.
Here, each [fi], whose width is less than a given tolerance ε, is an interval containing fi. Obviously, the interval zeros of the
interval polynomial [f ](x) converge to the exact zeros of the original polynomial f (x) when computing accuracy tends to
infinity.
In Section 4, we present an algorithm for isolating the interval zeros of SAS. In Section 5, an algorithm is presented to

isolate the real zeros of a given piecewise algebraic variety on a convex polyhedron partition, which is primarily based on
the computation of interval zeros of univariate interval polynomial.

4. Algorithm for isolating the zeros of SAS

We assume, if not specified, that all the algebraic varieties in this paper are zero-dimensional. The zero-dimensional
algebraic variety defined on a convex polyhedron can be viewed as a special and simple semi-algebraic set. The algorithm
for isolating the interval zeros of SAS is outlined below.

Algorithm 4.1. Algorithm for isolating the zeros of SAS
Input SAS, and a small tolerance ε (0 < ε � 1).
Output All the isolating intervals I of SAS.
Step 1 Put Î = 〈H1(x) − y1,H2(x) − y2, . . . ,Hm(x) − ym〉, compute the Gröbner basis of Î with respect to lex order with

x � y and let the obtained basis be {x1 − p1(y), x2 − p2(y), . . . , xn − pn(y), gn+1(y), . . . , gm(y)}.
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Step 2 Put F = {x1 − p1(y), x2 − p2(y), . . . , xn − pn(y)}, compute fi(x)
F
= gi(y), i = 1, 2, . . . , n and set M =

〈g1(y), g2(y), . . . , gn(y), gn+1(y), . . . , gm(y)〉.
Step 3 Compute the Gröbner basis of M with respect to lex order with y1 � y2 � · · · � ym and let the obtained basis be

〈h1(y1), h2(y1, y2), . . . , hm(y1, y2, . . . , ym)〉.
Step 4 Compute the interval zeros of univariate interval polynomial [h1](y1), and let the result be

I(1) =
{
[a(1)i , b

(1)
i ] | w[a

(1)
i , b

(1)
i ] < ε, i = 1, 2, . . . , n1

}
.

Here, if b(1)i < 0, then we discard it from I(1).
Step 5 If I(1) = ∅, then stop and SAS has no common solutions. Otherwise, substituting y(i)1 = [a

(1)
i , b

(1)
i ] into h2(y1, y2), we

obtain an interval polynomial [h2](i)(y2). Compute the interval zeros of univariate interval polynomial [h2](i)(y2),
and let the result be

I(2)i =
{
[a(2)i,j , b

(2)
i,j ] | a

(2)
i,j > 0, j = 1, 2, . . . , ji

}
.

Hence, I(2) can be expressed by

I(2) =
n1⋃
i=1

I(2)i =
{
[a(2)i , b

(2)
i ] | w[a

(2)
i , b

(2)
i ] < ε, i = 1, 2, . . . , n2

}
.

Step 6 Inductively, we continue the similar procedure as in Step 5. If there exists i such that I(1) 6= ∅, . . . , I(i−1) 6= ∅, I(i) =
∅, i = 2, 3, . . . ,m, then stop, and SAS has no common zeros. Otherwise, we obtain the sequence {I(1), I(2), . . . , I(m)}.

Step 7 Therefore, the isolating intervals of SAS can be expressed as

I =
{
p1([y])× p2([y])× · · · × pn([y]) | ∀ [y] ∈ I(1) × · · · × I(m)

}
.

5. Algorithm for isolating the zeros of the PAV

Let ∆ = {δ1, δ2, . . . , δT } be the convex polyhedron partition of the region Ω ⊂ Rn. Suppose s1(x), s2(x), . . . , sn(x) ∈
Sµ(∆), and z(s1, s2, . . . , sn) is assumed to be zero-dimensional, i.e., it consists of only a finite number of points. Here, all the
convex polyhedrons δi, i = 1, 2, . . . , T are assumed to be in ‘‘general position’’, which means none of the zeros lie on their
boundary.
Put s(j)i = si(x)|δj , i = 1, 2, . . . , n, j = 1, 2, . . . , T , then, for each j ∈ {1, 2, . . . , T }, z(s

(j)
1 , s

(j)
2 , . . . , s

(j)
n ) has only a finite

number of common zeros in the interior of the convex polyhedron δj. With the above preparations, we can easily present
the following algorithm for isolating the real roots of a given piecewise algebraic variety on a convex polyhedron partition.

Algorithm 5.1. Algorithm for isolating the zeros of PAV
Input PAV (A piecewise algebraic variety on a convex polyhedron partition).
Output All the isolating intervals I of PAV.
Step 1 Set j = 1 and let I be an empty set.
Step 2 For z(s(j)1 , s

(j)
2 , . . . , s

(j)
n ) on cell δj, perform Algorithm 4.1 to obtain the isolating intervals I(j) and set I := I ∪ I(j).

Step 3 Set j = j+ 1. If j ≤ T then go to step 2; Else, stop and output I .

6. Numerical example

In this section, an example is provided to illustrate the proposed algorithm for isolating the zeros of a given piecewise
algebraic variety.

Example 6.1. Let ∆ = {δ1, δ2, δ3, δ4} be a convex polyhedron partition of a pentagon VAVBVCVDVE in R2, where δ1 =
[VAVBVCVO], δ2 = [VCVDVO], δ3 = [VDVEVO], δ4 = [VEVAVO], VA = (2, 0), VB = ( 32 ,

3
2 ), VC = (0, 1), VD = (−1, 0), VE =

(1,−1) and VO = ( 12 , 0) (see Fig. 1).
Let bivariate splines f and g in S13(∆) be defined as follows:

• on cell δ1:
{
f1(x1, x2) = f |δ1 = x

2
1 +
√
2x22 −

√
3

g1(x1, x2) = g|δ1 = x
3
2 − x1

• on cell δ2:
{
f2(x1, x2) = f |δ2 = f1(x1, x2)+ (2x1 + x2 − 1)

2(x1 + x2)
g2(x1, x2) = g|δ2 = g1(x1, x2)+ (2x1 + x2 − 1)

2(2x2)

• on cell δ3:
{
f3(x1, x2) = f |δ3 = f2(x1, x2)+ x

2
2(x1 − x2 + 2)

g3(x1, x2) = g|δ3 = g2(x1, x2)+ x
2
2(x2 − 3)

• on cell δ4:
{
f4(x1, x2) = f |δ4 = f1(x1, x2)+ x

2
2(x1 − x2 + 2)

g4(x1, x2) = g|δ4 = g1(x1, x2)+ x
2
2(x2 − 3).
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Fig. 1. Two piecewise algebraic curves f = 0 and g = 0.

In order to illustrate the proposed algorithm, we take the algebraic variety z(f1, g1) in the interior of the quadrangle δ1
for example.

Step 1 The Gröbner bases of Î = 〈x2− y1, 2x1+ x2− 1− y2, x1− 3x2+ 3− y3, 3x1+ x2− 6− y4〉with respect to lex order
with x � y1 � · · · � y4 is {x2 − y1, 1− 2x1 − y1 + y2,−7+ 7y1 − y2 + 6y3, 9+ y1 − 3y2 − 2y4}.

Step 2 Put F = {x1 − p1(y1, y2), x2 − p2(y1, y2)}, where p1(y1, y2) = 1
2 (1 − y1 + y2), p2(y1, y2) = y1. Compute

f1(x)
F
= −
√
3 +
√
2y21 +

1
4 (1 − y1 + y2)

2 and g1(x)
F
= y31 −

1
2 (1 − y1 + y2) and set M = {−

√
3 +
√
2y21 +

1
4 (1− y1 + y2)

2, y31 −
1
2 (1− y1 + y2),−7+ 7y1 − y2 + 6y3, 9+ y1 − 3y2 − 2y4}.

Step 3 The reduced Gröbner bases of M with respect to y4 � y3 � y2 � y1 is {h1(y1), h2(y1, y2), h3(y1, y2, y3),
h4(y1, y2, y3, y4)} = {−

√
3+
√
2y21 + y

6
1,−1+ y1 + 2y

3
1 − y2,−3+ 3y1 − y

3
1 + 3y3,−6+ y1 + 3 y

3
1 + y4}.

Step 4 Set ε = 0.01. Compute the interval zeros of the interval polynomial [h1](y1) and the results are
[−0.90918,−0.908203] and [0.908203, 0.90918]. Obviously, the first interval should be discarded. Thus, I(1) =
{[0.908203, 0.90918]}.

Step 5 Substituting y1 = [0.908203, 0.90918] into h2(y1, y2), we obtain an interval polynomial [h2](y2) =

[1.40643, 1.41225] − y2. Obviously, its interval zero of [h2](y2) is [1.40643, 1.41225]. That is to say, I(2) =
{[1.40643, 1.41225]}. Inductively, we obtain I(3) = {[0.340526, 0.342309]} and I(4) = {[2.83622, 2.84445]},
respectively.

Step 6 Therefore, the isolating interval of z(f1, g1) in the interior of the quadrangle δ1 is

p1([0.908203, 0.90918], [1.40643, 1.41225])× p2([0.908203, 0.90918], [1.40643, 1.41225])
= [0.748628, 0.752023] × [0.908203, 0.90918].

Similarly, we conclude that z(f2, g2), z(f3, g3) and z(f4, g4) have no common zeros in the interior of cells δ2, δ3 and δ4,
respectively.
Hence, the isolating interval of z(f , g) is [0.748628, 0.752023] × [0.908203, 0.90918].

7. Conclusion

From the numerical result, we can easily see that the proposed algorithm for isolating the zeros of a given zero-
dimensional piecewise algebraic variety is flexible. It is primarily based on the computation of interval zeros of univariate
interval polynomials. Our proposed algorithm dealing with polynomials with real coefficients is easy to understand and
implement.
However, how to control the positive number ε under a given tolerance inAlgorithm4.1 and the efficiency of theproposed

algorithm remain as our future work.
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