alternative to surgery, and is associated with a long term reduction in blood pressure and LV hypertrophy.

http://dx.doi.org/10.1016/j.acvd.2013.06.033

27 Closure of huge tubular patent ductus arteriosus using amplatz catheterization procedure in premature infants and small children under 6 kg
Alexandre Bretonneau, Claire Cornolle, Hugues Lucron
Congenital and Pediatric Cardiology, Antilles, Guyane tertiary care center for complex congenital cardiac diseases (M3C), University Hospital of Martinique, BP 632, 97200 Fort-de-France, Martinique, French West Indies

Background.— Percutaneous closure of huge and tubular (type C) patent ductus arteriosus remain challenging or unsuccessful in small infants.

Aim.— To evaluate the usefulness and safety of Amplatz vascular plug II or IV for percutaneous closure of very large ductus arteriosus under 6 kg.

Methods.— Single-center retrospective study including all consecutive unselected patients (<6 kg, large symptomatic ductus arteriosus) referred to our institution over a 4 years period for percutaneous closure and treated with plug II or IV. No patient was excluded and there was no failure or surgery within the weight limit to consider percutaneous closure (>2.5 kg).

Results.— Seven patients were successfully treated using vascular plug II and IV without any residual shunt. Six plug II were implanted (mean patients weight 4.3 ± 0.8 kg, mean ductus diameter 6 ± 1.8 mm, mean device size 8.6 mm (6—14), fluoroscopy time 14.8 ± 6.3 min, occlusion rate 100%, mean follow-up 6 ± 2 months) including huge type C (5) and one type E (1) ductus. Mean pulmonary artery pressure dropped from 25 ± 7 (17—38) mm of Hg to normal value in all cases and there was no aortic protrusion or embolization. One patient experienced severe but reversible pulmonary hypertension crisis in the catheter lab requiring blood transfusion. A 6 mm Amplatz vascular plug IV was also implanted in a 4.2 kg patient (4.8 mm type D ductus, fluoroscopy 10 min, uneventful 8 months follow-up).

Conclusion.— Percutaneous closure of very large ductus arteriosus is safe and effective under 6 kg. In our experience, the vascular plug II profile allows with acceptable risk to extend indication to infants below 4 kg with huge tubular forms. This might contribute to reduce surgical indications and in hospital morbidity and to improve cost effectiveness. We believe that plug II could also be proposed in the near future for closure of conical shape (type A) with similar results.

http://dx.doi.org/10.1016/j.acvd.2013.06.034

28 Relationship between fluoroscopic time, morphological parameters and irradiation during catheterization in children with congenital heart disease
S. Hascoët a, G. Oustau b, K. Hadeed c, S. Balduyck a, F. Heitz d, Y. Dulac e, R. Fesseau f, X. Alacoque e, G. Chaussery e, M. Peyre e, P. Acar g
a Pediatric Cardiology Unit, Children’s Hospital, Toulouse University Hospital, Toulouse, France
b CHU de Toulouse, 2, rue Viguerie · TSA 80035, 31052 Toulouse cedex 9, France
c Service de cardiologie pédiatrique, Hôpital des Enfants, CHU de Toulouse, Toulouse, France

Background.— Cardiac catheterization procedures are being increasingly performed in children with congenital heart disease for diagnostic and treatment purposes. Given children’s greater sensitivity to radiation and the longer life span during which radiation health effects can develop, the ALARA principle (irradiation As Low As Reasonably Achievable) is of particular importance. We report the radiation doses and related factors for children who underwent catheterization procedure in Toulouse children Hospital from January to April 2013.

Methods.— We prospectively included 60 children (mean age 4 years old, weight 2.350—59 kgs) undergoing a therapeutic (n = 55, 91.7%) or diagnostic (n = 5, 8.3%) catheterization procedures. We investigated the relationship between dose area product (DAP), fluoroscopy time (FT), pulsed fluoroscopic DAP, image acquisition DAP, age, morphological parameters and double products combining FT and weight or size or body mass index (BMI) or body surface area (BSA). BSA was calculated according to the Mosteller formula.

Results.— The mean DAP was 20,697 ± 29,342 mgycm². The mean total fluoroscopic time was 24.6 ± 19.7 min. DAP was not significantly different between diagnostic and therapeutic catheterization (P = 0.98). Although image acquisition DAP accounted for only 4.4 ± 2.4% of FT, it represented 42.5 ± 19.6% of DAP. DAP was moderately although significantly correlated with FT (r = 0.73, P < 0.0001), BSA (r = 0.47, P = 0.001), age (r = 0.37, P = 0.0082), weight (r = 0.43, P = 0.002) and size (r = 0.38, P = 0.0052). DAP was strongly associated with FT × Weight (r = 0.92, P < 0.0001), FT × BSA (r = 0.93, P < 0.0001) and FT × Size (r = 0.91, P < 0.0001). Linear regression analysis model involving FT × BSA to predict DAP was significant (P < 0.0001). Approximately 90% of the variance of DSA was accounted for by this model.

Conclusion.— FT and morphological features (BSA, weight, size) are the key parameters associated with DAP. Peculiar attention to reduce FT and avoid unnecessary image acquisition may decrease irradiation during catheterization in children with congenital heart disease.

http://dx.doi.org/10.1016/j.acvd.2013.06.035

29 Systematic description of cardiac phenotype based on the anatomical and clinical classification (ACC-CHD) in a DNA bank for congenital heart disease
Daniela Laux a, Fanny Bajolle a, Virginie Salle a, Stanislas Lyonnnet b, Damien Bonnet a

a Centre de Référence Malformations Cardiaques Congénitales Complexes (M3C)-Necker, Hôpital Necker-Enfants—Maladies, Assistance Publique des Hôpitaux de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
b Service de Génétique médicale, Hôpital Necker-Enfants—Maladies, Assistance Publique des Hôpitaux de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France

Background.— DNA banks containing samples of patients with congenital heart disease are being developed at international level. The accurate anatomic description of the cardiac phenotype of such samples is a key feature for their success.

Objective and methods.— To precisely describe the cardiac phenotype of the available samples of the "CARREG” DNA bank, started in April 2009 in our institution, based on the recently published clinical and anatomic classification (ACC-CHD) and the International Pediatric and Congenital Cardiac Code (IPCCC). Samples collected...