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Abstract 

For a finite connected simple graph G, let r be a group of graph automorphisms of G. Two 

kell embeddings I: G -+ S and J: G -+S of a graph G into a closed surface S (orientable or 
nonorientable) are congruent with respect to r if there are a surface homeomorphism h: S + S 
and a graph automorphism YET such that h 0 I=JOY. In this paper, we give an algebraic 
characterization of congruent 2-cell embeddings, from which we enumerate the congruence 
classes of 2-cell embeddings of a graph G into closed surfaces with respect to a group of 
automorphisms of G, not just the full automorphism group. Some applications to complete 
graphs are also discussed. As an orientable case, the oriented congruence of a graph G into 
orientable surfaces with respect to the full automorphism group of G was enumerated by 
Mull et al. (1988). 

1. Introduction 

Throughout this paper, by a graph G we always mean a finite connected simple 

graph with vertex set V(G) and edge set E(G). We denote the set of vertices adjacent to 

UE V(G) by N(u) and call it the neighborhood of a vertex v. An embedding of a graph 

G into a closed surface S (orientable or nonorientable) is a homeomorphism I : G + S of 

G into S, where G is regarded as a one-dimensional simplicial complex in the space R3. 

If every component of S - r(G), called a region, is homeomorphic to an open disk, then 

the embedding I: G + S is called a 2-cell embedding, and the regions are also called 

faces of the embedding. Note that if G is disconnected, no embedding into a connected 

surface will be a 2-cell embedding. 

Two 2-cell embeddings r:G + S and J: G -+S of a graph G into an oriented 

closed surface S are said to be equivalent if there is an orientation-preserving 

surface homeomorphism h: S + S such that h 0 1 =J. This means that the surface 
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homeomorphism h must preserve the labeling and direction of edges of the graph. Let 

Am(G) denote the group of graph automorphisms of G. As a weaker notion of 

equivalence of embeddings, we say that two 2-cell embeddings I : G -+ S and J: G + S of 

a graph G into a closed surface S (orientable or nonorientable) are congruent with 
respect to a subgroup r of Aut(G) if there are a surface homeomorphism h: S + S and 

a graph automorphism YET such that h 0 1 =JO y. Here, the surface homeomorphism 

h need not be orientation-preserving even if the surface S is oriented. If two embed- 

dings are congruent with respect to the full group Aut(G), we say just that they are 

congruent. If the surface S is oriented and the surface homeomorphism h preserves 

orientation, we call it oriented congruence. It is a congruence that is found, for 

example, in [13,14]. 

Mull et al. [ 131 enumerated the oriented congruence classes of 2-cell embeddings of 

a graph into orientable surfaces. In this paper, we refine their method for enumeration 

of the congruence classes of 2-cell embeddings of a graph into orientable or nonorient- 

able closed surfaces. It has possibly seemed that concrete enumeration of nonorient- 

able embeddings would largely depend on essentially new methods, such as the 

overlap matrix, which was introduced by Mohar [ 121 and applied concretely by Chen 

et al. [3]. The present paper demonstrates that with sufficiently complete analysis, the 

existing enumerative machinery can also yield concrete results for nonorientable 

embeddings. Unless we explicitly say otherwise, from now on, all embeddings mean 

2-cell embeddings, and all surfaces mean closed surfaces. 

An embedding scheme (p,A) for a graph G consists of a rotation scheme p which 

assigns a cyclic permutation pv on N(v) to each IJE V(G) and a voltage map ,I which 

assigns a value n(e) in Hz = (1, - 1) to each eeE(G). The voltage covering graph G” 

derived from the voltage map II on G has V(G) x Z2 as its vertex set and E(G) x Zz as 

its edge set, so that an edge of G” joins a vertex (u, E) to (u, ;l(e)cc) for e= WEE(G) and 

EZ,. In the covering graph G”, a vertex (u, X) is denoted by u=, and an edge (e, LY) by e,. 

Then the natural projection pl:G” + G is a 2-fold covering projection (see [7] 

for a precise construction of the covering projection P~:G*+ G). Stahl [16] showed 

that every embedding scheme for a graph G determines a 2-cell embedding of G into 

a surface S (orientable or nonorientable), and every 2-cell embedding of G into a 

surface S is determined by such a scheme. The orientability of S can be detected by 

looking at the voltage assignment of cycles of G. In fact, S is orientable if and only 

if each cycle of G is A-trivial, that is, the number of edges e with n(e)= - 1 is even 

in any cycle of G. In particular, every 2-cell embedding of G into an orientable 

surface can be determined by an embedding scheme (p, A) with n(e)= 1 for each 

eEE(G). 

Let (p, A) be an embedding scheme for a graph G. The derived rotation scheme p’ for 

the voltage covering graph G” is defined by lifting p. (say p,‘) to ur and lifting p; ’ to 

u-r for each UEV(G), i.e., for e=uvEE(G) and u,EP;~(u), where tx~{l, -11, let 

w=(p,)“(o)~N(u) and d =uwEE(G). Then, for v~(+EN(u,) 

(d&A(e)a) = WA(d)a. 
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The rotation scheme p’ determines an embedding r: G” + s” of G” into an orientable 

surface 5 by inserting a region into every closed walk of G” determined by p’. Here, if 

G” is disconnected and so has two components, then each component of G” has 

a 2-cell embedding by p’ into a closed surface, and $ has two components each of 

which is an orientable surface. To adopt some notations from [16], we describe how 

(p,A) determines the embedding of G into a surface S as shown in the proof of 

Theorem 2 in [ 161. The regions of the embedding of G” into s” can be partitioned into 

pairs {I?, fi} with R # l? so that the oriented boundaries of R and I? project down to 

inverse walks of G. Let .B? be the collection of regions which contains only one region, 

say R, from each pair of {R,R^}. Let P(R) denote a plane polygon whose oriented 

boundary is (e,,ez, . . . ,e,) if the oriented boundary of l? is (ZI, Zz, . . . , if,), where di is 

a lift of the edge ei in G. Then each edge e in G occurs twice as the side of some P(R); 

i.e., either there are two regions in 9 on each of whose boundaries e occurs once, or 

else there is a single region in 9 on whose boundary e occurs twice. Now, an 

application of the side identification process of the collection P(9) = {P(R): I?E?#} 

yields a 2-cell embedding 1: G + S of G into a surface S. Moreover, ,$ is the canonical 

orientable double covering of S and the graph covering projection pi: G” -+ G can be 

extended to the surface covering projection 7~~ : s” 4 S such that the following diagram 

commutes: 

2. Congruence with respect to the trivial subgroup 

We use 1x1 for the cardinality of a set X. For a connected graph G the number 

/I(G)= IE(G)I -I V(G)1 + 1 is equal to the number of independent cycles in G and it is 

referred to as the Betti number of G. Throughout this paper, let I- denote a subgroup of 

Aut(G), and for any YEN, ye and ye stand for y(u) and y(e) respectively. Let C’(G; Z,) 

denote the set of maps from V(G) to Z2. 

Theorem 2.1. Let G be a graph, and (p, i) and (T, p) two embedding schemes for G with 

the corresponding embeddings I: G + S and]: G -+ S, respectively. Let r be a subgroup of 

Aut(G). Then the following are equivalent. 

(a) The two embeddings 1 and J are congruent with respect to r. 
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(b) There exist a graph isomorphism @: G” +GflandyErsuchthatp,~@=y~p,and 
(+‘)Q(,~) = @ 0 (p”)u, 0 @- ’ for all U,E V(G”). 

(c) There exist YET and ~ECO(G;ZJ such that ~~~=y~(pJ~(“)~y-~ and 

,a(ye)=f(u)l(e)f(u)for all e=uuEE(G). 

Proof. (a) * (b). Let h:S + S be a surface homeomorphism and YE- r a graph 

automorphism such that h 0 1 =I” y, i.e., the diagram 

shs 

1 I I J 

G-G 

commutes. Let $ be the canonical oriented double covering of S. We define a surface 

homeomorphism &: g+ 9 as follows: Let R be an oriented region of the embedding 

z: G +S. Then h(R) is a region of the embedding J: G +S. We assume that h(R) is 

oriented with the orientation inherited from that of R. Let R and i be the oriented 

regions of the embedding i:G”+s such that xA(R)=n,(R^)= R, and let l?’ and R^’ be 

the oriented regions of the embedding ?:GP -+$ such that q,(R’)=z,(l?‘)=h(R), 
where ? andJ are the embeddings determined by the derived rotation schemes p’ and 

tP respectively. From the construction of the embeddings z andJ of G into S, we know 

that the orientations of the polygons h(P(R)) and P(I?‘) are the same or opposite. We 

define h”:s”-+$ as follows: &(@=I?‘, &@=I?’ if h(P(R))=P(R’) with the same 

orientation, and i(R) = J?‘, h”(R) = ri’ if h(P(R)) = P(l?‘) with the opposite orientation. 

Clearly, 6: s”-, s is an orientation-preserving homeomorphism with the property 

rc,, 0 h”= h 0 nn, i.e., the diagram 

commutes, where x1 and rr,, are the canonical surface covering projections corres- 

ponding to the embedding schemes (p, A) and (7, p) respectively. Let 0: G” -+ G” be the 

map defined by @ =j- lo Lo i: Then @ is a graph isomorphism and all the rectangles in 

the following diagram commute: 
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PX 

Now, it is clear that (tQ,(,3=@~(pa)vX~ Q-i. 

Conversely, if the condition (b) holds, then the condition (r”)o(,=r = @ 0 (p”)“. 0 @- ’ 

gives the existence of an orientation-preserving homeomorphism h”: s”+ 5 such that 

j 0 @ = & 0 i: Consider the following commutative diagram 

PA PP 

Let R be an oriented region (or an oriented closed walk of G) of the embedding 

1: G + S. Let R and R be the oriented regions of the embedding 7 that project down to 

R in the same and in the opposite orientation to that of R, respectively. Then i(R) _ I 
and h(R) are oriented regions of the embedding J which cover a region 

n,(&R)) = rr#(R)) = R’. Without loss of generality, we may assume that the orienta- 

tion of R’ inherits that of i(R) and the embedding J: G +S is induced from these 

orientations of R’s. We define a map h : S -+ S by h(R) = R’ for each region R in S. Then 

h is a surface homeomorphism which makes two embeddings 1 and] congruent with 

respect to r. 

(b) e (c). By assuming (b), we define a mapf: V(G) + Ez so that @(u,)=(yu)~(,r, for 

each LYEZ~, i.e., 

f(u)= 
1 if @(U,)=(P),, 

-1 if @(uJ=(yu)_,. 

If U, and u, are joined in GA, then /?=A(uu)a and UEE(G). Since @ is a graph 
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isomorphism (YU)~(,~)~ and (YU),-,,,, are joined in GP. Thus p(yu yv)f(u), =f(u)B= 

f(v)l(uv)cr and hence ~(yuyv)=f(u);l(uu)f(u) for each WEE(G). Moreover, for any 

vertex veV(G), we know @(uJ=(y~)~~~~. If f(u)=l, then @(u~)=(~u)~, and 

(rP)ov)r = @ 0 (p”)“, 0 @- ’ which gives zyV =y 0 pv 0 y-l by the definitions of ?‘(, pA 

and the condition pPo @=yo pn. If f(u)= -1, then @(~~)=(yu)-~ and 

(r“)(,,)_ 1 = @Gus 0 @- ’ which also implies (tJi =y 0 pD 0 y- ‘. In both cases, we get 

ryy = y 0 ( pu)f(“) 0 y - I, which proves (c). 

Next, by assuming (c), we define a map @ : G” + Gfl by @(u,) = (YU)~(~)~ for V,E V(G”). 

Then @ preserves the adjacency of vertices, because /1(ye)=f(u);l(e)f(v) for all 

e = UUE E(G). Clearly, @ is a graph isomorphism and pr 0 @ = y 0 pI_ Now, we show that 

(~‘)a(,~~ = @ 0 (p”),, 0 @- ’ for all v,EV(G’). Let won, d=vw~E(G) and UEZ~. Then, 

for WW+N(U,), we get 

= ((z w )f’“‘“(yw)) P(YO (r,")"""=(Yw)) [by definition of P] 

= (Y(P”YWh(Y” y(p.)“(w))/(u)a [since Y W(w) = (~yJf(“%w)l 

= (Ywf(ww(“w3a 

= wd(“Wd 

= @((P”)v,(w,I(d)a)) [by definition of ~“1, 

where w ’ = (pJ’(w)~ V(G). Therefore, we get 

(%J(“m, = @q&G? 0 

Definition 2.2. Two embedding schemes (p, A) and (z, p) for G are congruent with 

respect to a subgroup r of Aut(G) if there exist a graph automorphism YET and a map 

~EC’(G;Z,) such that ryv=y~(pV) f(u) c y- 1 and p(ye)=f(u)l(e)f(v) for all VE V(G) and 

e=uvEE(G). 

Theorem 2.1 says that two embedding schemes for a graph G are congruent with 

respect to r if and only if their corresponding 2-cell embeddings of G are congruent 

with respect to r. 

Definition 2.3. Two double coverings G” and GP of G are isomorphic with respect to 

a subgroup r of Aut(G) if there exist a graph isomorphism @: GA+GP and a graph 

automorphism YET such that the following diagram commutes: 
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G-G 

It is known (see [S, 9, lo]) that two double coverings G” and GP are isomorphic with 

respect to a subgroup r of Aut(G) if and only if there exist a graph automorphism YET 

and a mapfeC’(G; H,) such that p(re)=f(u)J(e)f(u) for all e=uv~E(G). Now, this 

fact and Theorem 2.1 give the following corollary. 

Corollary 2.4. If two 2-cell embeddings 1: G + S andj: G + S are congruent with respect 
to a subgroup r of Aut(G), then their corresponding double coverings of G are isomorphic 
with respect to r. 

Negami [15] showed that if the surface S is the projective plane and the graph G is 

3-connected and nonplanar, then the converse of Corollary 2.4 is true. 

The local uoltage group H,(u) of a voltage map L at a vertex v is the subgroup 

of B2 consisting of all net voltages occurring on v-based closed walks. Note that 

the number of components of G” is the index of Z,(u) in Z2, The following 

theorem might be well known but we have not seen it anywhere. The proof is not 

difficult. 

Theorem 2.5. Let (p, A) be an embedding scheme for a graph G. Then the following are 
equivalent. 

(a) The embedding scheme (p, A) determines an orientable embedding. 
(b) The derived double covering G” is disconnected. 
(c) The local voltage group Z2(u) of 1 at any vertex v is trivial. 

Recall that every 2-cell embedding of a graph G into a surface S is determined by an 

embedding scheme for G. Let b(G) denote the set of all embedding schemes for G. To 

define a group action on b(G) so that their orbits stand for the set of all congruence 

classes of embedding schemes, we first note that C’(G; H,) becomes a group isomor- 

phic to OIVcol Z 2 under the binary operation given by (fg)(u)=f (v)g(v) for all VE V(G). 

Let C’(G; Z,) denote the set of voltage maps from E(G) to Z2 and r a subgroup 

of Aut(G). We define r-actions on C1(G;.Z2) and on C’(G; Z,) as follows: 

(yn)(e)=A(y-‘e) and (yf)(v)=f(y-‘v) for YES, ;lK’(G;Zz), feC’(G;Z,) and 

e = UUEE(G). 

Let r x C’(G; Z,) be the semidirect product group of r and C’(G; Z,) with an 

operation defined by (YI,~~)(~~,~~)=(Y~Y~,(Y;~~~)~z). Define a group r x C”(G;Zd 
action on b(G) by (y,f) (P,~)=((Y,~)P,(Y,~)~) for any h4WG) and 
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(~,f)~r x C’(G; Hz), where for any UE V(G) and e=uvcE(G), 

C(r~f)Pl”=Y”(PV~l”)~‘Y-‘“)Oy-l, 
and 

Let %Zr(G) = 6(G)/T x C’(G; Z,) be the orbit set. Then Theorem 2.1 gives that %JG) 

stands for the set of all congruence classes of embedding schemes with respect to r. 

Let I denote the identity element of Aut(G). 

Let T be a fixed spanning tree in G with base vertex uo. We can assume that all 

voltage maps A in the embedding schemes (p, A) in 8(G) satisfy n(e)= 1 for each eEE(T) 
without loss of generality. To show this, we first define a map 3’ :C’(G;ZJ+ 

C’(G; Z,) as follows: for any UE V(G) there exists a unique path ele2 ... e, in the tree 

T from v. to v and we define 

Z#(A)(u)=l(e,) ..-n(e,). 

We write 

Ci(G; Z,)= {kC’(G; Z,): n(e)= 1 for each eEE(T)}, 

and define a map J*:C1(G;B2)+C~(G;Z2) by 

S*(1) (uu)=3#(2) (u) @v)3#(l) (u). 

Let ~,(G)={(p,J&Zo): kCi(G;Z,)). Then the map 3* induces a map 

d(G)+&,(G) which sends (p,l) to (p’,Z*(J)), where (p’)U=(pJ3#(‘)(“). We also 

denote this map 3*. Clearly, J* is the identity map on b,(G). Hence, we have the 

following corollary. 

Corollary 2.6. Zf T is a spanning tree of G and (p, A) an embedding scheme for G, then 
there exists an embedding scheme (p’,l’) for G such that (p’,A’) is congruent to (p,A) 
with respect to the trivial subgroup (I} and A’(e)= 1 for each eeE(T). 

Corollary 2.6 says that gT(G) has all representatives of congruence classes of 8(G). 

Let T be a spanning tree of G fixed by every automorphism y in a subgroup r of 

Aut(G), by what means, y(T)= T. Then any two embedding schemes (p, A) and (z,~) in 

&r(G) are congruent with respect to r if and only if there exist a graph automorphism 

ygT and FEZ, such that Tyv=yO(pv)aOyP1 and p(ye)=l(e)for all e=uvEE(G)-E(T), 
because the map f in Theorem 2.1(c) must be constant. Thus, r x CO(G; H,) action on 

b(G) can be reduced to the r x Hz action on b,(G), that is, Iqr(G)I = Ib,(G)/T x iZ21. 

It is not difficult to show that 

Ib,(G)I=28(G’ n (d(v)- l)!, 
WV(C) 

where d(v) is the degree of vertex u. 
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Table 1 

B(G) 3 4 5 6 7 8 
I~#(G)I 26 29 212 215 2’8 22’ 

A graph is said to be irreducible if either it has only one vertex or else every vertex 

has degree at least 3. 

Theorem 2.1. Let G be an irreducible graph and r= {I). Then 

I%~,I(G)I=2~(G)-1 n (d(v)-l)!. 
ueV(G) 

In particular, f G is regular of degree d, 

WC1;(G)I=2 B(G)-1 ((d_l)!)l~(G’I. 

Proof. If (Z,a)(p,I)=(p,A.) for aE.Z,, then (p,)“=p, for each usI’( Since G is 

irreducible, a = 1 for all DE V(G). Thus, (I, a) fixes an element of b,(G) if and only if 

a= 1 for all UE V(G), and (I, 1) fixes all elements of b,(G). By applying the Burnside 

lemma, we get 

1 
l%‘,,;(G)l=, 2@“’ n (d(u)- l)! 

UEV(G) 

= 2/7(G) - 1 n (d(u)-l)!. 0 
vet’(G) 

Though the above theorem is stated only for an irreducible graph, it remains true 

for any graph, because a homeomorphism can eliminate not only the vertices of 

degree two, but also the vertices of degree one. 

Corollary 2.8. Zf G is regular of degree 3, then I~TZ’~,)(G)I =21E”“. 

If a graph G is regular of degree 3, then 31 V(G)1 =2lE(G)l and I V(G)1 is even with 

greater than 3. Thus, we have 

and lE(G)l=3/?(G)-3. Hence, for a 3-regular graph G, we get Table 1 for l%l,l(G)l. 

3. The isotropy subgroup Isot (fi p, A) 

We first recall the r x C’(G; Z,) action on the set b(G) of all embedding schemes for 
G defined by (YJ) h 4 =((yJh (YJV) with 

C~Y,f~P1”=y”~~y-‘“~f~~-L”~o y-l, 

C~y,f~~l~~~=f~y~‘~~~~y~‘~~f~y~‘~~. 
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Let Isot(Z;p,i) denote the isotropy subgroup of Z x C’(G; Z,) at (p,;1), that is, the 

subgroup of all (y,f)~Z x C’(G; E2) such that (y,f) (p,I)=(p,Iz). We study some 

properties of the isotropy subgroup Isot(Z; p, 1) in this section, for use in later sections. 

Let N denote the set of natural numbers. 

It is clear that if (y,f)EIsot(T;p,A), then (y,f)“(p,k)=(p,A) for all HEN. Thus, we 

have the following lemma. 

Lemma 3.1. Let (y,f)EIsot(Z; p, A). Then, for all no N, we have 
(a) pv=y”o(py~“v)n:=l/(Y-‘V)oy-nfor any zxV(G). 
(b) A(e)=(n~=if(y-‘u));l(y-“e) (fl~=,f(y-i~))for any e=uueE(G). 

Theorem 3.2. Let (y,f)EIsot(Z; p, A), and let ym fix an edge u,uo for some rnE N, which 
means ymuO =uo and ymvO =uo. 

(a) If n~zl,f(y-iuO)= 1, then y”=Z and n;!If(y-i~)= 1 for any WE V(G). 

(b) Zf nr=if(y-‘u,)= - 1, then y’“=Z and nfrIj(y-iw) = 1 for any WE V(G). 

Proof. (a) Suppose fl~EIIf(y-iuo)= 1. Then Lemma 3.1(a) and the hypothesis 

ymuO = u. give pUO = y” 0 pU, 0 y -“, that is, pUO 0 y” = y” 0 pUO. Then for each nE N, 

Thus y” must be the identity on the neighborhood N(u,) of uo, because (p,,)“(uo), 
n = 1,2, . . ,I N(u,) 1, runs over all vertices adjacent to uo. Now Lemma 3.1(b) gives that 

ny’ if(y -‘u)= 1 for all r~N(u,-,). By repeating the same process, we can get that y”’ is 

the identity on the neighbourhood N(v) of all the vertex urn and ny= if(y-‘w)= 1 

for any won. Now the proof of (a) comes from the connectivity of the graph G. 

(b) Suppose nT= ,f(y-‘u,)= - 1. Clearly, we have n~~lf(y-i~o)=(n~E i 

f(y-i~,,))2= 1. Since y2muo=~o and y2m~O=~o, it follows from (a) that y2”=Z and 

nFE1f(y-i~)= 1 for any WE V(G). 0 

Corollary 3.3. Let e = uu be an edge of G and let (y,f)EIsot(Z; p, A). 
(a) Zfyu=u, yu=v andf(u)= 1, then y=Z andf(w)= 1 for any WE V(G). 
(b) Zfyu=u, y~=u andf(u)=-1, then y2=Z andf(w)f(yw)=lfor any weV(G). 
(c) Zfymu=u and ymu=u, then y2”=Z and n,?=If(y-i~)=lfor any WEV(G). 

Proof. (a) and (b) are immediate consequences of Theorem 3.2. We only prove (c). 

Clearly, we have yZmu=u, y2”‘u=u. Since A(uu)=l(uu) in Z2, Lemma 3.1(b) gives 

n~=~f(~-~u)=n~=~f(y-~u)= f 1. Hence, 

i~f(Y-iu)=(~fo.iu))( i=i~+lf(YiuI)=(ijlf~Y-iu~)( fifcPa))=l. 
i=l 

Now, by applying Theorem 3.2(a), we get (c). 0 
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For each yEAut(G), let I(u;y) and I(e;y) denote the length of the vertex cycle 

{y”v: HEN) and th e 1 ength of the edge cycle {y”e: HEN} induced by y for e=uuEE(G) 

and UE I’(G), respectively. That is, 

~(~;Y)=I{y”rInEN}l and l(e;y)=l{y”elnEN}l. 

Theorem 3.4. Let (y,f)~r x CO(G; Z,). Then (y,f)EIsot(T; p, A) for some (p, A)E&(G), 
i.e., (y, f) has a fixed point (p, A), r$ and only if the following conditions are satisjied: 

(a) ~f~~‘f(y-i~)=#(=e:~)f(y-iu)for any e=uuEE(G), and 

(b) for each VEV(G), there exists a cycle ov on N(u) of length IN( such that 
(~,=y~(a~-l~)~(~-‘“)~y-’ on N(u). 

Proof. Suppose that (y,f)EIsot(r;p,1) for some (p, J)&‘(G). Then Lemma 3.1(b) gives 

A(e)=A.(y’(“Y)e)= (Try i ) (:I:’ i ), fl f(y- u) l(e) n f(y- u) 

for any e = uv. This implies (a). Let (T” =pV for all VE V(G). Then, from Lemma 3.1(a), it 

follows that 

~a=P”=yo(p~_,“)/(Y-‘~).y-l=yo(ay_I”)~(y-’~)Oy-l 

on N(u) for any UE V(G). Conversely, suppose that (y, f) satisfies conditions (a) and (b). 

By using this, we aim to find an embedding scheme (p, 2) which is fixed by (y, f ). Let 

p be the rotation scheme defined by pD = 0, for each VE V(G). Then (y, f )p = p, because 
~“=yo(~v-I”)~(~-‘~‘“y- ’ for any VE V(G). To define a voltage map 1, let { y”e: no N> be 

any edge cycle and define 2(e) to be any element in Hz. To satisfy (y, f )A = 1, we must 

have 

W=( fif (y -‘.))W”e) ( fif (y-3) 

for any e=uuEE(G) and for any nEN, by Lemma 3.1(b). Hence, we define A(y”e) 

inductively on n>, 1 by 

I(y”e)=f (y”-‘u)A(y”-‘e)f (y”-‘u) 

for e=uv. Then, for the length l(e; y) of the edge cycle {y”e: nEN}, 

l(Y UeMe) =f (yl(e:r)- lU)~(yue:Y)- le) f (p:Y)- 1 v) 

=f (p:Y)- lu) [ f (yl(e:Y)-2U)~(yf(e;Y)- 2e)f(y”‘;“-2v)] f (yW- lu) 
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by condition (a), which shows that the map 1 is well-defined on any edge cycle and so 

on E(G). Now it is clear that (y,f)EIsot(r;P,A). 0 

For each yeAut(G), let (y) denote the subgroup of r generated by y. We define 

a new graph G,, whose vertex set is V(G)/(y)={[r]: UEV(G)} and edge set 

E(G)I(Y)={C 1 e : eeE(G)), where [x] denotes the orbit of x under the (y) action on 

V(G) or E(G). Then, it is clear that I(u; y) is the cardinality of [u] for any ECU]. We say 

that [U]E V(G,) has property P if either y Q”;~) is not of order 2 on N(u) for all VE [u], or 

I(u; y) is even and t~y~(“;y)‘~ (u)sE(G) for all u~[u]. For _kC”(G;Zz), we define 

f( [u]) =nrt;;‘f(y-‘u) for [U]E V(G,). 

Lemma 35. Let G be an irreducible graph and let (y,f)EIsot(G;P,n). Suppose that 
[u]EV(GJ has property P. Thenf([u])= 1. 

Proof. First, let y ‘(“J) be not of order 2 on N(u) for all UE[U]. We assume that 

f( [u]) = - 1. Then 

p” = [(r,f)““‘Y’P]” = p:Y) o (p”)/(bl) o y - Qw) = p:Y~ o p; 1 o y - W)_ 

But, for a given n-cycle, say O, in the symmetric group S,, there are exactly n elements 

CO in S, which satisfy Woo- ’ = c-l, and such n elements are of order 2 (see [ll]). 

Hence JJ’(“;~) must be of order two on N(u), which is contradictory. Thus f( [u]) 

must be 1. 

Next, let l(u; y) be even and u~‘(“~Y)‘~ (u)EE(G) for all UE[U]. It is clear that 

&JY ‘(“~y)‘2(u); y)= I(u; y)/2. If we apply Corollary 3.3(c) to this situation, we have 

j([u])=nr_‘=v;:‘f(y-iu)=l. 0 

4. Congruence with respect to nontrivial subgroup6 

In this section, we enumerate congruence classes of embeddings of G into surfaces 

with respect to any arbitrarily given subgroup r of Aut(G). First, we introduce some 

notations for (y,f)~r x CO(G; Z,) and a vertex UE V(G) as follows: 

Fix(,,_r,= {(P, AM’(G): (r,f) (P, A)=(P, A)>, 

~(~,f)=(C~l~~(Gy):f(C~l)=l), 

~(r,f)=(Cul~~(Gy):f(Cul)= -l>v 

P,(y”) = (a: 0 is a cycle permutation on N(u) and y” 0 o 0 y -” = rr}, 

I,(y”)=(a: CJ is a cycle permutation on N(u) and y”~~~y-“=o-~}, 

for nel?J. If every automorphism in r fixes a given spanning tree T of G, the 

r x C”(G;HZ) action on I(G) can be reduced to the r x Ez action on &r(G) and 
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J%?,(G) I= (br(G)/T x Z, I. In this case, we adopt the following additional notations: 

Fix’ (?,a)={(~, BELT: (Y,~)(P,J)=(P,~)} for (Y,~)E~X~Z~ 

ET(G,)={[uv]~E(G,): t&E(T)). 

It is easy to show that &ECO(G:r2) [Fix (r,,fJ =&CO(G;B2) I Fix(r2./)l if YI and ~2 are 
conjugate in Aut(G). By using the Burnside lemma with this fact, we have the 

following theorem. 

Theorem 4.1. 

where S is the set consisting of all representatives of conjugacy classes of r, and C(y) 
denotes the conjugacy class of y in I-. 

Corollary 4.2. If every automorphism in r fixes a spanning tree T of G, then 

1 
I~KJ)I=~(T( yeS lC(Y)l(lFix~,,,I+lFix~,-~,O, c 

where S is the set consisting of all representatives of conjugacy classes of r, and C(y) 
denotes the conjugacy class of y in r. 

Now, we aim to calculate I Fixof)). It is clear that IFixo,/,J #O if and only 

if (y, f) satisfies conditions (a) and (b) of Theorem 3.4. We define a map 

JI: r x C’(G; H2) + (0, 1) by $(y,f)= 1 if (y,f) satisfies the condition (a) of Theorem 3.4, 

and $(y, f) = 0 otherwise. 

Theorem 4.3. For (y, f )er x C’(G; Z,), we have 

I Fixc,,fJ I = WJ) 21E(Gy)i I”,~~~illpY(Y~(“:~‘)l n I~“(Y1(“% 
[4Em.f) 

where the product over the empty index set is dejined to be 1. 

Proof. Let (p, +Fixo/), or equivalently (y, f )EIsot(r; p, A). Then, the voltage map 

1 satisfies 

n(e)= (fif ( yiu))G-‘e) ( fifKi4) 

for any e=uvEE(G) and for any nEN, by Lemma 3.1(b). Hence, for any edge eEE(G), if 

n(e) is defined to be any element in Zz, then A is completely determined on the edge 

cycle [e] = { y”e: neN) containing e by the value J(e), so that there are exactly 2’E(Gy” 

ways to define such I’s. On the other hand if (y, f )p = p, then 

P”=Y”“(PV_,“)n:=l/(Y-iu)Oy-n 
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for any UE V(G) and for any neN, by Lemma 3.1(a). Hence, for any vertex UE V(G), if pV 

is defined as a cycle permutation on N(v), then p is completely determined on the 

vertex cycle [u] = {y”u: HEN} containing v by the permutation pU. Moreover, if 

nft;;‘f(y-i~)=f( [VI)= 1, then 

= 
Y 
hw) o p" o y--l(o;Y), 

by Lemma 3.1(a), so that p,~P,(y ltviy)) If n!?:)f(y-‘u)=f( [u])= - 1, we can get . ,_ 

P” = YrW) O (P”) - 1 O y - KW), 

so that p l l,(y”“,~)). Therefore, the number of all possible ways to define p so that 

(YAP =B is 

,“,E;y I) I p”(Y~(“;y))l l-l I I”(Y1(“;y)) I. 
lUlEQY.fl 

This completes the proof. 0 

If (y, u)~T x Zz, then (y, c() satisfies the condition (a) of Theorem 3.4. This gives the 

following corollary. 

Corollary 4.4. If an automorphism yEr$xes a spanning tree T of G, i.e., y(T) = T, then 

IFix~,1,1=21Er(GY)I I p”w(“iy9 I1 
I 
) 

and 

IFix~,-lJl=21Er(G~)l [“]& , I p”(Y~(“;y)) I n I I”(Yl(“;y)) I > 
1[o]l=eoAI 

[ulEwb) 
I[u]l=odd 

where the product over the empty index set is defined to be 1. 

To complete the calculation of I Fixof) I or I Fix;,,, 1, we need to calculate I P&‘(“;“))l 
and I Z,(y’(“iy))l. F or a permutation OES,, let j, be the number of cycles of length k in the 

factorization of cr into disjoint cycles. Then the n-tuple (jl, j,, . . . , j,) is called the cycle 

type of c and we denote it by j(o). Let 4 be the Euler phi-function. In [13], the number 

IPU(yl(“:Y))I was given as follows. 

Theorem 4.5. Let [U]E V(G,) and IN(u)1 = n. Then 

(p”(yIw))( = fd) ((w)-- l)! dnid)-l if j(yl(“;y)IN(o)) = (0, . . , 0, jd = n/d, 0, . . . , 0), otherwise 
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To calculate IIV($‘“;Y))I, we adopt the following additional notations: 

J1={g~S.: j(a)=(l,(n-1)/2,0 ,..., 0)} for odd n, 

J,={uE&: j(a)=(O,n/2,0 ,_.., 0)} for even n, 

J3={o~S.: j(o)=(2,(n/2)-l,O, . . . ,O)} for even n, 

I,= {cxS,,: D is an n-cycle and CXG~I-~ =a-I} for c(ES,. 

Lemma 4.6. For an @ES,, 1 I,[ #O if and only if a belongs to Ji for some i= 1,2,3. In 

particular, JZV($(“‘y))I #O if and only if~‘(“‘~)I~(~) belongs to Jifor some i= 1,2,3. 

Proof. Let a=(alaz ... a,) be an n-cycle in S,. Consider the regular n-gon Q in the 

plane with vertices a,, u2, . . . , a, labeled consecutively. Then the symmetry group of 

Q is isomorphic to the dihedral group D,. Moreover, 0 is a generator of the cyclic 

subgroup of order n of the symmetry group of Q. Note that there are exactly 

n elements of order two in the symmetry group of Q which are all reflections, and by 

the conjugation action of such n elements of order 2 in the symmetry group of Q, 0 is 

sent to 6- ‘. It is not difficult to show (see [ll]) that there are exactly n elements YES, 

such that 6a1X1 =c2 for any two n-cycles g1 and g2 in S,. Since 0-l is also an n-cycle 

and any element of order 2 in the symmetry group of Q is contained in one of the sets 

J,, J2 and J3, we have the lemma. q 

N(u) ( = n. Then Theorem 4.7. Let [VIE V(G,) and 

I I”( y’(“;y)) I = 

I 

((n - 1)/2)! 2(“- ‘)” if n 

(n/2) ! 2(“/2) - 1 if n 

is odd and j(ylc”;y)l N(vJ =(l, (n- 1)/2,0, . . . ,O), 

and j(yl(“;y)INcV)) = (0, n/2,0, . . . , 0), is even 

I 

((n/2)- l)! 2(ni2)-i if n is even 

0 otherwise. 

Proof. Since Y’(“;~) is a permutation on 

and j(y”““)IN(v))=(2,(n/2)-t,0, . . . . 0), 

N(v) and IN( =n, we identify yz(“:y) as 

a permutation on S,, say w. Then, we have I I,(y l(“J)) I = I I, 1, and if this is not zero, then 

weJj for some i= 1,2,3, by Lemma 4.6. It is well known that the number of 

permutation in S, of cycle type ( jI,. . . ,j,) is 

Hence, we get 

lJ1l= ‘! 
I 

((n - 1)/2)! 2(“- ‘)P ’ IJ21=(n,2;(2”!2 
JJ31= ‘! 

((n/2)-1)! 2”12’ 
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But, we note that for any i= 1,2,3, 

~~,Iz,I=I{(a,a)EJixS,: ais an n-cycle and z~c(-~=~-~}~ 

= C l{CrEJi: abtC1=C1}l, 
C = n-cycle 

and 

which can be shown by an argument similar to the proof of Lemma 4.6. Hence, for any 

i=l,2,3, 

Ez 11,1= (n-l)!n 

i 

if i=l 

(n-l)!n/2 if i=2 or 3. 

On the other hand, for any two permutations a, and q having the same cycle type, we 

get I I,, I = I I,, I. Hence, we have 

a; I~~l=I~~~I~IJil 

for any UeEJi and for i= 1,2,3. Hence, we get 

‘((n - 1)/2)! 2(“-1)/2 

Il_l=~ C,Iz,1=((n/2)!2’“‘2’-’ 

if uxJl, 

if OEJ~, 
1 ad, ((n/2)-1)! 2(“12)-1 if OEJ,, 

which completes the proof. 0 

5. Application to complete graphs 

To illustrate some applications of our results, we enumerate the congruence classes 

of 2-cell embeddings of the complete graph K, on n vertices vl, v2, . . . , u, with respect 

to a subgroup r of Aut(K,). The automorphism group Aut(K,) of K, is the full 

symmetric group S,. We identify Aut(K,) with the symmetric group S, of n elements 

1,2,..., n. For n = 1,2,3, it is not difficult to enumerate the congruence classes of 2-cell 

embeddings of K,: 

: 

1 if n=l, 

I+?,-(K,)I = 1 if n=2, 

2 if n= 3, 

for any subgroup r of Aut(K,). Note that l%‘,-(K3)j = 2; one is 2-cell embedding of K, 
into the sphere S2 and the other is one into the projective plane. In what follows, we 

assume n 2 4. It is not hard to prove the following lemma, which can be found in [S]. 
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Lemma 5.1. Fur a y ES, with the cycle type (j 1, . . . ,j,), the number 1 E(KJ is given by 

where Lx J is the greatest integer less than or equal to x, and gcd(r, t) is the greatest 
common divisor of r and t. 

First, let I- be the trivial subgroup {I> of Aut(K,). Then the following comes from 
Theorem 2.7. 

Theorem 5.2. 

To enumerate t%‘&K,)[ for some nontrivial subgroups r of Aut(K,), we first start 
with the following lemma. 

Lemma 5.3. Let yEAut(K,)=S, andf~C*(K,,;Z~). 
(a) If y has more than 3Jixed vertices, then 1 Fix (y,Jjl #O ifand only $y is the identity 

1 andJ(vJ=lfor i=I,2 , . . ..n. For these y andfj 

IFix,,,,,l=2(‘)((n-2)1)” . 3 

and 

c IFixc,,f,l=2(‘)((n-2)l)” . . 

fcC”Wi 2’2) 

(b) If y has exactly three fixed vertices, say vl, v2, u j, then I Fixlv,f) I# 0 if and only f 
f(Vi)=- 1 for i=l,2,3, f([u])=l for any [V]EV(K,~)-(U~,V~,U~~, n is odd and 

j(y) =(3, (n - 3)/2,0 , . . . , 0). In this case 

and 

c IFix,,,/, =p*+8n-2~4 3 ((n_2)!)(“-3)~z. 
&WKiB,~ 

(c) If y has exactly two fixed vertices, say vl,v2, then 1 Fix(,,J,l #O if and only if 
f’(uJ=-1 for i=1,2, f([v])=l for any [v]~V(&y)-{vl,u2i, n is even and 

i(Y) = (2, (n - 2)/2,0 , . ,. , 0). In this case 

t Fix(,,f, I = 
201~ +4n- B)/4 

and 
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(d) If y has exactly one fixed vertex, say vl, then (Fixc,,/,I #O if and only if (r,f) 
satisfies one of the following two conditions. 

(9 f(4)= Lf(Cvl)= 1 f or any [v]EV(K,~)-{V~) andj(y)=(l,O,...,O,j,=(n-1)/d, 
0 ,...,O)for some d)(n-l), d#l. In this case 

I Fix(,f) I = 2 ~L4~+“j~)+@+f,(~) !d((“-l),d)-I (( _2),)(n-l),d 

n . > 

and 

(ii)f(v,)= -l,f([v])=l for any [v]EV(K,~)--(V~}, n is odd and j(y)=(l,(n-l)/ 

290 , . . . ,O). In this case 

1 Fix (Y./J I = 2 
(n2 + 2n - 7)/4 

and 

(e) Zf y has no fixed vertex, then 1 Fixb,fj I# 0 if and only if (r,f) satisfies one of the 
following two conditions. 

(i) There is a divisor d # 1 of n such that j(y)=(O, . . . , O,jd=(n/d), 0, . . . ,O) and 
f ([v]) = 1 for any [II] E V(K,?). In this case 

IFix , (,I,,=23LqJtd~)((n_*),,a . 9 

and 

c I Fix(,,f) I = 2 
fEC%i Hz) 

aci;J-l)+~%)((n_2),y,d 
. . 

(ii) n=6m+3, j(y)=(O,O, l,O,O,(n-3)/6,0 ,...,O), f([v])=-1 for u such that 
I(v;y)=3 andf([v’])=l for [u’]EV(K,)-{[v]: I(v;y)=3}. In this case 

1 Fix (7.l) I = 2 
n-3 (n*+6n-15)/12 _ 

( ) 2 
! ((n-2)!)(“-3)16 

and 
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Proof. The sufficiency part of each case is trivial by Theorem 4.3, so we prove only the 

necessity part. 

(a) Let y have more than 3 fixed vertices and let 

( Fixfy,f) ( = I(/(y,f) 21E’KnJt n IP”(y’(“;y))I n Il”(y’(“;y))I #O, 
C~WW I) Irltl(7.f) 

so that each factor must be nonzero. Choose a fixed vertex, say v, of y, then jr in the 

cycle type j(yl N(vJ) is greater than or equal to 3, which implies IZ,(y’(“;y’)I =O. Hence, 

u must be contained in P(y,f), i.e.,f(v)= 1, and IP,(yJ(“QY))I cannot be zero; otherwise 

( Fixof) =O. Now it follows from Theorem 4.5, that j(y I.(,,)=(n- LO, . . . ,O), i.e., y is 

the identity and IPv(yz(“:y))( =(n-2)!. S ince $(y,f) = 1 and f (v) = 1, f(Ui) = 1 for any 

vertex Ui. For such y=I andf= 1, it is easy to show that 

IFix(,,l)l= ,,~~~~,,,IFix~7,~~l=2”‘((n--2)!)”. 

(b) Let y have exactly three fixed vertices vr , v2, vj and let (Fix(,,,,l #O. Since n 24, 

y is not the identity, and IP”,(y ‘(“i;y))( =O for i= 1,2,3, by Theorem 4.5. To be 

I Fixf,,SJ) # 0, Ui must be contained in Z(y,f) andf(vJ = - 1 for i = 1,2,3. Furthermore, 

j(yIN(viJ must be (2,(n-3)/2,0, . . . ,O) to be Iloi(yl(“‘:Y))I #O by Theorem 4.7 

and n- 1 must be even. On the other hand, Theorem 3.2(b) gives that y2 is the 

identity and 

l(v; Y) = 
1 if vf~(v~,~~,~~}, 

2 otherwise. 

Hence, for any [u] E V(K,) - { ul,vz,v~), j(y21Nr,)=(n- LO, . . . ,O), andf(Cul)= 1 be- 
cause [u] has property P. For such y andf, 

by Lemma 5.1. Clearly, the number of such f’s is 2’“- 3)/2 and hence, we have 

c 3 ((n_2)!)(n-3w. 

/ECqK.:z21 

(c) follows by a method similar to the proof of (b). 

(d) Let y fix only one vertex, say u1 , and let I Fix ol) I # 0. Then we have the following 

two cases. 

(i) Letf(vI)=l.Then,byTheorem4.5,j(y(.(,,,)=(0 ,..., O,j,=(n-l)/d,O ,..., O)for 

some dl(n-1) to be )Fix,y,J,)#O, which gives j(y)=(l,O ,..., O,j,=(n-l)/d,O ,..., 0). 



148 J.H. Kwak, J. Lee/ Discrete Mathematics 135 (1994) 129%I51 

Hence, for any v#v,, I(u;y)=d andj(ydIN(vJ)=(n-l,O, . . . ,O), i.e., yd is the identity, 

which implies IZ,(yr(“:y)) 1 =O. To be 1 Fix(,,r, I # 0, [v] must be in P(yJ) and f( [al) = 1 

for any [U]E V(K,?)- {ui}. Now, it is easy to show that 

!d((“-W-1 ((,_,y)b-Uld~ 

Clearly, the number of suchf’s is 2td- l)(n-l)‘d and hence, we have 

(ii) Let f(q) = - 1. Then, by Theorem 4.7, j(y IN(vlj) = (0, (n - 1)/2,0, . . . , 0), that is, 

j(y)=(l,(n-1)/2,0,... ,O) and n must be odd to be I Fixcy,l,l #O. Since 

j(y21N~v~)=(n-l,0,...,0) for any v#vl, it must be hold that f([v])= 1 for any 

[VIE V(K,>)- {ul}. It is also easy to show that 

and 

(e) Let y have no fixed vertex and let IFix (y,rjI #O. Let d =min{I(v; y): VEP’(K,,)}. 

Note that d > 1 and consider the following two cases. 

(i) Suppose that d is even and let u be a vertex such that I(o; y) = d. Then uyd”(u) is an 

edge fixed by yd andf([u])= 1 by Lemma 3.5. Now, Theorem 3.2 gives that yd is the 

identity and l(v; y)=d for all vertex t’, which implies j(y)=(O, . . . , O,jd= n/d, 0, . . . ,O). 

Hence, for any [VIEI’( [u]~P(y,f) and JP,(yd)l =(n-2)!. Now, we have 

I Fix(,,f) I = 2 "L+~+d(%j,,n_,,,,,,d, 

Note that the number of suchfs is 2(d-1)n’d. This gives that 

(ii) Suppose that d is odd, and consider the following two subcases. 

(01) d > 3. Let v be a vertex such that I(o; y) =d. Since d is odd and greater than 3, the 

numberj, ofj(ydl,(,,) is greater than d-2 and d 35. So IZo(yz(“~y))I=O, by Theorem 4.7 
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and f( [u]) must be 1 to be IFixC,,r,( #O. By Theorem 3.2(a), yd is the identity and 

I(v; y) = d for all vertices U. Hence j(y) = (0, _ . . , 0, jd = n/d, 0, . . . , 0) and we have the same 

type of computations of 1 Fix(,,/, l and ~fEC0,K;Z2)lFix~Y,I)I as in case (9. 
(p) d =3. Let v be a vertex such that l(u;y)=3. Iff([v])= 1, then, by Theorem 3.2 

(a), we have j(y) =(O, 0, n/3,0, . . . ,O) andf([v’])= 1 for all [v’]E I’(&). Iff([v])= - 1, 

then, by Theorem 4.7, the cycle type j(y3 ) N(u)) of y3 I N(v) must be (2, (n - 3)/2,0, . . . , 0) for 

UE[U] to be I FixC,,r, I #O. This implies that j(y)=(O, 0, l,O, O,(n - 3)/6,0,. . . (0). Thus 

n = 6m + 3 and y6 is the identity. Now, it comes from Theorem 3.2 that f( [u’]) = 1 for 

[v’]E V(K,_)-{ [v]}. For such (y,f), we have 

IF&./, I = 2 (n2+6n-15)/12 

Note that the number of such.f’s is 2(5”-3)16. Thus, we have 

Now, we enumerate the congruence classes of 2-cell embeddings of K, with respect 

to the subgroup Z, of Aut(K,) generated by the n-cycle permutation (12 3 ... n). Since 

the subgroup h, acts freely on V(K,), the cycle type of any element of Z, is 

(O,..., O,j,j=njd,O, . ..) 0) for some din. Moreover, the number of y’s in Z,, with such 

cycle type (0, . . . , 0, jd = n/d, 0, . . . , 0) is 4(d). Now, Theorem 4.1 and Lemma 5.3 give the 

following theorem. 

Theorem 5.4. Let n > 4. Then the number of congruence classes of 2-cell embeddings of 

K, with respect to H, is 

l+&nWn)l=;~W)2 Mtd/W)+d(“~) ((n_2)!)“‘d. 

din 

In particular, if n is a prime p, then 

1 )gz (K,)I=_(p-2)12(P-3)/2(2(p-1)(p-3)/2 
P 

P . 
((P-2)!)p-1+(P-1)). 

It is well known that the number of permutation in S, of cycle type 

(j I, . . . ,jJ is 

Now, Theorem 4.1 and Lemma 5.3 with some elementary but laborious calculations 

give the following theorem. 
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Theorem 5.5. Let n > 4. Then the number of congruence classes of 2-cell embeddings of 
K, with respect to Aut(K,) is given as follows: 

(a) For odd n 

I ~‘4”l(K,, (K,)I=C2”ld(Ldi2~-l)+d~~)((n_22)!)”’d/d”’d(n/d)! 
0 

1 
+- 

n-l c 
2(n-l)/dLdP]+d 4(d) ((n-2)!)(“-1)id 

dl(n-l),d#l 

+‘2(“-3)(“+5)/4 

3! 
’ ((n_2)!)(n-3)/2 

where 

p-3)(~+5)/12(9)! ((n_2)!)(“-3)/6/(3(“+3)/6(~)!) if n=3(modq, 

otherwise. 

(b) For even n 

1 
+- 

n-l c 
2(“-1,dLd’21+d(~~-1~(d)((n_2)!)(”-l),d 

dlO-l).d#l 

+y+ ia/4 

( > 

!Yj? !((n_2)!)(n-2)/2. 

In particular, if n is a prime p, then 

1 
+- 

P-l 
d,,,zd,I 2(P-1/d)Ld’2J+d~~)-1~(d)((p_2)!)(p-l)id 

2 ((p_2)!)'P-3)/2 

For eXampk, if n =4, then IgAUt(K4) (K4)1 = 11. Hence, there are 11 congruence 
classes of embeddings of K4 with respect to Aut(K,). But, in the orientable case, K, 

has only 3 oriented congruence classes of embeddings with respect to Aut(K4) 

(see [13]). 
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