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We compare modular forms of characteristic p>0 (i.e., Drinfeld's modular
forms) and automorphic forms. We prove that spaces of these modular forms
(which are characteristic p) can be described by function spaces of characteristic
zero, close to those of automorphic forms. � 2000 Academic Press

0. INTRODUCTION

(0.1) Let K be a global field of characteristic p>0 (i.e., a function
field of one variable over a finite field of characteristic p) with a marked
place, denoted by �. For any place v of K, we denote by Kv the completion
of K at v and by Ov the valuation ring of Kv . Let A be the subring of K of
regular elements away from � (i.e., of * # K such that * # Ov for all v{�).

(0.2) G denotes the group-scheme GL2 and Z is its center.

(0.3) The ring of ade� les of K, denoted by A, can be written A=
Af _K� , where Af is the restricted product of [Kv]v , v running over the
set of places of K not equal to � (the elements of Af are called finite
ade� les). One sets also O=>v Ov (v runs over the se of all places of K) and
Of=>v{� Ov .

(0.4) Following Harder, we will underline elements of adelic nature:
for instance, an element g

�
# G(A)=G(Af)_G(K�) may be decomposed as

g
�
=(g

�
f , g�) with g

�
f # G(Af) and g� # G(K�). Elements of G(K), viewed as

diagonally embedded in G(A), are not underlined.

(0.5) Definition. An automorphic form with respect to an open compact
subgroup K of G(O) is a (complex-valued) function f: G(A) � C such that,
for all # # G(K), g

�
# G(A), and k

�
# KZ(K�), the equality f (#g

�
k
�
)= f (g

�
) holds.
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Moreover, it is called a cusp form if for all g
�

# G(A),

|
K"A

f \\1
0

u
�
1+ g

� + du
�
=0

(du
�

is the normalized Haar measure on the compact group K"A).

These notions were first used intensively in positive characteristic by
Drinfeld [Dr], although many of its main properties for general reductive
groups were given by Harder [Ha]. Recall that cusp forms that transform
like the special representation led to a Galois reciprocity law (Drinfeld
[Dr]; see also [vdPRe]).

It is clear that the field C does not play any role in this definition of an
automorphic form, so one may replace it by any commutative ring of
characteristic zero (with unit). Moreover, the integral in this definition is
indeed a finite sum. So in the definition of a cusp form, one can replace C
by any commutative ring containing Q (as a subring with unit).

(0.6) In what follows, the compact subgroups K of G(O) will be of
the form K=Kf _K� , with Kf and K� open compact subgroups of G(Of)
and G(O�) respectively.

Modular forms also exist in positive characteristic. They were introduced
concretely by Gekeler and Goss ([Gek1, Go], see also [Co]). Their definition,
close to the classical one, will be given in Section 1.8. For our purposes, we just
recall that they are functions defined on the Drinfeld upper half-plane
0=P1

C (C)&P1
C (K�) with values in C (C is the completion of an algebraic

closure of K�).
It is possible to make a parallel with the classical case: K with � is the

analog of Q equipped with its ordinary absolute value, K� and C are the
analogs of R and C respectively, A looks like Z, and 0 is the analog of the
Poincare� half-plane. This parallel ends here (in our context). There is no
direct link between modular forms and automorphic forms in positive
characteristic. On the contrary, it is well known that the two notions of
modular forms and automorphic forms coincide in the classical case (see
[Gel, Sect. 3]). The main reason for the difference between modular forms
and automorphic forms in positive characteristic is probably that there are
no tools to go from 0 to G(A) and then to translate functions defined on
0 to functions defined on G(A) (this can be easily accomplished in the
classical case).

We do not know how to pass from 0 to G(A), but there are both related
to the Bruhat�Tits tree { of G(K�). On the one hand, { is isomorphic to
the intersection graph of the analytic reduction of 0, viewed as a rigid
analytic space over C ([FevdP, Chap. 5; GekRe, Sect. 1], see also [vdP]).
On the other hand, if K is an open compact subgroup of G(A) of the form
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K=Kf_K� (see (0.6)), where K� is the stabilizer in G(O�) of an edge of
{, we have a one-to-one map between G(K)"G(A)�KZ(K�) (compare with
(0.5)) and a finite disjoint union of quotients of the set of edges of { by
arithmetic subgroups of G(K) (this will be stated precisely in the next
paragraph).

There exist functions on the set of edges of { that are of particular interest,
namely, the harmonic cocycles. They were first introduced in our context
by Drinfeld [Dr], who proved that when they take values in a field of
characteristic zero they are indeed the automorphic forms that transform
like the special representation (this result appears in the proof of his
reciprocity law in [Dr]; see also [vdPRe] and (1.13) below).

Harmonic cocycles, more precisely a generalization of the above ones,
were compared with modular forms by Schneider in the p-adic context
[Sc] and by Teitelbaum in positive characteristic. In [Te] (see also (1.9)
below), Teitelbaum proves that spaces of harmonic cocycles taking values
in characteristic p are isomorphic to the spaces of modular forms. It seems
to be difficult to lift directly these harmonic cocycles to characteristic zero
and then, using Drinfeld's result, to compare them with automorphic
forms.

The first result comparing modular and automorphic forms appeared in
[GekRe, Section 6.5] (recalled in (1.10)): it relies on modular forms of
weight 2, doubly cuspidal, with cusp forms (using Teitelbaum's result [Te]).

The purpose of this paper is to study the relationships between automorphic
forms and modular forms (in positive characteristic). Then, using Teitelbaum's
result, we try to interpret harmonic cocycles of equal characteristic (i.e.,
with values in characteristic p, the same as the base field K) as auto-
morphic forms.

In Section 2 we introduce a notion of automorphic forms of equal
characteristic, i.e., taking values ins paces of the same characteristic p as the
global field K. In Section 2, we also introduce a notion of special represen-
tation (of equal characteristic), which is a variant of the usual one. Then
we compare harmonic cocycles and automorphic forms, both of equal
characteristic (Theorem 2.4); indeed, we prove that the harmonic cocycles
of equal characteristic are also, in some sense, automorphic forms that
transform like the special representations (see (2.11)).

The automorphic forms of equal characteristic that we introduce in Section 2
are, as can easily be seen, the reduction modulo p of ``automorphic forms''
taking values in spaces of characteristic zero. These latter forms are not
exactly automorphic forms in the sense of Drinfeld because they do not
satisfy to conditions at �, but since we work with automorphic forms that
transform like the special representations the conditions at � are not
essential. We obtain a result (Theorem 3.7) which interprets modular forms
of characteristic p and of weight n+2 (or harmonic cocycles of equal
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characteristic p and of the same weight) as functions with values in charac-
teristic zero. For the weight 2, this completes a result of [GekRe, Section 6.5]
(see Corollary 3.9).

(0.7) For general notions of rigid analytic geometry, we refer the
reader to [BGR, GervdP, and FevdP]. The Bruhat�Tits tree of G(K�) is
defined and extensively studied in [Se, Chap. 2]. All that is needed concer-
ning the analytic structure of the Drinfeld upper half-plane and its links
with the Bruhat�Tits tree of G(K�) is explained in [GekRe, Sect. 1]. The
underlying objects and tools that are used here are Drinfeld modules and
Drinfeld modular schemes: the details can be found in [GPRV].

1. MODULAR FORMS AND HARMONIC COCYCLES

Let 0=P1
C (C)&P1

C (K�) be the Drinfeld upper half-plane.

(1.1) Let ? be a uniformizing parameter of K� , with ? # K. For n # Z
we write Dn for the subset of z # 0 that satisfies |?|n+1�|z|� |?|n and
|z&\?n|�|?|n, |z&\?n+1|�|?| n+1 for all \ # F(�)*, where F(�)/�K�

is isomorphic to the residue field of K at �.
For all z # K� and n # Z we set D(n, z)=z+Dn . Let I be the set of (n, z)

with n # Z and z belonging to a set of representatives of K� �?n+1O� . Then
we have 0=�i # I Di ; more precisely, (Di) i # I is a pure covering of 0. We
denote the corresponding analytic reduction by R: 0 � 0� ; 0� is a tree of
P1

F(�) and these P1
F(�) are its irreducible components, each of them meeting

*(F(�))+1 others in ordinary double points which are rational over F(�)
and any two of them having at most one common point. We denote the
intersection graph of 0� by T. An edge e of T corresponds to the intersec-
tion of two irreducible components of 0� , C1 and C2 , say. Let 0� e be the
subset of 0� equal to C1 _ C2 minus their intersection points with the other
irreducible components C{C1 , C2 . Then (R&1(0� e))e is the previous pure
covering (Di) i # I , where e runs over the set of nonoriented edges of T.

(1.2) Let { be the Bruhat�Tits tree of G(K�). It is canonically
G(K�)-isomorphic to T (see [GekRe, Sect. 1]). Now, the term edge means
oriented edge. Let e be an edge of { or T, then e(0), resp. e(1), is its origin,
resp. its end point; &e is the edge with the origin and the end point inter-
changed.

(1.3) Let n # N, and let L be a ring containing K� as a subring if
n{0. The ring L is supposed to be commutative with unit and its subrings
are supposed to have the same unit, as all rings and subrings shall in this
paper. We denote the subspace of L[X, Y] (the polynomial ring in two
variables) of homogeneous polynomials of degree n by Vn(L). It is a free
L-module of rank n+1. It is equipped with a G(K�)-action, trivial for
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n=0, denoted by \n=G(K�) � GL(Vn(L)) and defined in the following
way for n>0: let g # G(K�) be such that g&1=( a

c
b
d) and let j be an

integer, 0� j�n; then \n(g)(X jYn& j)=(aX+bY) j (cX+dY)n& j. We set
Vn(L)*=HomL(Vn(L), L). The following definition was given in [Te].

(1.4.) Definition. Let n�2 be an integer. An L-harmonic cocycle of
weight n is a function, f : edges({) � Vn&2(L)* such that:

(i) f (&e)=&f (e) for all edges of {,

(ii) �e(0)=v f (e)=0 for all vertices v of {, where the sum is taken
over the edges with the origin equal to v.

(1.5) Let H
�

n(L) be the set of L-harmonic cocycles of weight n. It is
an L-module, equipped with the following G(K�)-action: for all f # H

�
n(L),

g # G(K�), and for all edges e of {, g( f )(e)=\*n&2(g)( f (g&1e)) (where
\*n&2 is the representation on Vn&2(L)* induced by \n&2). If 1 is a sub-
group of G(K�), we denote the submodule of elements of H

�
n(L) fixed

under the 1-action (coming from that of G(K�)) by H
�

n(L)1. H
�

n
! (L)1 (resp.

H
�

n
!!(L)1), are the submodules of elements in H

�
n(L)1 with finite supports

modulo 1 (resp. which are zero on the cusps of 1 ). We do not explain this
notion of cusp here because we do not use it except in the two recalls just
below.

(1.6) A subgroup 1 of G(K) is said to be arithmetic if 1 & G(A) (see
(0.1)) is commensurable with both 1 and G(A). Let 1 be such an
arithmetic subgroup, then the quotient graph 1"{ is the union of a finite
planar graph without ends, denoted (1"{)%, and of finitely many half-lines
(Li)1�i�c [Se, Chap. 2, Theorem 9, p. 143]. These half-lines are the cusps
of 1. Following [Se, Chap. 2, Lemma 6, p. 142] and [Te, Proposition 3],
we have

(1.7). Proposition. Let 1 be an arithmetic subgroup. For any cusp (Li)
of 1, let ei be its ``first edge'' (i.e., its edge with origin in (1"{)%). Then

(i) for all n�2 and any f # H
�

n
! (L)1, the support of f modulo 1 is

included in

edges((1"{)%) _ [ei]1�i�c ;

(ii) if p does not divide zero in L ( p=char(K)), we have H
�

2
!!(L)1=

H
�

2
! (L)1;

(iii) for all n�2, if p is equal to zero in L we have H
�

n
! (L)1=H

�
n(L)1.

We will now introduce the notion of the Drinfeld modular form. It was
first studied in [Go] and [Gek1]. For the sake of brevity we do not
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explain all of its properties (as in (1.8) below), but they can be found in
[Gek2; Co; and GekRe, Section 2].

(1.8) Let 1 be an arithmetic subgroup of G(K), and let n�2 and
m�0 be integers. Recall that C is the completion of an algebraic closure
of K� . A Drinfeld modular form of weight n and type m with respect to
1 is a function f: 0 � C that satisfies

(i) for all #=( a
c

b
d ) # 1 and for all z # 0, f (#z)=(det #)&m

(cz+d)n f (z);

(ii) f is holomorphic on 0;

(iii) f is holomorphic at the cusps of 1.

Moreover, we say that

(iv) a modular form f with respect to 1 is cuspidal (resp. i times
cuspidal), if it has a zero (resp. a zero of order at least i) in all cusps of 1.

We denote the C-vector space of modular forms of weight n and type m
with respect to 1 by Mn, m(1), and the subspace of those which are i times
cuspidal by M i

n, m(1 ). We also set M*n, m(1 )=� i�1 M i
n, m(1 ). These spaces

are of finite dimension [Gek2].
As mentioned in the introduction, we have the following results.

(1.9) Theorem [Te, Theorem 16]. Let n�2 be an integer, then the
C-vector spaces M*n, 0(1) and H

�
n(C)1 are canonically isomorphic.

(1.10) Theorem [GekRe, Section (6.5)]. Let M 2
2, 1(1, Fp) be the sub-

space of elements f of M 2
2, 1(1 ) such that the residues of the holomorphic

forms f (z) dz are in Fp=Z�pZ; then we have

H
�

2
! (Z)1 wwwww�reduction mod p H

�
2
!!(Fp)1&M 2

2, 1(1, Fp),

the first map being surjective.

The proofs of these two results use the notion of residue for holomorphic
differentials defined on 0, which was introduced by M. van der Put in
[FevdP, Chap. I]. A holomorphic form on 0 possesses a residue for each
Di , i # I (see (1.1)); with the aid of the residue theorem [FevdP, Chap. I,
Section 3] and because of the isomorphism between the two trees T and {
(see (1.2)) it gives a harmonic cocycle.

With the aid of (1.10) one can also prove

(1.11) Theorem [GekRe, Theorem (6.5.3)]. M 2
2, 1(1 ) and H

�
2
!!(C)1 are

naturally isomorphic.

219MODULAR FORMS OF CHARACTERISTIC p>0



(1.12) A comparison theorem between automorphic forms and
harmonic cocycles was given by Drinfeld in the proof of his Galois
reciprocity law ([Dr], see also [vdPRe, Prop. 2.11]). We now describe it.

Let Kf be a an open compact subgroup of G(Of). Then G(K)"G(Af)�Kf

is finite; let X/G(Af) be a representative system of this set of double
classes. For all x

�
# X, set 1x

�
=G(K) & xKf x&1. It is an arithmetic subgroup

of G(K). Let L be a ring containing Z (resp. Q), and let WKf (L) (resp.
W

%
Kf (L)) be the space of automorphic forms (with values in L) with respect

to an open compact subgroup K of G(O) of the form K=Kf_K� (resp.,
which moreover have finite supports in G(K)"G(A)�KZ(K�)), where K� is
an open compact subgroup of G(O�) (see Definition 0.5 and its comments).
Following Harder, W

%
Kf (L) is the space of L-valued cuspidal automorphic

forms with respect to Kf [Ha, (1.2.3)].
Let Sp0(L) be the space of functions P1

C(K�) � L that are locally
constant in the rigid analytic sense, modulo constant functions (a more
general definition and details will be given in the next chapter). The group
G(K�) acts on Sp0(L): we denote this action by sp0 . For f # Sp0(L) and
g # G(K�), sp0(g) f is the function u [ f (ug); sp0 is the so-called special
representation.

(1.13) Theorem (Drinfeld). One has the L-linear isomorphisms

`
x
�

# X

H
�

2(L)1x
� =HomL[G(K�)] (Sp0(L), WKf (L))

`
u
�

# X

H
�

2
! (L)1x

� =HomL[G(K�)] (Sp0(L), W
%
Kf (L)).

Following this theorem one says that harmonic cocycles, of weight 2 and
with values in characteristic zero, are automorphic forms that transform like
the special representation.

(1.14) We now summarize quickly what is known. Let RC be a local
topological ring, having Z equipped with the p-adic topology as topologi-
cal subring and having C as residue field. It follows from (1.10)�(1.13) (and
since we have spaces of finite dimension, [Ha]) that

HomG(K�)(Sp0(RC), W
%
Kf (RC))

& `
x
�

# X

H
�

2
! (RC)1x

� w�u `
x
�

# X

H
�

2
!!(C)1x

� & `
x
�

# X

M 2
2, 1(1x

�
);

the map u, being the reduction, is surjective.
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2. AUTOMORPHIC FORMS OF EQUAL CHARACTERISTIC

The goal of this chapter is to give an analog of Drinfeld's theorem (1.13)
for harmonic cocycles of any weight and then for harmonic cocycles with
values in characteristic p. It will give an interpretation of modular forms
(see (1.9)).

(2.1) Definition. Let L be a ring of characteristic p. Let Kf be an open
compact subgroup of G(Of). An L-valued automorphic form with respect to
Kf is a function f: G(A) � L such that

(i) for all # # G(K), g
�

# G(A), and k
� f # Kf , the equality f (#g

�
k
� f)=f (g

�
)

holds;

(ii) there exists an open compact subgroup K� of G(O�) such that
the support of f is finite in G(K)"G(A)�(Kf _(K� Z(K�))).

We denote by WKf
! (L) the space of these automorphic forms.

We have choosen to require no condition at �; we will see later that
indeed the contrary is also possible (see (2.11)).

(2.2) Definition. Let n # N and let L be a ring of characteristic p
containing K� if n>0. Let Fn(L) be the space of locally constant functions
P1

C(K�) � Vn(L) and denote by Spn(L) its quotient by the set of constant
functions. The group G(K�) acts on Spn(L); we denote by spn this actions.
For all h # Spn(L) and g # G(K�) one has spn(g) h: z [ \n(g) h(zg) (see
(1.3)). We call spn the (L-valued) special representation of rank n.

(2.3) In this definition, ``locally finite'' means that, for all h # Spn(L),
there exists a finite open covering (Ui)1�i�r of P1

C(K�) such that h is
constant on each Ui . P1

C(K�) can be viewed as the set of ends of {, i.e., as
the set of equivalent classes of half-lines of {, two half-lines being equivalent
if their intersection contains infinitely many edges (see [Se, Chap. 2,
pp. 100�101]). For an (oriented) edge e of { denote by U(e) the set of
equivalent classes of half-lines containing e, then U(e)e # edges({) is a basis of
open subsets for the topology of P1

C(K�) and, for all functions f : P1
C(K�)

� Vn(L), locally constant, there exist edges e1 , ..., er of { and *1 , ..., *r in
Vn(L) such that f =�1�i�r *i1U(ei)

(1U(ei )
is the characteristic function

of U(ei)).
Note that we have a G(K�)-isomorphism: Spn(L)&Sp0(L)�L Vn(L).

(2.4) Theorem. Let n # N and let L be a ring of characteristic p contain-
ing K� if n>0. Let Kf be an open compact subgroup of Kf and X/G(Af) be
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a set of representatives of G(K)"G(Af)�Kf . For all x
�

# X set 1x
�
=G(K) &

x
�
Kf x�

&1. Then we have an L-isomorphism,

`
x
�

# X

H
�

n+2(L)1x
� &HomL[G(K�)](Spn(L), WKf

!
(L))

(G(K�) acts on WKf
! (L) via the regular representation of G(A)).

The proof needs many steps.

(2.5) Let E=E(G(Af)�Kf , L) be the set of functions f: G(Af) � L
right invariant under Kf . An element of H

�
n+2(E) can be viewed as a func-

tion .: edges({)_G(Af) � Vn*(L); then one sees that H
�

n+2(E) is equipped
with the following action of G(K): For all # # G(K), e # edges({), and
g
�

# G(Af), #(.)(e, g
�
)=\n*(#)(.(#&1e, #&1g

�
)), where \* is the action of

G(K�) on Vn*(L) coming from that on Vn(L) (see (1.3)).

(2.6) Lemma. One has an L isomorphism H
�

n+2(E)G(K)&L >x
�

# X H
�

n+2(L)1x
� .

Proof. Let .: edges({)_G(Af) � Vn*(L) be an element of H
�

n+2(E)G(K).
One has G(Af): ~x

�
# X G(K) x

�
Kf (disjoint union). Let

H
�

n+2(E)G(K) w�8 `
x
�

# X

H
�

n+2(L)1x
�

. [ (.x
�
)x

�
# X ,

where .x
�
=.( , x

�
). For an edge e of {, for x

�
# X, and # # 1x

�
with #=xkx&1,

where k
�

# Kf (see the definition of 1x
�

in Theorem 2.4), one has
\n*(#&1) .x

�
(#e)=\n*(#&1) .(#e, x

�
)=.(e, #&1x

�
) because . is invariant

under G(K). Then \n*(#&1) .x
�
(#e)=.(e, xk)=.(e, x

�
) which proves that 8 is well

defined. The inverse map is given by (�)x
�

[ ((e, #x
� 0k

�
) [ \n*(#) �x

� 0
(#&1e)).

K

(2.7) Lemma. One has an L-isomorphism

H
�

n+1(E)G(K) &L HomL(Spn(L), E)G(K)

the action of G(K) on HomL(Spn(L), E) coming from those on Spn(L) via
spn and on E.

Proof. One interprets elements of H
�

n+2(E)G(K) as in (2.5). An element
` # HomL(Spn(L), E)G(K) can be viewed as a function `: Spn(L)_G(Af) �
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L and recall that the functions of the form *1U(e) for * # Vn(L) generate
Spn(L) (see (2.3)). Then one can define

H
�

n+2(E)G(K) w�9 HomL(Spn(L), E)G(K)

. [ ((*1U(e) , g
�
) [ .(e, g

�
)(*))

The inverse map to ` # HomL(Spn(L), E)G(K) assigns the function
edges({)_G(Af) � Vn*(L) which maps (e, g

�
) to `( } 1U(e) , g

�
). This is the

expected isomorphism. K

(2.8) Lemma. Let WKf
?

(L) be the set of functions satisfying the assertions
of Definition 2.1 except for (ii). Then, one has an L-isomorphism

HomL(Spn(L), E)G(K) &L HomL[G(K�)](Spn(L), WKf
?

(L)).

Proof. To a function ` # HomL(Spn(L), E)G(K), viewed as in the proof of
(2.7), one associates 3(`): Spn(L) � WKf

?
(L), such that for f # Spn(L),

3(`)( f ) is the function G(Af)_G(K�) � L which maps (g
�

f , g
�

�) to
`(spn(g

�
�) f )(g

�
f). It is easy to see that it gives the desired isomorphism. K

(2.9) End of the Proof of Theorem 2.4. One has to prove that one can
replace WKf

?
(L) by space WKf

!
(L) of Definition 2.1. One uses the notations

of the proofs of the three previous lemmata. Let (.x
�
)x

�
# X # >x

�
# X H

�
n+2(L)1x

�

and let 3(`) be its image in HomG(K�)(Spn(L), WKf
?

(L)) by the composi-
tion of the three preceeding isomorphisms (see the proof of Lemma 2.8).
Let * # Vn(L) and set w=3(`)(*1U(e)), then w is a map G(Af)_G(K�) � L.
Choose # # G(K), x

�
# X, k

� f # Kf , and g� # G(K�). One has w(#xkf , g�)=
\n*(#)(.x

�
(#&1g�e))(\n(g�) *). It follows that w(#xkf , g�){0 implies

#&1 g�e # supp(.x
�
). There exists a finite set S/G(K�) such that supp(.x

�
)

/1x
�
SK� Z(K�), where K� is the stabilizer of e in G(O�) (and Z is the

center of G). Then

supp(w) & [(G(K) x
�
Kf)_G(K�)]/(G(K) x

�
Kf)_(SK�Z(K�)).

This finishes the proof of (2.4). K

It follows from (1.9) and (2.4) that we have

(2.10) Corollary. There exists a C-linear isomorphism

`
x
�

# X

M*n+2, 0(1x
�
)&HomC[G(K�)](Spn(C), WKf

!
(C)).

(2.11) Remark. It is possible to prescribe a condition at � in Defini-
tion 2.1; now we explain this. We continue Definition 2.1 by adding the
following condition:
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(iii) Let S( f ) be the L-submodule of WKf
!

(L) generated by f and K�

acting on f via the regular representation (i.e., the action of k� # K� on f
gives the function on G(A) g

�
[ f (g

�
k�)). Then there should exist an L-sub-

module Q( f ) of Spn(L) and an L-morphism =( f ): Q( f ) � S( f ) such that
Q( f ) is stable under spn(K�) and is generated, as an L[spn(K�)]-module,
by one element; =( f ) is surjective and K� -equivariant.

Let WKf
!, �(L) be the set of elements of WKf

!
(L) which satisfy (iii). One

has

HomL[G(K�)](Spn(L), WKf
!

(L))&L HomL[G(K�)](Spn(L), WKf
!, �(L)).

Proof. One continues with the notations of (2.4)�(2.9). Let again, as in
(2.9), 3(`) # HomG(K�)(Spn(C), WKf

!
(C)) and u # Spn(L). Let g

�
f # G(Af),

g� # G(K�), and set f =3(`)(u). One has f ((g
�

f , g�))=`(spn(g�)(u))(g
�

f).
There exists edges of {, (ei)1�i�r , and elements of Vn(L), (*i)1�i�r , such
that u=�1�i�r *i1U(ei)

and one can choose as subgroup K� for f the inter-
section of the stabilizers in G(K�) of the ei 's. Let Q( f )=L[spn(K�)] u;
then one has (k� is in K�) =( f )(spn(k�) u)=(g

�
[ f (g

�
k�)). K

This property (2.11) permits us to say that harmonic cocycles of weight
n+2 are automorphic forms that transform like the special representation of
rank n.

(2.12) Let AKf
! (L) be the set of functions �: Sp0(L)_G(A) � L such

that, for all u # Sp0(L) and g
�

# G(A), �(u, } ) satisfies assertions (i) and (ii)
of (2.1) and �( } , g

�
) is L-linear. The group G(K�) acts on AKf

! (L): if
g� # G(K�), one has g�(�)(u, g)=�(sp0(g&1

� ) u, g
�
g�). The next proposi-

tion gives a variant of Theorem 2.4.

(2.13) Proposition. One has a natural L-isomorphism

HomL[G(K�)](Spn(L), WKf
! (L))&L HomL[G(K�)](Vn(L), AKf

! (L)).

Proof. Let . # HomL[G(K�)](Spn(L), WKf
!

(L)); it can be viewed as a
function .1 : Spn(L)_G(A) � L, then (because Spn(L)&Vn(L)�L Sp0(L)
as L[G(K�)]-modules) as a function .2 : Vn(L)_Sp0(L)_G(A) � L satis-
fying the following properties: for all v # Vn(L), u # Sp0(L), g

�
# G(A), and

g� # G(K�),

�� .2(v, u, .) satisfies (i) and (ii) of (2.1),

�� .2(., ., g
�
) is L-bilinear,

�� .2(\n(g�) v, sp0(g�) u, g
�
)=.2(v, u, g

�
g�).

Clearly, the map . [ (v [ .2(v, . , .)) gives the desired isomorphism. K
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3. CHARACTERISTIC ZERO AND CHARACTERISTIC p>0

In all this paragraph, L is a field of characteristic p>0, n�0 is an
integer, and we suppose moreover that K� /L if n>0. We want to lift our
harmonic cocycles (or modular forms) to characteristic zero. One needs
first

(3.1) Proposition. Vn(L) is a cyclic L[G(K�)]-module.

Proof. One can suppose that n>0.

(3.2) Let D be the set of integers m and mpr&1 with 0<m<p and
r>0. Note that the binomial coefficient ( n

i ) is not zero modulo p for all i,
0�i�n, if and only if n # D.

(3.3) Let n>0 be an integer and let :=max[; # D�;�n]. It is easy
to see that :�n�2.

Let n and : be as before. For a in K*� let #a and $a be the two matrices
such that #&1

a =( a
1

1
0) and $&1

a =( a
0

1
1). One has (see (1.3))

#a(X:Yn&:)= :
0�i�: \

:
i + aiXn&:+iY:&i # L[G(K�)] X :Yn&:

$a(X:Yn&:)= :
0�i�: \

:
i + aiX iYn&i # L[G(K�)] X:Yn&a

for all a in K� . As ( :
i ){0, it follows from the first formula that Xn&iY i #

L[G(K�)] X:Y n&: and from the second formula that X iYn&i # L[G(K�)]
X:Y n&:, for all i, 0�i�:. As :�n�2 (see (3.3)), one has proved

Vn(L)=L[G(K�)] X:Yn&:. K

(3.4) Let RL be a local ring of characteristic zero with maximal ideal
ML and residue field RL �ML=L. One denotes by s the canonical
morphism RL � RL�ML=L.

(3.5) Let AKf
?

(RL) be the set of functions f : Sp0(RL)_G(A) � RL

such that, for all u # Sp0(RL) and g
�

# G(A), f (u, } ) satisfies assertion (i) of
(2.1) and f ( } , g

�
) is RL -linear (see the definition of WKf

?
(L) given in

Lemma 2.8).

(3.6) Let Hom
t

L, G(K�)(Vn(L), AKf
?

(RL)) be the space of G(K�)-linear
maps �: Vn(L) � AKf

? (RL) such that, for any v # Vn(L), s b �(v) is L-linear
(see (3.4)).
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(3.7) Theorem. One has a natural surjective map

Hom
t

L, G(K�)(Vn(L), AKf
?

(RL)) � HomL[G(K�)](Vn(L), AKf
!

(L)).

Proof. Let AKf
? (L) be the space of functions h: Sp0(L)_G(A) � L such

that, for all u # Sp0(L) and g
�

# G(A), h(u, } ) satisfies assertion (i) of (2.1)
and h( } , g

�
) if L-linear. Let f be in AKf

? (RL) and g
�

be in G(A); note that the
RL -linearity of f ( } , g

�
) implies that s b f ( } , g

�
) is zero on MLVn(L). This last

sentence is equivalent to saying that s b f (u, g
�
)=0 if u takes values in ML

(because u takes finitely many values).
Let f # AKf

? (RL) and u # Sp0(L). We have just seen that s b f (u, } ) makes
sense; it defines a map AKf

?
(RL) � AKf

?
(L), which induces a morphism

Hom
t

L, G(K�)(Vn(L), AKf
?

(RL)) � HomL[G(K�)](Vn(L), AKf
?

(L)).

With Proposition 3.1, one sees that this map is surjective. Finally, as in
(2.9) (see also (2.13)) one proves that

HomL[G(K�)](Vn(L), AKf
?

(L))&HomL[G(K�)](Vn(L), AKf
!

(L)). K

(3.8) Theorem 3.7, with Theorems 2.4 and 1.9, implies, when L=C,
i.e., when L is equal to the completion C of an algebraic closure of K� ,
that one has the diagram

Hom
t

C, G(K�)(Vn(C), AKf
?

(RC)) � HomC[G(K�)](Spn(C), WKf
!

(C))

& `
x
�

# X

H
�

n+2(C)1x
�

& `
x
�

# X

M*n+2, 0(1x
�
),

the first map being surjective. Then, one sees that modular forms in charac-
teristic p, or harmonic cocycles in equal characteristic p, of weight n+2,
are indeed essentially objects coming from the characteristic zero. When
n=0, one has a more precise result, which completes [GekRe, Section 6.5]
(recalled in Theorem 1.10).

(3.9) Corollary. Let R be a local ring of characteristic zero with
residue field L of characteristic p>0 and let 1 be an arithmetic subgroup of
G(K). Then, one has a natural surjective R-morphism

H
�

2(R)1 � H
�

2(L)1.

Proof. Let WKf
? (R) be the set of functions G(A) � R such that for all

# # G(K), g
�

# G(A), and k
� f # Kf the equality f (#g

�
k
� f)= f (g

�
) holds (see
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Definition 0.5, Section 1.12, and Lemma 2.8). It is easy to prove, as in
Section 2.9, that

HomR[G(K�)](Sp0(R), WKf
?

(R))&R HomR[G(K�)](Sp0(R), WKf (R)).

As in Proposition 2.13, one has also

HomR[G(K�)](Sp0(R), WKf
?

(R))&R HomR[G(K�)](V0(R), AKf
?

(R)).

Since V0(R)=R and V0(L)=L, with trivial actions of G(K�), it is clear
that there exists a surjective map

HomR[G(K�)](V0(R), A� Kf
?

(R)) � Hom
t

L, G(K�)(V0(L), A� Kf
?

(R)).

This last map, the two previous isomorphisms, Theorem 3.7, and Proposi-
tion 2.13 give

HomR[G(K�)](Sp0(R), WKf (R)) � HomL[G(K�)](Sp0(L), WKf
! (L)),

which is surjective and, together with Theorems 1.13 and 2.4, gives the
desired result. K

4. SOME COMMENTS

Let n and l be two non-negative integers. As before, C is the completion
of an algebraic closure of K� .

One can twist the representations \n , that is, one can consider Vn(C)
equipped with the action g [ det(g) l \n(g) # GL(Vn(C)) of G(K�) (see
Section 1.3). One denotes by Vn, l (C) the space Vn(C) equipped with this
last action; one denotes also by H

�
n+2, l (C) the harmonic cocycles with

values in Vn, l (C)* (see Definition 1.4). The isomorphism of Theorem 1.9 is
proved for l=0 in [Te], but, with exactly the same arguments, it can be
extended to all l�0. Then one can prove, as in Section 3.8, that

Hom
t

C, G(K�)(Vn, l (C), AKf
?

(RC)) � HomC[G(K�)](Spn(C), WKf
!

(C))

& `
x
�

# X

H
�

n+2, l (C)1x
�

& `
x
�

# X

M*n+2, l (1x
�
).

(Recall that there do not exist modular forms of weight one; see [Co,
Theorem 6.9.1]).
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Let !: K*� � C* be a character and let Vn, !(C) be Vn(C) equipped with
the action g [ !(det(g)) \n(g) of G(K�). Let n

�
=(n1 , ..., nr) # Nr and let

!
�
=(!1 , ..., !r) where the !i : K*� � C* are characters. Set

Vn
�
, !

�
(C)=Vn1 , !1

(C)�C } } } �C Vnr , !r
(C).

Harmonic cocycles with values in this space make sense, and properties
closed to (2.4) or (3.7) can be proved but they have no interpretation by
the ``usual modular forms.''

Let F be a finite subfield of C. The group G(F) acts on Vn
�
, !

�
(C) (for

characters F* � C* and by the same law as G(K�)). If 0�ni�p&1
( p is the characteristic of our fields), these representations are, up to
isomorphisms, the irreducible representations of G(F) [BaLi]. One does
not know what sort of representations of G(K�) are Vn

�
, !

�
(C). It is easy to

see that, if p divides n, the representation Vn(C) of G(K�) is not
irreducible: �0� j�n�p CX pjYn& pj is a subrepresentation. Maybe Vn(C)
is an irreducible representation of G(K�) if and only if 0�n<p or
n=mpr&1 with 0<m<p and r>0 (see Section 3.2)?
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