One-dimensional rings of finite F-representation type

Takafumi Shibutaa,b,*

a Department of Mathematics, Rikkyo University, Nishi-Ikebukuro, Tokyo 171-8501, Japan
b JST, CREST, Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan

1. Introduction

Smith and Van den Bergh [2] introduced the notion of finite F-representation type as a characteristic p analogue of the notion of finite Cohen–Macaulay representation type. Rings of finite F-representation type satisfy several nice properties. For example, Seibert [1] proved that the Hilbert–Kunz multiplicities are rational numbers, Yao [4] proved that tight closure commutes with localization in such rings, and Takagi and Takahashi [3] proved that if R is a Cohen–Macaulay ring of finite F-representation type with canonical module ω_R, then $H^n_I(\omega_R)$ has only finitely many associated primes for any ideal I of R and any integer n. However, it is difficult to determine whether a given ring has finite F-representation type. The main theorem of this paper is the following.

Theorem 1 (Theorem 3.1, Theorem 3.5, Example 3.3). Let A be a one-dimensional complete local domain of prime characteristic with the residue field k, or a one-dimensional \mathbb{N}-graded domain $\bigoplus_{i \geq 0} A_i$ of prime characteristic with $A_0 = k$ a field. Then

1. if k is algebraically closed, then any finitely generated (and graded if A is graded) A-module has finite F-representation type,
2. If k is finite, then A has finite F-representation type.
3. There exist examples of rings which do not have finite F-representation type with k perfect.

We also give several examples of finite F-representation type of dimension higher than one. There is a question posed by Brenner:

Question 2 (Brenner). Let k be an algebraically closed field of characteristic p. Then does the ring $k[x, y, z]/(x^2 + y^3 + z^7)$ have finite F-representation type?

We prove that $k[x, y, z]/(x^2 + y^3 + z^7)$ has finite F-representation type if $p = 2, 3$ or 7.

2. **Rings of finite F-representation type**

Throughout this paper, all rings are Noetherian commutative rings of prime characteristic p. We denote by $\mathbb{N} = \{0, 1, 2, \ldots \}$ the set of non-negative integers. If $R = \bigoplus_{i \geq 0} R_i$ is an \mathbb{N}-graded ring, we assume that $\gcd\{i \mid R_i \neq 0\} = 1$ and R_0 is a field. We denote by $R_{+} = \bigoplus_{i > 0} R_i$ the unique homogeneous maximal ideal of R.

The Frobenius map $F : R \rightarrow R$ is the endomorphism of R sending r to r^p for all $r \in R$. For an R-module M, we denote by $e^p M$ the module M with its R-module structure pulled back via the e-times iterated Frobenius map $F^e : r \mapsto r^{p^e}$, that is, $e^p M$ is the same as M as an abelian group, but its R-module structure is determined by $r \cdot m := r^{p^e} m$ for $r \in R$ and $m \in M$. If 1_R is a finitely generated R-module (or equivalently, $e^p R$ is a finitely generated R-module for every $e \geq 0$), we say that R is F-finite. In general, if 1_M is a finitely generated R-module, we say that M is F-finite. If R is reduced, $e^p R$ is isomorphic to R^{1/p^e} where $q = p^e$.

If R and M are \mathbb{Z}-graded, then $e^p M$ carries a \mathbb{Q}-graded R-module structure: We grade $e^p M$ by putting $[e^p M]_\alpha = [M]_{p^e \alpha}$ if $\alpha \in \frac{1}{p^e} \mathbb{Z}$, otherwise $[M]_\alpha = 0$. For \mathbb{Q}-graded modules M and N, and a rational number r, we say that a homomorphism $\phi : M \rightarrow N$ is homogeneous (of degree r) if $\psi(M_\alpha) \subseteq N_{r+\alpha}$ for all $\alpha \in \mathbb{Q}$. We denote by $\text{Hom}_R(M, N)$ the group of homogeneous homomorphisms of degree r, and set $\text{Hom}_R(M, N) = \bigoplus_{r \in \mathbb{Q}} \text{Hom}_R(M, N)$. For a \mathbb{Q}-graded module M and $a \in \mathbb{Q}$, $M(a)$ stands for the module obtained from M by the shift of grading by $a \in \mathbb{Q}$; $[M(a)]_b := M_{a+b}$ for $b \in \mathbb{Q}$.

Let I be an ideal of R. Then for any $q = p^e$, we use $I[q]$ to denote the ideal generated by $\{x^q \mid x \in I\}$. For any R-module M, it is easy to see that $(R/I) \otimes_R e^p M \cong e^p M/(I \cdot e^p M) \cong e^p (M/I[q])$. Since I and $I[q]$ have the same radical ideal, and the functor $e^p (-)$ is an exact functor, we have $e^p H_I(M) \cong e^p H_{I[q]}(M) \cong H_{I[q]}(e^p M)$.

Definition 2.1.

1. Let R be a ring of prime characteristic p, and M a finitely generated R-module. We say that M has **finite F-representation type** if $e^p M$ is isomorphic to a finite direct sum of the R-modules M_1, \ldots, M_s, that is, there exist non-negative integers $n_{e,1}, \ldots, n_{e,s}$ such that

$$e^p M \cong \bigoplus_{i=1}^s M_i^{\oplus n_{e,i}}.$$

We say that a ring R has finite F-representation type if R has finite F-representation type as an R-module.

2. Let $R = \bigoplus_{n \geq 0} R_n$ be a Noetherian graded ring of prime characteristic p, and M a finitely generated graded R-module. We say that M has **finite graded F-representation type** if $e^p M$ is isomorphic to a finite direct sum of the \mathbb{Q}-graded R-modules M_1, \ldots, M_s up to shift of grading, that is, there
exist non-negative integers \(n_{ei} \) for \(1 \leq i \leq s \), and rational numbers \(a_{ij}^{(e)} \) for \(1 \leq j \leq n_{ei} \) such that there exists a \(\mathbb{Q} \)-homogeneous isomorphism

\[
e M \cong \bigoplus_{i=1}^{s} \bigoplus_{j=1}^{n_{ei}} M_i(a_{ij}^{(e)}).
\]

We say that a graded ring \(R \) has finite graded \(F \)-representation type if \(R \) has finite graded \(F \)-representation type as a graded \(R \)-module.

Note that if \(M \) has finite \(F \)-representation type, then \(M \) is \(F \)-finite. In this paper, we mainly investigate the cases where \(R \) is a complete local Noetherian ring or \(\mathbb{N} \)-graded ring \(R = \bigoplus_{i \geq 0} R_i \) with \(R_0 = k \) a field. Remark that the Krull–Schmidt theorem holds in these cases, that is, a non-zero (resp. graded) module has a unique direct sum decomposition into indecomposable (resp. graded) modules up to isomorphism of decompositions.

Example 2.2.

(i) Direct sums, localizations, or completions of modules of finite \(F \)-representation type also have finite \(F \)-representation type.

(ii) Let \(R \) be an \(F \)-finite regular local ring or a polynomial ring \(k[t_1, \ldots, t_r] \) over a field \(k \) of characteristic \(p > 0 \) such that \([k : k^p] < \infty \). Then \(R \) has finite \(F \)-representation type.

(iii) Let \(R \) be Cohen–Macaulay local (resp. graded) ring with finite (resp. graded) Cohen–Macaulay representation type, that is, there are finitely many isomorphism classes of indecomposable (resp. graded) maximal Cohen–Macaulay \(R \)-modules. Then every finitely generated (resp. graded) maximal Cohen–Macaulay \(R \)-modules have finite \(F \)-representation type.

(iv) Let \((R, m, k) \) be an \(F \)-finite local ring (resp. \(\mathbb{N} \)-graded ring with \(k = R/R_+ \cong R_0 \)), and \(M \) an \(R \)-module of finite length \(\ell(M) \). Then \(M \) has finite \(F \)-representation type; \(e M \cong k^{\ell(M)a^e} \) for sufficiently large \(q = p^e \) where \(a = [k : k^p] \). In particular, Artinian \(F \)-finite local rings have finite \(F \)-representation type.

(v) Let \(R \rightarrow S \) be a finite local homomorphism of Noetherian local rings of prime characteristic \(p \) such that \(R \) is an \(R \)-module direct summand of \(S \). If \(S \) has finite \(F \)-representation type, so does \(R \).

(vi) [2, Proposition 3.1.6] Let \(R = \bigoplus_{i \geq 0} R_i \subset S = \bigoplus_{i \geq 0} S_i \) be a Noetherian \(\mathbb{N} \)-graded ring with \(R_0 \) and \(S_0 \) fields of characteristic \(p > 0 \) such that \(R \) is an \(R \)-module direct summand of \(S \). Assume in addition that \([S_0 : R_0] < \infty \). If \(S \) has finite graded \(F \)-representation type, so does \(R \). In particular, normal semigroup rings and rings of invariants of linearly reductive groups have finite graded \(F \)-representation type.

3. Proof of the main theorem

In this section, we investigate whether one-dimensional complete local or \(\mathbb{N} \)-graded domains have finite \(F \)-representation type.

Theorem 3.1. Let \((A, m, k) \) be a one-dimensional complete local domain (resp. an \(\mathbb{N} \)-graded domain \(A = \bigoplus_{i \geq 0} A_i \) with \(A_0 \cong A/A_+ = k \)) of prime characteristic \(p \). Let \(M \) be a finitely generated (resp. graded) \(A \)-module. Assume that \(k \) is an algebraically closed field. Then for sufficiently large \(e \gg 0 \),

\[
e M \cong B^{\oplus q} \oplus k^\ell \quad (q = p^e)
\]

where \(B \) is the integral closure of \(A \), \(r \) is the rank of \(M \), and \(\ell \) is the length of \(H^0_m(M) \) (resp. \(H^0_{A_+}(M) \)). In particular, \(M \) has finite \(F \)-representation type.
Proof. In the case where \(A \) is a complete local domain, \(B \) is isomorphic to a formal power series ring \(k[[t]] \). For \(f \in B \), we set \(\nu_B(f) = \min\{i \mid f \in t^i B\} \). Let \(H = \{\nu_B(f) \mid f \in A\} \), and \(c(H) = \min\{j \mid i \in H \text{ if } i \geq j\} \). Since \(\mathbb{N} \setminus H \) is a finite set and \(A \) is complete, it follows that \(t^i \in A \) for all \(i \geq c(H) \).

Let \(n = \min\{i \mid m^i H^0_m(M) = 0\} \) and take \(\epsilon > 0 \) such that \(q = p^n \geq \max\{c(H), n\} \). Since \(B^q \subset A \), \(eM \) has a \(B \)-module structure. Thus \(eM \cong B^{eq} \oplus H^0_m(eM) \) because \(B \) is a principal ideal domain and \(\text{rank}(eM) = rq \). Since \(H^0_m(eM) \cong eH^0_m(M) \cong k^q \), we conclude the assertion.

In the case where \(A \) is an \(\mathbb{N} \)-graded ring, \(B \) is isomorphic to a polynomial ring \(k[t] \). Since \(A = k[t^{n_1}, \ldots, t^{n_r}] \) for some \(n_i \in \mathbb{N} \) with \(\gcd(n_1, \ldots, n_r) = 1 \), we can prove the assertion similarly to the complete case. \(\square \)

The assumption that \(k \) is algebraic closed is essential for this theorem. Let \(A = \bigoplus_{i \geq 0} A_i \) be a one-dimensional \(\mathbb{N} \)-graded domain with \(A_0 = k \) a perfect field. Then the \(A \)-module \(eA \cong A^{1/q} \) has rank \([k:k^q]q = q \), and is decomposed to \(A \)-modules of rank one by degree; \(A^{1/q} = \bigoplus_{i=0}^{q-1} M_i \), where

\[
M_i^{(e)} = \bigoplus_{j=i \mod q} [A^{1 \over q}]_j
\]

where \([A^{1 \over q}]_j \) is the degree \(j \cdot {1 \over q} \) component of \(A^{1 \over q} \). Let \(B \) be the integral closure of \(A \). Then it follows that \(B \) is isomorphic to a graded polynomial ring \(K[t] \) with \(\deg t = 1 \) for some finite degree extension \(K \) of \(k \). Note that \(K \) is also a perfect field. We can write \(A = k[\alpha_1 t^{n_1}, \ldots, \alpha_r t^{n_r}] \) for some \(n_1, \ldots, n_r \in \mathbb{N} \) and \(\alpha_1, \ldots, \alpha_r \in K \). For \(i \in \mathbb{N} \), we define

\[
V_i := \{\alpha \in K \mid \alpha t^i \in A\}
\]

the \(k \)-vector subspace of \(K \) which is a coefficient of \(t^i \) in \(A \). We have \(V_i = K \) for all sufficiently large \(i \) because \(B/A \) is a graded \(A \)-module of finite length. We set

\[
c = \min\{i \mid \forall j \in V_i \text{ for all } j \geq i\}.
\]

For \(q = p^e \geq c \), we have

\[
M_i^{(e)} = \begin{cases} \bigoplus_{j \geq 1} K \cdot t^{j + 1 \over q} & (V_i = 0), \\ \bigoplus_{j \geq 0} K \cdot t^{j + 1 \over q} & (V_i = K), \\ V_i^{1 \over q} \cdot t^{1 \over q} \oplus \bigoplus_{j \geq 1} K \cdot t^{j + 1 \over q} & (0 \subseteq V_i \subsetneq K). \end{cases}
\]

It is easy to see that \(M_i^{(e)} \cong B \) if \(V_1 = 0 \) or \(K \). Note that \(V_i^{1/q} = \{\alpha^{1/q} \mid \alpha \in V_i\} \) is also a \(k \)-vector subspace of \(K \) since \(K \) is a perfect field.

Lemma 3.2. Let the notation be as above. Let \(q_1 = p^{e_1}, q_2 = p^{e_2} \geq c \) and \(i_1, i_2 \geq 0 \) such that \(0 \subsetneq V_{i_1}, V_{i_2} \subsetneq K \). Then \(M_{i_1}^{(e_1)} \) is isomorphic to \(M_{i_2}^{(e_2)} \) as graded module up to shift of grading if and only if \(\beta V_{i_1}^{1/q_1} = V_{i_2}^{1/q_2} \) for some \(\beta \in K^* = K \setminus \{0\} \).

Proof. A graded homomorphism \(\phi : M_{i_1}^{(e_1)} \rightarrow M_{i_2}^{(e_2)} \) can be identified with some homogeneous element of \(B \):

\[
\text{Hom}_A(M_{i_1}^{(e_1)}, M_{i_2}^{(e_2)}) \hookrightarrow C \otimes_A \text{Hom}_A(M_{i_1}^{(e_1)}, M_{i_2}^{(e_2)}) \cong \text{Hom}_C(C \cdot t^{1 \over q_1}, C \cdot t^{i_2 \over q_2}) \cong C \left(\frac{i_1}{q_1} - \frac{i_2}{q_2} \right).
\]
where $C = A[t^{-n}] = B[t^{-1}] = K[t, t^{-1}]$ for $n > 1$. Let $\phi \in \text{Hom}_A(M_{t_1}^{(e_1)}, M_{t_2}^{(e_2)})$ be a non-zero homogeneous homomorphism which maps to a homogeneous element $\beta t^n \in C(\frac{1}{q_1} - \frac{i_2}{q_2})$ under the above inclusion. Then for $g \cdot t^{i_1/q} \in M_{t_1}^{(e_1)} \subset B t^{i_1/q}$ with $g \in B$, $\phi(g \cdot t^{i_1/q}) = \beta g \cdot t^{n+i_1/q}$. Hence n should be non-negative, and ϕ is an isomorphism if and only if $n = 0$ and $\beta V_{t_1}^{i_1/q} = V_{t_2}^{i_2/q}$. Therefore there is a one-to-one correspondence between the set of graded isomorphisms from $M_{t_1}^{(e_1)}$ to $M_{t_2}^{(e_2)}$ and the set $\{ \beta \in K^* \mid \beta V_{t_1}^{i_1/q} = V_{t_2}^{i_2/q} \}$. □

We will present examples of one-dimensional domain which does not have finite (graded) F-representation type.

Example 3.3. Let $k = \bigcup_{e \geq 1} \mathbb{F}_2(u^{1/2^e})$ be the perfect closure of a rational function field $\mathbb{F}_2(u)$. Let $A = k[x, y]/(x^4 + x^2 y^2 + uxy^3 + y^4)$, $\deg x = \deg y = 1$, and $\widehat{A} = k[x, y]/(x^4 + x^2 y^2 + uxy^3 + y^4)$. Since $x^4 + x^2 + v^q x + 1$ is an irreducible polynomial in $\mathbb{F}_2[v, x]$ for all $q = 2^e$, it follows that $x^4 + x^2 + uxy + 1$ is an irreducible polynomial in $k[x]$. Hence its homogenization $x^4 + x^2 y^2 + uxy^3 + y^4$ is also irreducible in $k[x, y]$. We will prove that \widehat{A} does not have finite graded F-representation type, and \widehat{A} does not have finite F-representation type.

Let $\alpha \in \widehat{k}$ be a root of the irreducible polynomial $x^4 + x^2 + uxy + 1$, and set $K = k(\alpha) = k \oplus k \alpha \oplus k \alpha^2 \oplus k \alpha^3$. Then $A \cong k[t, t^{-1}] \in K$ and the integral closure B of A is isomorphic to $K[t]$, a polynomial ring over K. Note that $0 \leq V_i \leq K$ if and only if $0 \leq i \leq 2$, and $V_1 = \bigoplus_{l=0}^1 k \alpha^l$ for $0 \leq i \leq 2$, and $V_i = K$ for all $i \geq 3$. Hence $c = 3$, and $2^e \geq c$ for all $e \geq 2$.

We will show that $M_{t_1}^{(e_1)} \not\cong M_{t_2}^{(e_2)}$ for any $e_2 > e_1 > 2$. Assume, to the contrary, that $M_{t_1}^{(e_1)} \cong M_{t_2}^{(e_2)}$ for some $e_2 > e_1 > 2$. We set $\rho_1 = 2^{e_1}$ and $e = e_2 - e_1$. Then there exists $\beta \in K^*$ such that $\beta V_1^{i_1} = V_1^{i_2}$ by Lemma 3.2. Since $V_1^{i_1} = k \oplus k \alpha^{1/q_1}$, there exist $a, b, c, d \in k$ such that

$$\beta = a + b \alpha^{1/q_2}, \quad \beta \alpha^{1/q_1} = c + d \alpha^{1/q_2}.$$

It follows that

$$b \alpha^{2^{e+1}} + a \alpha^{2^e} - d \alpha^{q_2} = 0.$$

We will show that $1, \alpha, \alpha^{2^e}, \alpha^{2^{e+1}}$ are linearly independent over k for any $e \geq 1$. If this is proved, then $a = b = c = d = 0$ which contradicts that $\beta \neq 0$. In case $e = 1$, it is clear that $1, \alpha, \alpha^2, \alpha^3$ are linearly independent over k. We claim that for $e \geq 2$ there exist polynomials $f_e, g_e, h_e \in \mathbb{F}_2[u] \subset k$ such that $f_e \neq 0, g_e \neq 0$,

$$\alpha^{2^e} = f_e \alpha^2 + g_e \alpha + h_e,$$

and $\deg u f_e = \deg u g_e - 1$ if e is even and $\deg u f_e = \deg u g_e + 1$ if e is odd. We prove this claim by induction on e. If $e = 2$, then $\alpha^4 = \alpha^2 + u\alpha + 1$ and thus $f_2 = 1$ and $g_2 = u$. If the claim holds true for e, then

$$\alpha^{2^{e+1}} = f_{e+1} \alpha^4 + g_{e+1} \alpha^2 + h_{e+1}^2 = f_{e+1} (\alpha^2 + u\alpha + 1) + g_{e+1} \alpha^2 + h_{e+1}^2 = (f_{e+1} + g_{e+1}) \alpha^2 + u f_{e+1} \alpha + f_{e+1}^2 + h_{e+1}^2,$$

and thus $f_{e+1} = f_{e+1}^2 + g_{e+1}^2$ and $g_{e+1} + h_{e+1} = u f_{e+1}^2$. Note that $f_{e+1} \neq 0$ as $\deg u f_e \neq \deg u g_e$. Since $\deg u f_{e+1} = 2 \max\{\deg u f_e, \deg u g_e\}$ and $\deg u g_{e+1} = 2 \deg u f_{e+1}$, the claim also holds true for $e + 1$. By induction, the claim is true for every $e \geq 2$. The claim implies that $1, \alpha, \alpha^{2^e}, \alpha^{2^{e+1}}$ generate $1, \alpha, \alpha^2, \alpha^3$ over k. Therefore $1, \alpha, \alpha^{2^e}, \alpha^{2^{e+1}}$ are linearly independent over k for all $e \geq 1$ since $1, \alpha, \alpha^2, \alpha^3$ are linearly independent over k.

Therefore $M^{(e_1)}_1 \not\cong M^{(e_2)}_1$ for any $e_2 > e_1 \geq 2$. As Krull–Schmidt theorem holds for graded A-modules, we need infinitely many isomorphism classes of indecomposable graded A-modules to decompose $A^{1/q}$ into indecomposable modules for all $q = p^r$. Thus A does not have finite graded F-representation type.

We will prove that \hat{A} does not have finite F-representation type. Let \hat{B} be the integral closure of A. Note that $\hat{B} \cong B \otimes_A K = \mathbb{K}[t]$, and $\hat{A}^{1/q} \cong \mathbb{Q}^{e_1}_i \otimes A \hat{A}$. It is enough to show that $\hat{M}^{(e_2)}_1 \not\cong \hat{M}^{(e_1)}_1$ for all $e_2 > e_1 \geq 2$. Assume, to the contrary, that there is an isomorphism $\phi : \hat{M}^{(e_1)}_1 \rightarrow \hat{M}^{(e_2)}_1$, so for some $e_2 > e_1 \geq 2$. Let $\hat{\Psi}$ be the inclusion $\text{Hom}_{\hat{A}}(\hat{M}^{(e_1)}_1, \hat{M}^{(e_2)}_1) \hookrightarrow \text{Hom}_{\mathbb{C}}(\mathbb{C}^{1/q_1}, \mathbb{C}^{1/q_2}) \cong \mathbb{C}$ where $C = \hat{A}[t^{-n}] = \hat{B}[t^{-1}] = K(t)$ for $n \gg 1$. Let $\hat{\phi}(\phi) = \sum \beta_j t_j \in \hat{B}$, $\beta_j \in K$. As $\phi(\hat{M}^{(e_1)}_1) \subset \hat{B}^{1/q_2}$, β_j should be zero for all $j < 0$. Since ϕ is an isomorphism, it follows that $\beta_0 \neq 0$ and $\beta_0 V^{1/q_1} = V^{1/q_2}$, which is a contradiction.

Example 3.4. Let $k = \bigcup_{e \geq 1} F_2(u^{1/2^e})$. $A = k[x, y]/(x^6 + xy^5 + uy^6)$, $\deg x = \deg y = 1$, and $\hat{A} = k[x, y]/(x^6 + xy^5 + uy^6)$. Then A does not have finite graded F-representation type, and \hat{A} does not have finite F-representation type. One can prove this similarly to Example 3.3.

If k is a finite field, then we can prove that A has finite F-representation type.

Theorem 3.5. Let A be a one-dimensional complete local or \mathbb{N}-graded domain of prime characteristic p. If k is a finite field, then A has finite F-representation type.

Proof. In the case where A is an \mathbb{N}-graded ring, since $\{V_i^{1/q} \mid q = p^e, \ i \geq 0\}$ is a finite set, we have the assertion by Lemma 3.2.

Assume that $A = (A, m, k)$ is a one-dimensional complete local domain. Let $B = K[t]$ be a normalization of A, and set $D = k + tB = K[\alpha | \alpha \in K]$. For $f = \sum_{i \geq n} \beta_i t^i \in B$, $\beta_n \neq 0$, we define $\text{in}_B(f) = \beta_n t^n$, and set $\text{in}_B(0) = 0$. For $i \in \mathbb{N}$, let

$$V_i = \{ \beta \mid \text{in}_B(f) = \beta t^i \text{ for some } f \in A \}.$$

Since $\dim_k B/A < \infty$, it follows that $V_i = K$ for all sufficiently large i. We set

$$c = \min\{i \mid V_j = K \text{ for all } j \geq i\}.$$

We claim that $\beta t^n \in A$ for all $\beta \in K$ and $n \geq c$. As $V_i = K$, there exists $f_0 \in A$ such that $\text{in}_B(f_0) = \beta t^n$. We construct $f_i \in A$ satisfying $\text{in}_B(f_i) = \beta t^n$ inductively on i as following manner. If $f_i \neq \beta t^n$, then take $g_i \in A$ such that $\text{in}_B(f_i - \beta t^n) = \text{in}_B(g_i)$, and set $f_{i+1} = f_i - g_i$. Then we eventually have $f_i = \beta t^n$ for some i, or $f_i \neq \beta t^n$ for all $i \in \mathbb{N}$ and $\beta t^n = \lim_{i \to \infty} f_i = f_0 - \sum_{i=0}^{\infty} g_i \in A$. This proves the claim. Therefore, $D^q \subset A$ for all $q = p^r \geq c$, and thus $A \subset D \subset A^{1/q}$. In particular, $A^{1/q}$ is a D-module.

For $i \in \mathbb{N}$ with $V_i \neq 0$, one can show (similarly to the above claim) that there exists a finite set $G_i \subset A$ satisfying the following properties:

1. $\{\text{in}_B(g) \mid g \in G_i\}$ is a k-basis of $V_i t^i = \{\beta t^i \mid \beta \in V_i\}$.
2. For any $g \in G_i$, g has a form $g = \beta t^i + \sum_{j=i+1}^{c-1} \beta_j t^j$ with $\beta_j = 0$ or $\beta_j \notin V_j$.

Set $G_i = 0$ for i with $V_i = 0$. We fix a k-basis $\alpha_1, \ldots, \alpha_r$ of K where $r = [K : k]$. If $i \geq c$, then we can take $G_i = (\alpha_i t^i, \ldots, \alpha_r t^i)$. It is easy to prove that $\bigcup_{i=0}^{r-1} G_i^{1/q}$ is a system of generators of $A^{1/q}$ as a D-module for $q \geq c$. Let

$$N^{(c)} = D \left(\bigcup_{i=0}^{c-1} G_i^{1/q} \right).$$

$$M_i^{(c)} = D \cdot G_i^{1/q} \text{ for } c \leq i \leq q - 1.$$
Then

$$A^{1/q} = \left(\bigoplus_{i=c}^{q-1} M_i^{(e)} \right) \oplus N^{(e)},$$

and $M_i^{(e)} \cong B$ for all $c \leq i \leq q - 1$. Assume that $\#K = p^f$. To complete the proof, we prove that $N^{(e_1)} \cong N^{(e_2)}$ for $e_1, e_2 \in \mathbb{N}$ such that $p^{e_1}, p^{e_2} \geq c$, and $e_1 \equiv e_2 \mod f$. Set $q_1 = p^{e_1}, q_2 = p^{e_2}$, and let $\varphi : \bigoplus_{i=0}^{c-1} B t^i / q_i \rightarrow \bigoplus_{i=0}^{c-1} B t^i / q_i$, $t^i / q_i \mapsto t^i / q_i$, be an isomorphism of free B-modules (and hence an isomorphism as D-modules). Note that $N^{(e_j)}$ is a D-submodule of $\bigoplus_{i=0}^{c-1} B t^i / q_i$ for $j = 1, 2$ by the definition of G_i. Since $\beta p^f = \beta$ for $\beta \in K$, $\varphi(g^{1/q_1}) = g^{1/q_2}$ for $g = \sum_{i=0}^{c-1} B t^i \in B$ if $e_1 \equiv e_2 \mod f$. Therefore φ induces a one-to-one correspondence between $\bigcup_{i=0}^{c-1} G_i^{1/q_1}$ and $\bigcup_{i=0}^{c-1} G_i^{1/q_2}$ if $e_1 \equiv e_2 \mod f$. This implies that if $e_1 \equiv e_2 \mod f$, the restriction of φ to $N^{(e_1)}$ is an isomorphism form $N^{(e_1)}$ to $N^{(e_2)}$ as D-modules, and thus as A-modules. Therefore, A has finite F-representation type. □

We end this paper with a few observations on higher dimension rings of finite F-representation type. Let k be a field of positive characteristic p with $[k:k^p] < \infty$. We begin with the question posed by Brenner.

Question 3.6 (Brenner). Does the ring $k[x, y, z]/(x^2 + y^3 + z^7)$ have finite F-representation type?

Observation 3.7. Let S be an F-finite Cohen–Macaulay local (resp. graded) ring of finite (resp. graded) Cohen–Macaulay type, and R a local ring such that $S \subset R \subset S^{1/q}$ for some $q' = p^{e'}$. Note that $S^{1/q'}$ is also of finite (resp. graded) Cohen–Macaulay type since $S \cong S^{1/q}$ as rings. Let M be an R-module (resp. a graded R-module). Since $(S^{1/q'})^q \subset R$ for $q \geq q'$, $e' M$ has an $S^{1/q'}$-module structure for $e \geq e'$. If M is a maximal Cohen–Macaulay R-module, then $e' M$ is a maximal Cohen–Macaulay $S^{1/q'}$-module, and thus M has finite F-representation type. In particular, if R is Cohen–Macaulay, then R has finite F-representation type.

Example 3.8. Let $R = k[s^q, st, t] \cong k[x, y, z]/(y^q - xz^q)$. Since $k[s^q, t^q] \subset R \subset (k[s^q, t^q])^{1/q}$, R has finite F-representation type.

Example 3.9. Let S be an F-finite regular local ring (resp. a polynomial ring over a field), and let $f \in S$ be an element (resp. a homogeneous element), and $R = S[1/q]$. Then R has finite F-representation type. In particular, $k[x, y, z]/(x^2 + y^3 + z^7)$ has finite F-representation type if $p = 2, 3,$ or 7.

We can prove a little more general result.

Theorem 3.10. Let R be an F-pure complete local (resp. graded) domain of finite F-representation type, e_1, \ldots, e_r positive integers, and $q_i = p^{e_i}$. Let f_1, \ldots, f_r be (resp. homogeneous) elements of R, and

$$S = R[x_1, \ldots, x_r]/(x_1^{q_1} + f_1, \ldots, x_r^{q_r} + f_r).$$

Then S has finite (resp. graded) F-representation type.

Proof. Note that if R is a graded ring, then S is also a graded ring by assigning $\deg(x_i) = \deg(f_i) / q_i$. Let $\tilde{e} = \max\{e_1, \ldots, e_r\} + 1$ and $\tilde{q} = p^{\tilde{e}}$. First, we prove the theorem in case where $f_i = 0$ for all i. Since $S = R[x_1, \ldots, x_r]/(x_1^{q_1}, \ldots, x_r^{q_r})$ is a free R-module of finite rank, S has finite F-representation type as an R-module. On the other hand, since $(x_1, \ldots, x_r) \cdot e S = (x_1, \ldots, x_r)q/1 S = 0$ for $e \geq \tilde{e}$, a decomposition of $e S$ as an R-module can be regarded a decomposition as an S-module. Hence S has finite F-representation type.
In the general case, since R is F-pure, R is a direct summand of $R^{1/{\tilde{q}}}$, and thus $R[x_1, \ldots, x_r]$ is a direct summand of $R^{1/{\tilde{q}}}[x_1, \ldots, x_r]$. Hence S is a direct summand of

$$R^{1/{\tilde{q}}}[x_1, \ldots, x_r]/(x_1^{q_1} + f_1, \ldots, x_r^{q_r} + f_r)$$

$$= R^{1/{\tilde{q}}}[x_1, \ldots, x_r]/((x_1 + f_1^{1/q_1})^{q_1}, \ldots, (x_r + f_r^{1/q_r})^{q_r})$$

$$\cong R^{1/{\tilde{q}}}[x_1, \ldots, x_r]/(x_1^{q_1}, \ldots, x_r^{q_r}).$$

Since $R^{1/{\tilde{q}}}$ has finite F-representation type, $R^{1/{\tilde{q}}}[x_1, \ldots, x_r]/(x_1^{q_1}, \ldots, x_r^{q_r})$ has finite F-representation type as proved above. Therefore S has finite F-representation type by Example 2.2(v) and (vi).

References