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Key amino acid residues for the endo-processive activity of GH74
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Unlike endo-dissociative-xyloglucanases, Paenibacillus XEG74 is an endo-processive xyloglucanase
that contains four unique tryptophan residues in the negative subsites (W61 and W64) and the posi-
tive subsites (W318 and W319), as indicated by three-dimensional homology modelling. Selective
replacement of the positive subsite residues with alanine mutations reduced the degree of proces-
sive activity and resulted in the more endo-dissociative-activity. The results showed that W318 and
W319, which are found in the positive subsites, are essential for processive degradation and are
responsible for maintaining binding interactions with xyloglucan polysaccharide through a stacking
effect.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Xyloglucan is a hemicellulose polysaccharide found in plant cell
walls [2] that has a b-1,4-linked glucose backbone with a-D-xylose
attached to C6 of the glucose residues. In addition, some of the
xylose residues are substituted to form oligomeric side-chains con-
taining galactose, arabinose or fucose residues [27]. In plant cell
walls, xyloglucan forms a cellulose–xyloglucan network via hydro-
gen bonds with cellulose microfibrils, and is thought to play a
physiologically important role in cell definition, cell expansion,
and regulation of plant growth and development [2].

Several enzymes are involved in xyloglucan degradation,
including endo-b-1,4-glucanases ([8,11,13,15,19,28], reviewed in
[10]). Some cellulases have been reported to hydrolyse not only
cellulose but also xyloglucan as a substrate analogue [19]. How-
ever, many endo-b-1,4-glucanases have high glucanase activity
for xyloglucan but not for cellulose or cellulose derivatives; these
xyloglucan-specific b-1,4-glucanases have been designated specif-
ically as xyloglucanases [7].

As reported previously, we have screened xyloglucan-degrading
microorganisms from soil and identified several xyloglucan hydro-
lases [20,23–26]. For instance, the fungus Geotrichum sp. M128
produces two xyloglucan-specific glycoside hydrolases that belong
to the glycoside hydrolase family 74 (GH74), oligoxyloglucan
reducing-end-specific cellobiohydrolase (OXG-RCBH), and xyloglu-
can-specific endo-b-1,4-glucanase (XEG). OXG-RCBH has unique
exo-type activity for xyloglucan and recognises the reducing end
of xyloglucan [23]. By contrast, XEG cleaves the glycosidic bond
of the unbranched glucose residues in the main chain of xyloglucan
[24]. Structural analysis of XEG and OXG-RCBH revealed that the
exo-activity of OXG-RCBH depends on a loop structure in the active
site cleft, which is not present in XEG, and deletion of the loop
structure converts the exo-activity of OXG-RCBH to endo-activity
[21].

The Gram-positive bacterium Paenibacillus sp. strain KM21 also
produces a xyloglucanase designated as XEG74 [26]. In the degra-
dation of tamarind seed xyloglucan by endo-type xyloglucanase,
XXXG, XLXG, XXLG and XLLG (G: unbranched D-Glcp residue, X:
a-D-Xylp-(1 ? 6)-b-D-Glcp, L: b-D-Galp-(1 ? 2)-a-D-Xylp-(1 ? 6)-
b-D-Glcp) are the final products (Fig. S1 in the Supplemental
Materials) [16,28]. Although both Geotrichum XEG and Paenibacil-
lus XEG74 produce XXXG, XLXG, XXLG and XLLG as the final prod-
ucts of tamarind seed xyloglucan degradation, the modes of
activity of Geotrichum XEG and Paenibacillus XEG74 are different.
Geotrichum XEG acts as an endo-dissociative-type xyloglucanase,
while Paenibacillus XEG74 has an endo-processive mode of action
toward xyloglucan [26]. At the beginning of hydrolysis, both
endo-dissociative- and endo-processive-type xyloglucanases act
on the internal b-1,4-linked glucose backbone of xyloglucan.
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Subsequently, endo-dissociative-type enzymes repeat desorption
from the polysaccharide and hydrolysis. Conversely, endo-proces-
sive-type enzymes hydrolyse progressively without desorption,
and produce final products such as XXXG, XXLG, XLXG and XLLG.
Therefore, the hydrolysis pattern of endo-processive-type enzymes
resembles that of exo-type enzymes [11]. In contrast to endo-pro-
cessive xyloglucanases, the processive activity of cellobiohydrolas-
es (for example CBHI and CBHII of Trichoderma reesei) has been
investigated extensively [5,6,17,18]. Both CBHI and CBHII have a
tunnel-like active site for processive activity. However, Grishutin
et al. discussed that endo-processive mode xyloglucanases are un-
likely to have a tunnel-like active site structure capable of accom-
modating xyloglucan [11]. Therefore, it is unclear how endo-
processive mode xyloglucanases gain processive activity.

In this study, we investigated the importance of tryptophan
residues located in the active site cleft, as is characteristic of
Paenibacillus XEG74, for endo-processive activity. We found that
two tryptophan residues are vital for endo-processive-type xylo-
glucanase activity, and are responsible for the conversion of
endo-processive-type Paenibacillus XEG74 activity into endo-disso-
ciative-activity.
2. Materials and methods

2.1. Homology modelling of Paenibacillus XEG74

The structure of the catalytic domain of Paenibacillus XEG74
was theoretically determined by homology modelling using the
SWISS-MODEL server (http://swissmodel.expasy.org) and the
structure of Clostridium thermocellum Xgh74A (PDB code: 2CN2)
[16] as a template. Paenibacillus XEG74 showed 59% identity with
Clostridium Xgh74A.

2.2. Construction of Paenibacillus XEG74(CD) mutants

Xyloglucanase XEG74 from Paenibacillus sp. strain KM21 con-
sists of three modules: a catalytic domain (CD; residues 1–736),
an X2 module (residues 750–833), and a C-terminal CBM3 (carbo-
hydrate-binding module 3; residues 850–932) that has the ability
to bind cellulose [26]. The catalytic domain of XEG74 was ex-
pressed in Escherichia coli fused with a 6 � His-tag at its C-termi-
nus (80 kDa) and will be referred to as XEG74(CD) henceforth.
The DNA fragment encoding XEG74(CD) was amplified by PCR
and cloned into a pET-28a (+) expression vector (Novagen, La Jolla,
CA, USA). The primers used in this study are listed in the Supple-
mental Materials Table S1. The W61A, W64A, W318A, and
W319A mutants were constructed using the QuikChange proce-
dure (Stratagene, La Jolla, CA, USA) using the primers listed in
Table S1 and the pET28a-XEG74(CD) clone as a template.

2.3. Expression and purification of Paenibacillus XEG74(CD) and
Geotrichum XEG

XEG74(CD) expression vectors were transformed into E. coli
BL21-CodonPlus (DE3) RP (Stratagene). To induce the expression
of XEG74(CD), the transformants were cultured at 30 �C overnight
in Overnight Express™ Instant LB medium (Novagen). The soluble
intracellular protein was extracted using the BugBuster protein
extraction reagent with Benzonase Nuclease HC (Novagen), and
purified using a His SpinTrap (GE Healthcare, Buckinghamshire,
UK) with elution buffer (20 mM sodium phosphate, 400 mM NaCl,
500 mM imidazole, pH 7.4). Geotrichum XEG was expressed in the
E. coli BL21-CodonPlus (DE3) RP and purified as described previ-
ously [22].
2.4. Kinetic analysis of XEG74(CD) mutants

Kinetic parameters were determined using 2.5 lg enzyme/mL
at xyloglucan concentrations ranging from 0.05 to 4 mg/mL in
20 mM sodium phosphate buffer (pH 6.0) at 45 �C for 15 min.
The reducing sugar content was determined using a bicinchoninate
assay [9] at 98 �C for 15 min. The Michaelis constants (Km) and spe-
cific activities were calculated by non-linear regression of the
Michaelis–Menten equation using GraphPad PRISM Version 5.0
(GraphPad Software, La Jolla, CA, USA).

2.5. Viscosimetric assay

Viscosimetric assays were performed as described previously
[26]. Briefly, 100 lL diluted enzyme (80 ng/mL) were added to
1 mL 0.8% tamarind seed xyloglucan (Megazyme International Ire-
land Ltd., Bray, Ireland) in 20 mM sodium-phosphate buffer (pH
6.0) at 45 �C, and assayed at various time points (0.5, 2, 4, 8, and
24 h). The viscosity of reaction mixtures was determined using a
Viscometer K-2283 200 (Kusano kagaku, Tokyo, Japan) at room
temperature. The reducing sugar content was determined by bicin-
choninate assay [9] at 98 �C for 15 min. The degree of hydrolysis at
each time point was calculated by comparison with complete
digestion of the substrate with excess enzyme and incubation time
(designated as 100% hydrolysis).

2.6. Analysis of xyloglucan digestion products by gel-filtration
chromatography

One hundred microliters of diluted enzyme (XEG74(CD) and its
mutants: 4 lg/mL; XEG: 2 lg/mL) in 20 mM sodium phosphate
buffer (pH 6.0) were added to 1 mL of 0.8% xyloglucan dissolved
in ultra-pure water and incubated at 45 �C. After various incuba-
tion times (2, 3, 5, or 8 h), the reaction solution was applied to a
Superdex Peptide 10/300 GL gel-filtration column (GE Healthcare,
Buckinghamshire, UK) at 30 �C. Ultra-pure water was used as the
column eluent with a flow rate of 1 mL/min. The system was dri-
ven with a pump (PC-2080, JASCO, Japan) and equipped with a
refractive index detector (RI-2031, JASCO).

3. Results

3.1. Comparison of Paenibacillus XEG74 and Geotrichum XEG

For structural comparisons between endo-dissociative-type and
endo-processive-type xyloglucanases, the structure of Paenibacillus
XEG74(CD) was theoretically determined by homology modelling
(Supplemental Data). The overall structure of Paenibacillus XEG
74(CD) was compared with that of C. thermocellum Xgh74A as com-
plexes with substrate (XLLG and XXLG) [16] and Geotrichum sp.
M128 XEG [22] (Fig. 1A). The active site cleft structure of Paeniba-
cillus XEG74(CD) was also compared with that of Geotrichum XEG
(Fig. 1B). Although these enzymes have similar overall structures,
Paenibacillus XEG74(CD) has four characteristic tryptophan resi-
dues (W61, W64, W318, and W319) around the active site cleft.
W61 and W64 are found in the ‘‘negative’’ subsites [4]. In contrast,
W318 and W319 are found in the ‘‘positive’’ subsites. Geotrichum
XEG lacks these tryptophan residues, suggesting that the difference
between endo-dissociative- and endo-processive activities is de-
rived from the presence of these tryptophan residues.

3.2. Point mutation analysis of Paenibacillus XEG74

To confirm the importance of tryptophan residues W61, W64,
W318, and W319 for endo-processive-type xyloglucanase activity,
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Fig. 1. Modelling of endo-dissociative- and endo-processive-type xyloglucanase structures. (A) Schematic drawing (divergent ‘‘wall-eyed’’ stereo) of structures of Clostridium
thermocellum xyloglucanase Xgh74A (yellow), Geotrichum XEG (blue) and Paenibacillus XEG74(CD) (green). (B) Comparison between the active sites of Geotrichum XEG (blue)
and Paenibacillus XEG74(CD) (green) is shown. Two substrate molecules, XLLG and XXLG, and four tryptophan residues of Paenibacillus XEG74(CD), W61, W64, W318 and
W319, are shown as stick models.

Table 1
The kinetic parameters of the XEG74(CD) mutants.

Vmax (U/mg protein) Km (mg/ml) kcat (s�1)

XEG74(CD) 36.8 0.96 49.2
XEG74(CD)-W61A 40.7 1.30 54.3
XEG74(CD)-W64A 48.1 1.50 64.3
XEG74(CD)-W318A 54.0 2.18 72.0
XEG74(CD)-W319A 49.3 1.46 65.8

One unit was defined as the amount of enzyme that released 1 lmol of glucose
equivalents as reducing sugars from xyloglucan per minute
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we constructed four Paenibacillus XEG74(CD) variants, W61A,
W64A, W318A, and W319A by site-directed mutagenesis. The Pae-
nibacillus XEG74(CD) W-to-A substitution mutants were expressed
in E. coli, purified, and their xyloglucan hydrolysis activities were
analysed. All of these mutants showed xyloglucan hydrolysing
activity, indicating that these tryptophan residues were not
necessary for xyloglucan hydrolysis (Table 1). The Km values for
xyloglucan were increased in the XEG74(CD) W-to-A substitution
mutants, especially in the W318A mutant, which exhibited a Km

value approximately twice that of the wild-type enzyme. Interest-
ingly, however, XEG74(CD)-W318A also showed a high specific
activity for xyloglucan.

We then analysed the effects of these mutations on the activity
of Paenibacillus XEG74(CD) by studying the decrease in xyloglucan
viscosity compared to the release of reducing sugars (Fig. 2). Endo-
dissociative-type xyloglucanases reduce the viscosity of xyloglucan
more rapidly than endo-processive-type xyloglucanases [26]. This
drastic reduction in viscosity is caused by random depolymerisa-
tion of the xyloglucan backbone. Compared to the XEG74(CD)
wild-type, mutations in W61 and W64 had no effect on the de-
crease in xyloglucan viscosity. However, in the case of the
W318A and W319A mutants, the viscosity of xyloglucan was



Fig. 2. Viscosimetric analysis of xyloglucan-hydrolysis products. Tamarind seed xyloglucan was digested with Paenibacillus XEG74(CD) (closed circles), XEG74(CD)-W61A
(open circles), XEG74(CD)-W64A (closed squares), XEG74(CD)-W318A (open squares), XEG74(CD)-W319A (closed triangles) or Geotrichum XEG (open triangles) for 0.5–24 h.
The specific viscosity and hydrolysis ratio of partial hydrolysis products were measured. T0 is the flow time measured for the sodium-phosphate buffer, and T is the flow time
of the reaction mixture incubated with xyloglucanases.

1734 T. Matsuzawa et al. / FEBS Letters 588 (2014) 1731–1738
decreased quite rapidly (Fig. 2). This pattern is typical for endo-dis-
sociative-type xyloglucanases, including Geotrichum XEG.

Next, xyloglucan was incubated with Paenibacillus XEG74(CD),
W-to-A mutants, or Geotrichum XEG, and after various incubation
times the degradation products were analysed by gel-filtration
chromatography. In the case of Paenibacillus XEG74(CD) and its
W61A or W64A mutant, the production of mid-range molecular
weight compounds (retention time: about 9–12 min) was negligi-
ble. However, the final degradation products, such as XXXG, XLXG,
XXLG, and XLLG, were detected as early as the initial stage of the
reaction (Fig. 3B). Although wild-type Paenibacillus XEG74(CD)
produced only final degradation products, the W61A and W64A
mutants accumulated tetradeca-oligosaccharides, including XXXG
and XXXG. In the case of the W318A and W319A mutants, the for-
mation of mid-range molecular weight products was detected at
similar levels to the endo-dissociative-type Geotrichum XEG. The
accumulation of tetradeca-oligosaccharides was observed for the
W318A mutant, although not for the W319A mutant.

From these results, we concluded that the activity of Paenibacil-
lus XEG74(CD) was altered from an endo-processive-type to an
endo-dissociative-type activity by mutation at W318 or W319,
both of which are found in the positive subsites.

We also constructed double alanine substitution mutant en-
zymes, XEG74(CD)-W61A/W64A and XEG74(CD)-W318A/W319A.
The hydrolysis pattern of the W318A/W319A double mutant clo-
sely resembled those of the W318A mutant and Geotrichum XEG
(Figs. S2 and S3). In xyloglucan hydrolysis assays, the solution vis-
cosity was reduced more rapidly using the W61A/W64A double
mutant than was observed for the Paenibacillus XEG74(CD) wild-
type, the W61A mutant, or the W64A mutant (Fig. S2, Fig. 2), and
little formation of mid-range molecular weight products was de-
tected (Fig. S3), indicating that mutations in W61 and W64 had
synergistic effects on the mode of action of endo-processive-type
xyloglucanase activity. These results demonstrated that although
W61 or W64 is dispensable for endo-processive xyloglucanase
activity, these residues contribute slightly to endo-processive
activity and/or substrate recognition.
4. Discussion

In this study we performed homology modelling to determine a
theoretical structure of the endo-processive-type xyloglucanase
Paenibacillus XEG74(CD). Comparison of the active site structure
with that of Geotrichum XEG allowed the identification of key ami-
no acid residues involved in the distinction between endo-proces-
sive-type activity and endo-dissociative-type activity. Paenibacillus
XEG74 has four tryptophan residues located in the active site cleft.
It has been reported that some aromatic amino acid residues, and
especially tryptophan residues, have the potential to participate in
enzyme-substrate interactions by ‘‘stacking effects’’ [16]. We fo-
cused on these tryptophan residues that may be stacked with the
glucose residue of the xyloglucan oligosaccharide. Mutation of
the positive subsite residues W318 and/or W319 altered the activ-
ity of Paenibacillus XEG74(CD) from endo-processive to endo-dis-
sociative-type. It is surprising that this alteration was due to a
single amino acid substitution. This suggests that tryptophan resi-
dues in the positive subsites, and not the negative subsite residues
W61 and W64, are responsible for maintaining the binding of poly-
saccharide in the active site after release of the xyloglucan-oligo-
saccharide product. This binding facilitates the motion of the
enzyme along the polysaccharide chain to another catalytic event
(Fig. 4). This may have implications on the directionality of proces-
sivity. Without W318 and/or W319, the enzyme leaves the sub-
strate and is re-bound randomly along the backbone, resulting in
endo-dissociative-type hydrolysis. By comparison to the W319A
mutant, the W318A mutant caused a reduction in xyloglucan vis-
cosity more rapidly and produced a large amount of mid-range
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Fig. 3. Gel-filtration analysis of xyloglucan degradation products. (A) Tamarind seed xyloglucan (TXG) and xyloglucan-derived oligosaccharides including XXXG and
XXXGXXXG were used as the standards. (B) Tamarind seed xyloglucan was incubated with Paenibacillus XEG74(CD), XEG74(CD) W-to-A substitution mutants, and Geotrichum
XEG for various incubation periods. The partially hydrolysed xyloglucan products were applied to a gel-filtration column.
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molecular weight products (Figs. 2 and 3). These results indicate
that although both W318 and W319 are vital for endo-processive
mode xyloglucanase activity, W318 is more important in proces-
sive-hydrolysis than W319.

We also attempted to convert endo-dissociative-type xyloglu-
canase Geotrichum XEG to endo-processive-type activity by intro-
duction of active site cleft point mutation in Geotrichum XEG.
Asparagine 326 of Geotrichum XEG (corresponding to W318 of
Paenibacillus XEG74) was mutated to a tryptophan residue. How-
ever, this mutation did not affect the mode of activity (data not
shown), suggesting that two or more aromatic amino acid residues
are necessary to convert endo-dissociative-type enzymes into
endo-processive-type enzymes.

A phylogenetic tree of GH74 xyloglucanases shows that they
can be divided into three groups based on their mode of action:
Fig. 4. The mode of activity of endo-processive-type xyloglucanase XEG74 is shown w
residue. Filled pentagons represent a xylose residue.
exo, endo-dissociative, and endo-processive (Fig. 5A). Endo-disso-
ciative enzymes, such as Geotrichium XEG, and exo-type enzymes,
such as Geotrichum OXG-RCBH [23] and Aspergillus OREX [1], lack
tryptophan residues analogous to W61, W64, W318, and W319
of Paenibacillus XEG74 (Fig. 5B). Streptmyces GH74B [13], an
endo-dissociative-type xyloglucanase, has three tryptophan resi-
dues analogous to W61, W64 and W318, but lacks a tryptophan
residue corresponding to W319. The endo-processive-type en-
zymes Phanerochaete Xgh74B [15], Streptmyces GH74A [13], and
Thermobifida Xeg74 [14, and our personal data (not shown)] have
two tryptophan residues corresponding to W318 and W319,
suggesting that both W318 and W319 are essential for the endo-
processive activity of GH74 xyloglucanases. Although the modes
of action of Streptmyces Sco6545 [8], Aspergillus EglC [12],
Trichoderma Cel74A [3], and Clostridium Xgh74A [16] have not been
ith tamarind seed xyloglucan as a substrate. Filled hexagons represent a glucose
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Fig. 5. Phylogenetic tree and sequence alignment of GH74 xyloglucan hydrolases (the amino acid sequence of catalytic domains). The sequence alignment was calculated
using ClustalW (http://clustalw.ddbj.nig.ac.jp/), and the phylogenetic tree was constructed using FigTree v1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/). GenBank accession
numbers are as follows: Aspergillus niger EglC, AAK77227.1; Aspergillus nidulans OREX, EAA64249.1; Clostridium thermocellum Xgh74A, CAE51306.1; Geotrichum sp. M128
OXG-RCBH, BAC22065.1; Geotrichum sp. M128 XEG, BAD11543.1; Jonesia sp. DSM 14140 Xeg, CAD58415.1; Paenibacillus sp. KM21 XEG74, BAE44527.1. Phanerochaete
chrysosporium Xgh74B, BAF95189.1; Streptmyces avermitilis GH74A, BAC69567.1; Streptmyces avermitilis GH74B, BAC70285.1; Streptmyces coelicolor Sco6545, CAA20642.1;
Thermobifida fusca Xeg74, AAZ55647.1; Trichoderma reesei Cel74A, AAP57752.1. The phylogenetic tree is shown in (A). The sequence alignments around W61 and W64 and
around W318 and W319 are shown in (B). Conserved amino acids are indicated with asterisks. The positions of W61, W64, W318, and W319 of Paenibacillus XEG74 are
indicated by arrows, and conserved tryptophan residues are indicated in boxes.
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reported, tryptophan residues analogous to W318 and W319 of
Paenibacillus XEG74 are conserved in these enzymes (Fig. 5B). It
is therefore likely that these enzymes exhibit endo-processive
activity.

Interestingly, several microorganisms contain both endo-disso-
ciative- and endo-processive xyloglucanases [13,26]. Our future ef-
forts will focus on how microorganisms use endo-dissociative- or
endo-processive-type xyloglucanases during plant cell wall degra-
dation. Because degradation of xyloglucan is an important issue in
saccharification of lignocellulosic biomass [10], these studies will
contribute to the knowledge of effective biomass-saccharification.
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