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Abstract 
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The game of edge geography is played by two players who alternately move a token on a 
graph from one vertex to an adjacent vertex, erasing the edge in between. The player who 
first has no legal move is the loser. We show that the decision problem of determining 
whether a position in this game is a win for the first player is PSPACE-complete. Further, 
the problem remains PSPACE-complete when restricted to planar graphs with maximum 
degree 3. However, if the underlying graph is bipartite we provide ( 1) a linear algebraic 
characterization of the P- and N-positions, yielding (2) a polynomial time algorithm for 
deciding whether any given position is P or N, and also (3) a polynomial time algorithm 
to find winning moves. 
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1. Introduction 

The word “geography” is used to describe a collection of games played by 
two players who alternately move a token on a graph until one of them can 
no longer play legally and loses. The game acquires its name from the familiar 
word game in which two players alternately name geographical places subject 
to the restriction that the first letter of every place matches the last letter of 
the previously named place and that no place may be named twice. In this 
paper, we discuss generalizations of this word game to the category of finite 
graphs. 

The graph game has several variations. First, the underlying graph may be 
directed (D) or undirected (U); we refer to the two options naturally as 
directed geography and undirected geography. Second, we consider the case 
where no vertex may be repeated (V) as well as the variation where vertices 
may be repeated but no edge may be repeated (E); we refer to the two options 
as vertex geography and edge geography. In each case, a position in the game 
is a rooted graph (directed or undirected) and the critical issue is to classify 
which rooted graphs are N-positions (wins for the Next or first player) or 
P-positions (wins for the Previous or second player). 

There are numerous other variations of the rules that we do not consider in 
this paper. For example, another natural way to begin a game of geography 
is to allow the first player to choose any vertex of an unrooted graph. Other 
options include multiple tokens which either block or annihilate one another, 
or tokens of two colors in which players may only move the tokens of their 
own color. See [ 1,3-61. 

The directed case was first explored in [ 91, where it was shown that the 
question whether the first player can win when starting from a distinguished 
vertex in directed edge geography (DEG) is PSPACE-complete. The same result 
holds for the vertex case (DVG). In fact, both versions are PSPACE-complete 
even for bipartite, planar graphs with in/out degrees at most 2 and total degree 
at most 3. See [ 7,8]. 

In this note, then, we focus on geography played on undirected graphs. 
We can dismiss the vertex case (UVG), which turns out to be governed by 
Theorem 1.1, which is closely related to an exercise in ‘[ 2, p. 7 1, Problem 4.1.41. 

First some definitions. A matching in a graph is a set of independent edges. A 
matching is maximum if it is a matching of maximum cardinality. A matching 
M saturates a vertex ‘o if ‘II is incident to some edge in M. 

Theorem 1.1. Let G be a graph and v a distinguished vertex of G. Then the 
game UVG starting at position (G, v ) is a first player win if and only if every 
maximum matching of G saturates v. 

Proof. Suppose that some maximum matching M does not saturate %r. Then a 
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winning strategy for the second player is always to move the token along an 
edge in M. Such a move is always available by the maximality of M. Hence 
the second player need not lose. 

Conversely, suppose that every maximum matching saturates V. Then a 
winning strategy for the first player is to choose any maximum matching M 
and always to move the token along an edge in M. Should such a move be 
unavailable, then there would be another matching of the same cardinality as 
A4 which does not saturate u, contradicting our assumption. Hence the first 
player need not lose. 0 

It follows that in unrooted UVG (where the lirst player chooses the starting 
vertex) the second player has a winning strategy if and only if the graph has 
a perfect matching; this is the above-mentioned exercise in [2]. 

There are polynomial-time algorithms for determining the size of the maxi- 
mum matching of a graph. By comparing the size of the maximum matching 
of G to the size of the maximum matching of G - U, one can check the con- 
dition of Theorem 1.1 in polynomial time. Hence there is a polynomial-time 
algorithm for determining whether the first or second player has the advantage 
in a game of UVG. 

In Section 2, we show that the corresponding decision problem for undi- 
rected edge geography (UEG) is PSPACE-complete. In Section 3, we prove a 
characterization theorem for the same question in the case that the underlying 
graph is bipartite; this yields a polynomial-time algorithm for the decision 
problem. In Section 4, we apply our characterization theorem to some familiar 
classes of bipartite graphs. We close in Section 5 with some open problems. 

2. General graphs 

We are concerned with the following decision problem: 

UNDIRECTED EDGE GEOGRAPHY 

Instance: A rooted graph (G, ‘u ). 
Question: Is (G, v) a P-position in UEG? 

We show that this decision problem is in the complexity class PSPACE, 
meaning that it can be solved on a computer using only a polynomial amount 
of memory (though possibly exponential time). In fact, we show that it is 
PSPACE-complete, roughly meaning that it is no more easily computed than 
any other problem in PSPACE. This is very strong evidence of intractability, 
at least as strong as NP-completeness. 

Theorem 2.1. The UEG decision problem is PSPACE-complete. 
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Fig. 1. A pseudoarc A composed of edges. 

Proof. One can see directly that the problem is in PSPACE, since the game 
can last only IEl moves. We show that UEG is PSPACE-complete by providing 
a polynomial transformation from DEG. 

Given an arbitrary rooted directed graph (D, w ) (i.e., an instance of DEG), 

we construct a rooted graph (G, V) (i.e., an instance of UEG) by replacing 
every arc (x, y) in D with a copy of the graph A pictured in Fig. 1. (We call 
the graph A a pseudoarc because, as we discuss below, it functions in UEG as 
an arc from x to y.) Putting w = u completes the description of the rooted 
graph. This construction is clearly polynomial. 

One checks that a player of UEG who moves into the pseudoarc A from x will 
arrive 4 moves later at y, assuming optimal play by both players. (It is curious 
that any move straying from this path is immediate suicide.) Moreover, no 
optimal player will ever play from y into A (unless forced), since the opponent 
has a (local) forced victory by responding to z. Hence (G, VJ ) plays as a UEG 
position exactly as (D, w ) plays as a DEG position. In other words, (D, w ) is 
a P-position of DEG if and only if (G, 2) ) is a P-position of UEG. Since the DEG 
decision problem is known to be PSPACE-complete, the same can be said for 
UEG. 0 

The DEG decision problem remains PSPACE-complete even for planar di- 
rected graphs in which no vertex has degree greater than 3; see [7]. Our 
local replacement construction preserves this property, hence the UEG decision 
problem is PSPACE-complete even for planar graphs with maximum degree 3. 

Although deciding whether (G, v ) is a P-position is in general intractable, 
there is a simple sufficient condition that settles some special cases. An even 
kernel for G is a nonempty set S of vertices such that (1) no two elements of 
S are adjacent and (2) every vertex not in S is adjacent to an even number 
(possibly 0) of vertices in S. 

Proposition 2.2. Zf S is an even kernel for G and v E S, then (G, v) is a 
P-position in UEG. 

Proof. The second player wins with the following simple strategy: Always move 
to a vertex in S (it does not matter which one). Since S is a stable (i.e., an 
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Fig. 2. A P-position of UEG in which the root u is not in any even kernel. 

independent) set of vertices, the first player always moves to a vertex not in S. 
Since each vertex not in S has an even number of neighbors in S, the second 
player is never at a loss for a move. 0 

Corollary 2.3. Suppose that nonadjacent vertices u and w in a graph G have 
the same neighbors. Then (G, v ) is a P-position in UEG. 

Proof. The set S = {v, w } is an even kernel for G. q 

Corollary 2.4. For n 2 2, ( Kn, ZI ) is an N-position of UEG. 

Proof. Suppose that the first player moves from u to w. Then u and w have 
the same neighbors in K,, - VW, so, by the previous corollary, (K, - VW, w ) is 
a P-position. Thus this (and every) first move by the first player is a winning 
move. Hence (K,, v) is an N-position. 0 

Even kernels only provide an even answer to the UEG decision problem. 
There are P-positions whose root is not in any even kernel, such as vertex u 
in Fig. 2; and, of course, there are graphs without an even kernel, such as K,, 
(with n 2 1). However, as we show in the next section, even kernels give a 
complete description of how to play UEG on bipartite graphs. 

3. Bipartite graphs 

As mentioned above, both DEG and DVG remain PSPACE-complete even 
when the underlying graph is restricted to be bipartite. In contrast, we show 
here that the bipartite case of UEG is polynomial. In order to describe the proof, 
we make use of an alternate description of bipartite UEG. Associated with any 
bipartite graph G with parts X and Y is an [XI-by-IYI matrix A4 called the 
bipartite adjacency matrix whose i, j entry is 1 if xiyj is an edge of G and 0 
otherwise. By a line of a matrix we mean either a row or a column. We say 
that two lines are perpendicular if one is a row and one is a column; otherwise, 
they are parallel. Since the vertices of G are in one-to-one correspondence 
with the lines of M, we can play UEG on M and forget about G. A legal 
move consists of choosing a 1 in the distinguished line of M, changing it to 
a 0, and identifying the perpendicular line through this entry to be the new 
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distinguished line. In other words, the players alternately change l’s to O’s 
subject to the restriction that the row player must change a 1 in the same row 
as the previously changed 1 while the column player must change a 1 in the 
same column as the previously changed 1. 

The advantage of this new model is that we can make use of linear algebra 
over the 2-element field GF(2). The following theorem reveals the key to 
bipartite UEG. 

Theorem 3.1. Given a binary matrix M and a distinguished line 1, (M, I) is a 
P-position in UEG if and only if 1 is in the span over GF(2) of the other lines 
parallel to it. 

Proof. Suppose, without loss of generality, that 1 is a row, say the first row ~1. 
Suppose also that yI is in the span of the remaining rows, i.e., that 

where I is some subset of the rows with 1 E I. (Note: all arithmetic in this 
proof is modulo 2.) Then observe that the set S of vertices of G associated 
with the rows Yi with i E I is an even kernel for G. Thus by Proposition 2.2, 
(M, I) is a P-position. 

Suppose, conversely, that r1 is linearly independent of the remaining rows. 
Then we shall show that there is a 1 in row yI, say ml, = 1, which when 
changed to a 0 makes column cj dependent on the other columns. By the first 
part of this proof, such a move is a winning move for the first player, since 
the opponent now faces a P-position. Hence the position is an N-position. 

Let M* be the matrix obtained from M by adding the column e, = 

(l,O,O,..., O)T. Since rI was independent of the other rows, M* has the same 
row rank as M. Hence M’ has the same column rank as M, which is to say 
that one may express e 1 as a linear combination of other columns: 

el = Cbjcj (each bj = 0 or 1). (1) 

Choose an index k so that bk = 1 and the first entry of ck is 1. (Such a k 
must exist, since the first entry of e, is one.) Then add ck to both sides of (1) 
to obtain 

ck +el = c bjc,. (2) 
ifk 

The left-hand side of (2) is the column ck with first bit switched from 1 
to 0. The right-hand side of (2) shows that this can be expressed as a linear 
combination of remaining columns. 0 
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The proof shows that finding an even kernel is key to playing UEG in bipartite 
graphs. Thus we have the following strengthening of Proposition 2.2. 

Corollary 3.2. Let v be a vertex of a bipartite graph G. Then (G, v) is a 
P-position of UEG if and only if u is in an even kernel of G. 

The conditions in Theorem 3.1 can be readily checked in polynomial time 
using Gaussian elimination. 

Corollary 3.3. There is a polynomial-time algorithm for UEG in case the rooted 
graph is bipartite. 

Not only can we efficiently decide whether a rooted graph is a P- or an 
N-position in bipartite UEG, but we can efficiently (e.g., using Gaussian elim- 
ination) compute a winning move (if one exists) at each turn. 

Corollary 3.4. If G is a bipartite Eulerian graph and v is any vertex, then (G, v ) 
is a P-position in UEG. 

Proof. All vertices in the two parts of G have even degree, so each part is an 
even kernel. 0 

In fact, we may strengthen the statement of this corollary to the following. 

Corollary 3.5. If G is a bipartite graph with parts X and Y, v is a vertex in X, 
and every vertex in Y has even degree, then (G, v) is a P-position. 

A variation of Theorem 3.1 can be found for unrooted bipartite UEG. This 
game is the same as UEG except that at the beginning, there is no root; player 1 
chooses freely from among all vertices. That vertex is now the root and player 2 
continues as in UEG. 

Corollary 3.6. Let G be a bipartite graph with bipartite adjacency matrix M. 
The second player has a winning strategy in unrooted UEG if and only if A4 is 
invertible (i.e., square and nonsingular) over GF(2). 

4. Cubes and grids 

In this section we apply Theorem 3.1 to the n-cube and to the m x n-grid 
graph in order to classify in a combinatorial way which bipartite UEG positions 
are P-positions. The n-cube Qn is the graph whose vertex set is the set of 0,l 
sequences of length n with an edge between two such sequences if they differ 
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in exactly one position. The m x n-grid G,,, is the graph whose vertex set is 

{1,2,..., m} x {1,2,..., n} with an edge between (i, j) and (k, I) if and only 
if Ii-k\ + (j-11 = 1. 

Theorem 4.1. Let u be any vertex in the n-cube, Q,,. Then ( Qn, v ) is a P-position 
if and only if n is even. 

Proof. The n-cube, Qn, is bipartite. When n is even, it is also Eulerian; hence 
Corollary 3.4 tells us that ( Qn, v ) is a P-position. 

Suppose n is odd. Without loss of generality, let II = (0, 0, 0, . . . , 0). Let 
w = (l,O,O,.. . ,O) and let S be the set of 0, 1 sequences of length n with 
precisely one 1. Then S is an even kernel for ( Qn - VW, w ), so this is a 
P-position. Hence ( Qn, v ) is an N-position, and the winning strategy for the 
first player is to always play into S. 0 

The situation with grid graphs is a bit more complicated. 

Theorem 4.2. Take m, n 3 2 and let v = ( 1, 1). Then (G,,,, v ) is a P-position 
ifand only if gcd(m + 1,n + 1) # 1. 

Proof. Suppose that d > 1 is a common divisor of m + 1 and n + 1. Let 

S={(i,j):d$i,d$j, andeither2dI(i_j)or2dI(i+j)}. 

The set may be described in words as follows: divide the rectangle with vertices 
(O,O), (m + l,O), (0,n + l), (m + 1,n + 1) into d-by-d squares. Color these 
square in checkerboard fashion. The set S is the set of points on the interiors 
of the diagonals of these squares, taking only one diagonal of each square, 
choosing this diagonal according to the color of the square. Fig. 3 shows the 
set S for G1dx9. 

One checks that S is an even kernel for G,, n, and so ( Gmxn, ( 1,l) ) is a 
P-position. 

Now suppose that gcd(m + 1, n + 1) = 1. One of m and n must be 
even; without loss of generality we assume m is even. In order to show that 

(G,,,, (1,l)) is an N-position, we show that at least one of the two opening 
moves for the first player leads to a P-position. 

Imagine a billiard ball rolling on an (m + 1 )-by- (n + 1) billiard table (with 
corners coordinatized by (O,O), (m + l,O), (0,n + l), and (m + 1,n + 1)). 
Our grid graph is drawn on this table by placing vertex (i, j) at the point 

(i,j). 
The billiard ball begins its journey at corner (m + 1 , 0)) always maintaining 

a 45” angle with the sides of the table. As it travels, the ball bounces off the 
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Fig. 3. The even kernel S for G1dx9. 
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Fig. 4. Lower left comer of the billiard table. 

edges of the table. After traveling through lcm (m + 1, n + 1) = (m + 1) (n + 1) 
steps, it is “absorbed” in another corner. 

The ball’s trajectory can take it through any given vertex of the grid graph at 
most twice (once with slope + 1 and once with slope - 1). Further, it can only 
travel through half the vertices: those vertices (i, j) with i + j f 1 (mod 2)- 
one of the partite sets of G,,,. Thus one checks that, in fact, the orbit visits 
every vertex (i, j) (with i + j s 1 (mod 2)) exactly twice. 

Let us examine this trajectory near ( 1,2) and (2,l). See Fig. 4. Four portions 
of the trajectory are labeled by a, b, c and d. Two of these four portions lead 
to corners of the table. It is not the case that both the a and d portions lead to 
a comer (for otherwise we would only visit (1,2) and (2,l) once); likewise 
at most one of b and c lead to a corner. Therefore, exactly one of portions b 
or c lead to a corner; let us say it is portion 6. 

Finally, let S be the set of all vertices which are traversed an odd number 
of times on portion b. See Fig. 5. Observe that every vertex not in S (an 



380 A.S. Fraenkel, E.R. Scheinerman, D. Pullman 

Fig. 5. An even kernel in G1zx9 - [(l, 1)(1,2)]. 

independent set) is adjacent to an even number of members of S excepl vertex 
( 1, 1). Thus a move from ( 1, 1) to ( 1,2) results in a P-position. It follows 
that this is a winning move for the first player, i.e., (G,,,, (1, 1) ) is an 
N-position. 0 

5. Open problems 

We close with some questions raised by our investigation of UEG. 

( 1) Even Kernel Computational Complexity. Which graphs have even kernels? 
In particular, what is the computational complexity of the following decision 
problem: 

EVEN KERNEL 

Instance: A graph G. 
Question: Does there exist a nonempty, independent set of ver- 

tices S so that every vertex in G is adjacent to an even number 
(possibly 0) of elements of S? 

Corollaries 3.2 and 3.3 imply that this question is polynomially decidable 
for bipartite graphs. For example (Theorem 4.1), the n-cube has a even kernel 
if and only if n is even. 

A related question is: Which graphs G have the property that (G, V) is a 
P-position of UEG if and only if ‘u is in an even kernel? Complete graphs and 
bipartite graphs share this property. Which others? 

(2) Unrooted Undirected Edge Geography. What is the computational com- 
plexity of the unrooted UEG decision problem? In particular, given a graph G, 
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how do we decide whether (G, ‘u ) is an N-position in UEG for every vertex 
v E V(G)? 

(3) Random graphs. Let G = G,,p be a random graph on n labeled vertices 

{l,..., n} with fixed edge probability p. Is it the case that for almost all such G, 
(G, 1) is an N-position in UEG? We suspect that the probability that ( G,,p, 1) 

is an N-position goes to 1 as y1 --t DC). 

(4) Grids. For which values of m, n, i and j is [G,,,, (i,j)] a P-position 
in UEG? (We showed that for (i, j) = (1,l) we have a P-position if and only 
if m + 1 and n + 1 have a nontrivial common factor.) 

One can also consider higher-dimensional grid graphs. 

(5) Partizan Versions. In partizan geography there are two tokens, one as- 
signed to each player. Players may only move their own token along edges/arcs 
without repeating vertices/edges. There are now four decision problems: Under 
optimal play, can player 1 always force a win, regardless of which of the two 
tokens is assigned to that player? Can player 2? Can the player with the red 
token (regardless of who moves first)? Can the player with the blue token 
(regardless of who moves first )? 

The question as to whether player 2 can win is NP-hard for rooted partizan 
UVG; there is a fairly straightforward reduction from HAMILTONIAN PATH (the 
idea is as in Theorem 2.3 of [4] ). Is it actually PSPACE-complete? What is 
the computational complexity of this question for rooted UEG? 
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