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Chord progressions are the building blocks from which tonal music is constructed. The
choice of a particular representation for chords has a strong impact on statistical modeling
of the dependence between chord symbols and the actual sequences of notes in polyphonic
music. Melodic prediction is used in this paper as a benchmark task to evaluate the
quality of four chord representations using two probabilistic model architectures derived
from Input/Output Hidden Markov Models (IOHMMs). Likelihoods and conditional and
unconditional prediction error rates are used as complementary measures of the quality
of each of the proposed chord representations. We observe empirically that different chord
representations are optimal depending on the chosen evaluation metric. Also, representing
chords only by their roots appears to be a good compromise in most of the reported
experiments.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Probabilistic models for analysis and generation of polyphonic music would be useful in a broad range of applications,
from contextual music generation to on-line music recommendation and retrieval. However, modeling music involves cap-
turing long term dependencies in time series. This has proved very difficult to achieve with traditional statistical methods.
Note that the problem of long-term dependencies is not limited to music, nor to one particular probabilistic model [5]. This
difficulty motivates our exploration of chord progressions and their interaction with melodies.

1.1. Music background

A chord is a group of three or more notes. A chord progression is simply a sequence of chords. In probabilistic terms, the
current chord can be seen as a latent variable (local in time) that conditions the probabilities of choosing particular notes
in other music components, such as melodies or accompaniments. Chord changes occur at fixed time intervals in most of
the musical genres, which makes them much simpler to detect than beginnings and endings of musical notes, which can
happen almost everywhere in a music signal. Thus, knowing the relations between such chords and actual notes would
certainly help to discover long-term musical structures in tonal music. For instance, an interesting challenge arising in the
music information retrieval context is transcription, i.e. converting audio data into any kind of symbolic representation such
as MIDI or traditional music notation. However, because of fundamental difficulties inherent to the nature of sound, state-of-
the-art techniques are not able to accomplish this task with a sufficient level of precision for most practical applications. An
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intermediate goal is to try to infer chord symbols from audio data [3,19]. This task is simpler than complete transcription of
polyphonic audio signal. Combining reliable chord transcription with a model of the conditional distribution of other music
components (e.g. melodies) given chords could help to improve transcription error rates of existing algorithms. Following
the same idea, such models could even be included in genre classifiers or automatic composition systems [9] to increase
their performance.

In most tonal music theories, chord names are defined by a root note that can either be expressed by its absolute pitch-
class1 or by its relation with the current key. The key of a song is designated by a note name (the tonic), and is the base of
a musical scale from which most of the notes of the piece are drawn. Most commonly, that scale can be either in major or
minor mode.

1.2. Previous work

Previous papers describe probabilistic models to solve music related problems. Using graphical models, Cemgil [6] intro-
duces a somewhat complex probabilistic model that generates a mapping from audio to a piano-roll using a simple model
for representing note transitions based on Markovian assumptions. This model takes as input audio data, without any form
of preprocessing. While being computationally costly, this approach has the advantage of being completely data-dependent.
However, strong Markovian assumptions are necessary in order to model the temporal dependencies between notes. Hence,
a proper chord transition model could be appended to such a transcription model in order to improve polyphonic transcrip-
tion performance. Raphael and Stoddard [19] use graphical models for labeling MIDI data with traditional Western chord
symbols. Lavrenko and Pickens [14] propose a generative model of polyphonic music that employs Markov random fields.
While being very general, this model would benefit from having access to more specific musical knowledge. For instance,
we go a step further in this paper by using abstract chord representations as a smoothing technique towards better gener-
alization. Begleiter et al. [2] provide an interesting comparison of variable order Markov models used for polyphonic music
prediction, but without any use of chord information to overcome long term dependencies. Harmonization is the generation
of a chord progression for a given melody. Allan and Williams [1] designed a harmonization model for Bach chorales using
HMMs. While generating excellent musical results, this model has to be provided polyphonic music with a specific 4 voice
structure as input, restricting its applicability to very specific settings. The models proposed in this paper are more general
in the sense that it is possible to extract the appropriate chord representation from any polyphonic music, whatever the
specific labeling, harmonic structure, or musical style.

1.3. Comparing chord representations

Despite the simple and relatively universal chord building principles, many different notations have been used through
music history to represent chord progressions [7]. We face the same problem in the computer science literature, where each
author uses a notation corresponding to his musical background [1,16,19,20,23]. All these papers describe arbitrary chord
representations embedded in probabilistic models, which are mostly variants of Hidden Markov Models (HMMs). However,
to the best of our knowledge, there is no available quantitative comparative study of the effect of the choice of particular
chord representations to solve practical applications. Each chord representation carries specific information that could be
more adapted to certain tasks (or musical styles) than others. At the same time, all of these notations encapsulate basic
information about a chord, such as its root.

What are the most appropriate chord representations in terms of statistical polyphonic music modeling? Also, what
are the most appropriate objective criteria for parameter estimation and evaluation of such representations? This paper
explores these issues by using melodic prediction [22] given chords as a benchmark task to evaluate the quality of four
chord representations defined in Section 2, along with various graphical models involving different temporal dependencies.
Likelihoods and conditional and unconditional prediction error rates are used as complementary measures of the quality of
each of the proposed chord representations in Section 3. Finally, we discuss our empirical results and draw conclusions in
Section 4.

The generative models described in this paper are trained with the EM algorithm. It should be noted that probabilistic
models can also be trained with discriminative training methods [12]. However, a generative approach is more appropriate
here, since the objective of the reported experiments is not to optimize absolute melodic prediction performance, but to
compare chord representations in a more general way.

2. Melodic prediction models

In order to assess the effect of using particular chord representations for melodic prediction, we propose two kinds of
probabilistic models, described using the graphical model framework.

1 A pitch-class is a note name, like C or D. In this paper, we consider enharmonics (e.g. Eb and D#) to be completely equivalent.
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Fig. 1. A simple probabilistic model corresponding to the factorization in Eq. (1), where the upper indices of the random variables have been removed
for clarity. The influence of each chord on melodic observations is direct. Circles represent random variables and arrows represent conditional probability
distributions. The dashed lines are not present in the Local model, thus making each observation completely local in time. Variables in level 2 correspond
to melodic observations.

2.1. Graphical models and EM

Graphical models [13] are useful to define probability distributions where graphs are used as representations for a
particular factorization of joint probabilities. Vertices are associated with random variables. A directed edge going from the
vertex associated with variable A to the one corresponding to variable B accounts for the presence of the term P (B|A) in the
factorization of the joint distribution of all the variables in the model. The process of computing probability distributions
for a subset of the variables of the model given the joint distribution of all the variables is called marginalization (e.g.
deriving P (A, B) from P (A, B, C)). The graphical model framework provides efficient algorithms for marginalization and
various learning algorithms can be used to learn the parameters of a model, given an appropriate dataset.

The Expectation-Maximization (EM) algorithm [8] can be used to estimate the conditional probabilities of the hidden
variables in a graphical model. Hidden variables are variables that are neither observed during training nor during evaluation
of the models. These variables represent underlying phenomena that have an impact on the actual observations, but that
cannot be observed directly. The EM algorithm proceeds in two steps applied iteratively over a dataset until convergence
of the parameters. Firstly, the E step computes the expectation of the hidden variables, given the current parameters of the
model and the observations of the dataset. Secondly, the M step updates the values of the parameters in order to maximize
the joint likelihood of the observations, given the expected values of the hidden variables.

2.2. A local model

The first proposed modeling strategy is to look at the direct effect of particular chord representations without any
influence from past observations.

Let m j = (m j
1, . . . ,m j

n) be the jth melody in a dataset where each song have length n. Each m j
t is a discrete random

variable representing the melodic note played at time t in song j. In this paper, we assume octave invariance for the
melodic observations. In other words, all notes belonging to the same pitch-class are considered to be the same (e.g. all C
notes regardless of octave are associated to the same random variable value). Hence, we assign one possible value of m j

t to
each pitch-class, plus one extra value for silence, leading to a total of 13 possible melodic values.

Also, let c j = (c j
1, . . . , c j

n) be the chord progression in song j where each c j
t is a discrete random variable with a possible

number of values depending on the chosen chord representation, as described in Section 2.4. Each c j
t is the chord that is

occurring while melodic note m j
t is played in the jth song of the dataset. A very simple approach is to model the joint

distribution of m j and c j with

pLocal
(
m j, c j) =

n∏

t=1

p
(
c j

t

)
p
(
m j

t

∣∣c j
t

)
, (1)

where both p(c j
t ) and p(m j

t |c j
t ) are multinomial distributions. The factorization of the joint distribution in Eq. (1) is illus-

trated by the graphical model in Fig. 1, not considering the dashed arrows. The upper indices of the random variables have
been removed in the figure for clarity. In the remainder of this paper, we refer to this model as the Local model, because
each time-step is independent of the others. Variables in level 1 are observed during training and testing.

The chosen melodic representation does not account for note similarities. In the proposed models, the probability of the
melodic observations given appropriate other random variables is modeled by multinomial distributions. Such a distribution
does not embed any notion of similarity between its possible outcomes. However, we chose this melodic representation
for its simplicity and also to avoid introducing bias while measuring the quality of the chord representations for melodic
prediction. While this model is overly simplistic for practical purposes, it has the advantage of isolating the direct effect
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Fig. 2. Variant of an IOHMM model, as expressed by the joint factorization in Eq. (2). The upper indices of the variables have been removed for clarity. The
variables in level 1 are observed and correspond to chord observations. Variables in level 2 are hidden, while variables in level 3 correspond to melodic
observations.

of particular chord representations on the choice of melodic notes. Since all the variables are observed during training,
parameters for this model can be easily learned from a dataset by standard maximum likelihood techniques.

2.3. IOHMM model

A more realistic model can be designed by adding extra hidden variables in the previous model to consider influences
from the past when trying to predict a melody note. Let h j = (h j

1, . . . ,h j
n) be a vector of discrete hidden variables. The joint

distribution of m j , c j , and h j can be factorized by

pIOHMM
(
m j, c j,h j) = p

(
c j

1

)
p
(
h j

1

∣∣c j
1
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p
(
m j

1

∣∣h j
1

) n∏

t=2

p
(
c j

t

)
p
(
h j

t

∣∣h j
t−1, c j

t

)
p
(
m j

t

∣∣h j
t

)
, (2)

where all the distributions are multinomial. This particular factorization is illustrated by the graphical model shown in
Fig. 2, where the upper indices of the variables have been removed for clarity. This model is very similar to an Input/Output
Hidden Markov Model (IOHMM) [4]. Chord variables c j

t in level 1 are always observed. Hidden variables h j
t in level 2 are

used to introduce dependencies between time frames in the model. Again, melodic variables c j
t in level 3 have 13 possible

values as in the Local model presented in Section 2.2. There is no link between level 1 and level 3 variables in Fig. 2,
contrary to standard IOHMMs [4]. The number of possible values is highly variable from one chord representation to another.
Considering that, we chose to remove the usual links between inputs and outputs in IOHMMs in order to limit the impact of
the particular choice of a chord representation on the capacity of the model. This way, the number of possible values of the
chosen chord representation has an impact on the parameterization of the conditional distribution of the hidden variables,
but not on the conditional distributions of the predicted melodic variables. Learning in the model is done with the standard
EM algorithm [8]. Marginalization must be carried out in the proposed model both for learning (during the expectation step
of the EM algorithm) and for evaluation. Exact marginalization with the standard Junction Tree Algorithm [13] is tractable
in IOHMMs because of their limited complexity.

2.4. Chord representations

The chord representations that we introduce in this section consider chord symbols as they are represented in musical
analysis instead of actual instantiated chords. In other words, we observe chord symbols such as they appear in music
sheets [21] instead of observing the notes that would be played by a musician reading these chord symbols. As we noted
in Section 1, chords can be seen as a latent variable (local in time) that conditions the probabilities of choosing particular
notes in other music components, such as melodies or accompaniments. The chord symbol “C Maj7” is usually constructed
using the pitch classes C, E, G, and B. However, it really defines a conditional probability over all pitch classes. For instance,
the pitch class D would normally be much more likely over this particular chord than the pitch-class Bb. Note that it is
easy to infer valid chord symbols from the actual notes in most datasets with deterministic methods, which is done by
most of the MIDI sequencers today. Hence, a model observing chord symbols instead of actual notes could still be used over
traditional MIDI data with minimal preprocessing effort.
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Four chord representations have been used in the experiments described in Section 3. First, what we call a Naive
representation is to consider every chord (including the choice of the root) as a distinct observation. This representation has
the disadvantage of excluding any notion of chord similarity. Moreover, this representation leads to a large number of states
for the associated random variables (e.g. 152 in the current experiments, corresponding to each different chord found in
the dataset described in Section 3). This can be harmful when learning over small datasets because of the high number of
parameters. Despite all these drawbacks, such a representation can be useful if the notions of chord similarities are included
in others parts of the models, such as in the conditional probabilities between variables [15].

Another possible chord representation is to discard any information except the root, yielding random variables with 12
possible values. While having a reasonable number of possible values, such a representation introduces a lot of smoothing in
the models. It is possible to automatically detect the key and the mode (major or minor) of a song. Given that information,
the root is very often sufficient to predict the whole structure of the rest of the current chord. For instance, given a song in
C major and observing a root C, it is very likely that the complete chord associated to this root is a variant of C major.

We can also restrict ourselves to a subset of all possible chords [3,20] by mapping more complex observed chord symbols
to a subset of simpler ones. Such a representation is also used in the experiments described in this paper. We define only
whether a chord is minor, major or dominant, leading to chord random variables with only 3 possible values. In this case,
if we observe for instance the chord C7#5b9, we map this chord to the value corresponding to a dominant (7) chord. In the
remainder of the paper, this representation is referred to as the mM7 (minor-Major-dominant 7th) representation.

Finally, we can combine the Root representation and the mM7 representation. This leads to discrete random variables
with 36 possible values (12 roots times 3 chord qualities).

3. Comparing chord representations

53 jazz standards melodies [21] were recorded by the first author in MIDI format. Corresponding chord labels were also
manually added to this corpus. The complexity of the chord sequences and melodies found in the corpus is representative
of the complexity of common jazz and pop music. The songs were transposed to the key of C. This simplification has no
impact on the generality of the experiments since automatic key detection is relatively reliable. Every song was 16 bars
long, with four beats per bar, and with one chord change every two beats. The shortest notes in the dataset are eighth
notes. Hence, two melodic observations were made for each beat, yielding observed sequences of length 128. Since chords
span multiple melodic observations, their symbols were repeated multiple times (e.g. a 6 beat chord is represented as 12
distinct observations). This has no impact on the quality of the model since chords are acting as latent variables. Hence, the
fact that chords are repeated in input sequences does not imply actual repetitions in the corresponding melodic signal.

3.1. Local model

We chose to use cross-validation [10] to evaluate the proposed models instead of dividing the dataset into two parts (i.e.
a single training set and a single test set) because of the small size of our experimental dataset. Assume that the dataset is
divided into K folds T1, . . . , T K (each containing different sequences), and that the kth fold Tk contains ηk test sequences.
We also define k( j) such that ∀ j, j ∈ Tk( j) . In other words, k( j) is the index of the fold containing the sequence j. Let

m̂ j
t = arg max pLocal(k( j))

(
m j

t

∣∣c j) (3)

where the parameters of pLocal(k( j))(m
j
t |c j) are learned on all the sequences of the dataset, without the sequences in Tk( j) .

Hence, m̂ j
t is the most probable melodic observation at time t in test song j given the whole chord progression, according

to the Local model described in Section 2.2. Given Eq. (1), we have that

m̂ j
t = arg max pLocal(k( j))

(
m j

t

∣∣c j
t

)
.

Thus, a melodic prediction in the Local model only depends on the current chord observation. Finally, let ε
j
t = 1 if m̂ j

t �=
m j

t . When using cross-validation, the out-of-sample classification error of the local model is given by

1

K

K∑

k=1

1

ηk

∑

j∈Tk

1

n

n∑

t=1

ε
j
t . (4)

In words, the out-of-sample error is just the average number of times the algorithm makes a mistake when trying to predict
melodic observations over songs unseen during training. Out-of-sample classification errors (computed with 5-fold cross-
validation) for the Local model described in Section 2.2 and for each of the chord representations given in Section 2.4 are
presented in Table 1.

It should be pointed out that the classification error is really the criterion we want to minimize when developing models
for practical applications. In such a context, the system must make a decision at each time step. As an example, a melodic
model could be appended to a transcription algorithm. In such a context, the model would have to guess what is the most
likely next note, given the previous notes and the audio measurements.
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Table 1
Out-of-sample classification error and average negative out-of-sample log-likelihood for local models. The lower the better for both evaluation measures.
The number of possible states for each chord representation is given in the second column.

Model Chord states % of error Neg. log-likelihood

Naive 152 77.39 357.48
Roots + mM7 36 80.93 316.33
Roots 12 81.40 293.95
mM7 3 82.41 295.29

Freq 0 83.34 301.40

On each iteration of cross-validation, one fold of the dataset is not used for training. This subset of the dataset (referred
to as the test set in machine learning literature) can be used to evaluate the model. Hence, it is always possible to observe a
chord symbol during evaluation (or testing) that has not been observed previously when training the model. Dirichlet priors
[11] have been used on all the chord variables in the algorithms described in this paper in order to avoid propagating zero
probabilities in the models in this case. Note that we did not include these priors in the descriptions of the proposed models
in order to clarify the presentation. Dirichlet priors on multinomial distributions amounts to assume that some observations
have been made by the models before learning the parameters. In the reported experiments, we simply assumed that every
variable states given every conditioning variable states have been observed one time.

Parameters are tied over time in the Local model presented in Fig. 1. In other words, the arrows between level 1 and
level 2 always correspond to the same probability table in one fold of the cross-validation. As a benchmark, we also intro-
duce the Freq model in Table 1, which is simply an algorithm that always selects the most frequent melodic observation
in the training set. It corresponds to removing level 1 random variables in Fig. 1, just leaving independent observations.

The capacity of a set of functions [24] can be related to the size of the set: the more functions in the set, the higher the
capacity. Searching for the optimal function in a set with not enough capacity will yield underfitting, while searching in a set
with too much capacity will yield overfitting. Hence, techniques such as cross-validation can be used to select the appropriate
set size. With the Local model, the only direct way to optimize capacity is to vary the parameter of the Dirichlet prior
on the distribution over melodies (which we did not do in the experiments). However, using a chord representation with
more possible values also increases capacity in this model. Looking at the obtained results, we see that the rate of error
increases when using chord representations with fewer possible values. It is then possible that all these models somehow
underfit, making the Naive representation (with 152 possible chord values in the current experiments) the best choice in
this context. Not surprisingly, the Freq model, which always chooses the most frequent melodic observation, is the worst
model in terms of classification error rate. Generalization capabilities of a model can benefit from the smoothing produced
by a simplified chord representation, since this simplification is done by clustering perceptual properties of chords (e.g. all
chords with the same root are clustered together in the Root representation). This is obviously not the case when using
the Freq model.

Table 1 also shows the average negative out-of-sample log-likelihoods obtained with the same models again using cross-
validation. Using the same notation as in Eq. (4), this measure is given by

− 1

K

K∑

k=1

1

ηk

∑

j∈Tk

1

n

n∑

t=1

log
(

pLocal(k)

(
m j

t

∣∣c j)), (5)

where the parameters of pLocal(k)(m
j
t |c j) are learned on all the sequences of the dataset, excluding the ones that are in Tk .

In other words, we compute each likelihood on examples that have not been used to learn the parameters in the model.
Note that this performance measure is the one that was optimized over the training set when learning the parameters of
the models with the maximum likelihood algorithm. The likelihoods of the different models are comparable since all the
proposed models observe the same melodic representation.

As can be observed, the negative log-likelihood results are not coherent with the classification error. For instance, the
Freq model has a lower negative log-likelihood than the Roots + mM7 and Naive models! While being surprising, this
result is plausible since the reported log-likelihoods have been computed on sequences that have not been used to train
the models. Hence, a model with lower capacity can have better generalization properties than a too complex model (i.e.
an overly complex model may overfit the training dataset.) However, this result is counterintuitive since one would expect
that adding current chord information would help the model to guess what would be the current melody note.

The observed discrepancies between classification error rate and negative log-likelihood could be explained by the fact
that the negative log-probabilities in Eq. (5) are not bounded. Suppose that a model fits most of the data quite well but
some of the out-of-sample examples have very low probabilities. Then, the terms associated to these examples in Eq. (5)
can take very large values that could dominate the average negative log-likelihood for all the examples. On the other hand,
the cost of encountering a very unlikely out-of-sample sequence (with respect to the model being evaluated) in Eq. (4) is
only proportional to 1

N , with N = ∑K
k=1 ηk being the total number of examples in the dataset. This observation raises the

following interesting question: Is the likelihood of the model over the observed data the best criterion to optimize when
what we really want to do is to minimize the error of classification? We further discuss this issue in Section 4.
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Table 2
Out-of-sample classification error and average negative out-of-sample log-likelihood for the IOHMM. The lower the better for both evaluation measures. The
number of possible states for each chord representation is given in the second column.

Model Chord states % of error Neg. log-likelihood

Naive 152 79.05 281.84
Roots 12 82.09 223.67
Roots + mM7 36 83.17 247.48
mM7 3 84.71 212.47

HMM 0 86.56 196.27

3.2. IOHMM model

Classification error and average negative out-of-sample log-likelihoods can also be computed for the IOHMM defined in
Eq. (2). Let

m̃ j = arg max pIOHMM(k( j))
(
m̃ j

∣∣c j) (6)

with m̃ j = (m̃ j
1, . . . ,m̃ j

n). Again, the parameters of pIOHMM(k( j))(m j |c j) are learned on all the sequences of the dataset,

excluding the sequences in Tk( j) . The out-of-sample classification error for the IOHMM is given by Eq. (4), with ε
j
t = 1 if

m̃ j
t �= m j

t . In other words, the model tries to guess the whole melodic sequences given the corresponding chord progressions.
On the other hand, the average negative out-of-sample log-likelihood for the IOHMM is given by

− 1

K

K∑

k=1

1

ηk

∑

j∈Tk

log
(

pIOHMM(k)

(
m j

t

∣∣c j)),

following the notation in Eq. (5).
Table 2 shows out-of-sample classification error and average negative log-likelihood for the IOHMM. These results are

qualitatively similar to those in Table 1 for the Local model. This time, the number of possible values for hidden variables
in level 2 of Fig. 2 was optimized using 5-fold double cross-validation, which is a recursive application of cross-validation
where both the optimization of the parameters of the model and the evaluation of the generalization performance of the
model are carried out simultaneously. Standard cross-validation as described in the beginning of this section was applied
to each subset of 4 folds with each hyper-parameter setting and tested with the best set of parameters (on average) on the
remaining hold-out fold. 2 to 20 possible hidden states for the variables h j were tried in the reported experiments.

The same parameters are used over time to define the conditional probability distributions. For instance, all the vertical
arrows between variables in level 1 and level 2 in Fig. 2 represent the same probability table. The fact that it was possible
in this context to optimize the capacity of the models by adjusting the number of states for the hidden variables makes
the results in Table 2 more trustworthy than the ones found in Table 1, although they are similar. It should be pointed out
that the capacity of the models was optimized with respect to the appropriate error measure. For instance, when reporting
results about prediction error rates, capacity is optimized with respect to prediction error rate (while the models are trained
by maximizing the likelihood with the EM algorithm).

The HMM referred to in Table 2 is similar to the IOHMM but removing the chord inputs layer. Hence, the joint distribution
of the melodic observations m j and the hidden variables h j estimated by this model is given by

pHMM
(
m j,h j) = p

(
h j

1

)
p
(
m j

1

∣∣h j
1

) n∏

t=2

p
(
h j

t

∣∣h j
t−1

)
p
(
m j

t

∣∣h j
t

)
,

where all the distributions are multinomial. Again, all the parameters in this model can be learned with the standard EM
algorithm [18]. This particular factorization can be represented by the model in Fig. 1 with the horizontal dashed arrows
being present and the variables c j

t replaced by the corresponding variables h j
t . In this case, variables in level 1 are hidden

and variables in level 2 are still melodic observations. As expected, the HMM produces higher out-of-sample classification
error than the IOHMMs, which can take advantage of the chord symbols given as inputs. Interestingly, the Naive repre-
sentation for chords seems to be consistently efficient for melodic prediction. In Table 2, the Naive representation gives
statistically significantly better results than the Roots representation with a confidence level of 99%.2 This is an indication
that developing probabilistic models with this representation could be a viable approach, especially if perceived relations
between chords are included in the models via the conditional probabilities related to these chords [15]. The representa-
tion including only the roots also performs well. Given these results, this representation appears to be a good compromise
given its relative simplicity and the fact that it inherently embodies perceptually relevant smoothing. Using basic chord
information (mM7 representation) does not seem to help with respect to unconditional classification error.

2 We used a standard proportion test, assuming a binomial distribution for the errors and using a normal approximation.
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Table 3
Out-of-sample conditional classification error rates for the IOHMMs. The lower the better. The number of possible states for each chord representation is
given in the second column.

Model Chord states % of error

Roots 12 57.41
Roots + mM7 36 58.21
mM7 3 58.32
Naive 152 69.77

HMM 0 85.27

Again, average negative log-likelihoods contradict average classification error rates. Even worse, the HMMs performs much
better than the IOHMMs in terms of likelihood! This is an indication that such a measure favors models that are more
uniform in essence, thus giving a relatively high probability to unseen sequences. However, more uniform models are weaker
when asked to predict a single new note, because they define distributions with modes less precisely adapted to the training
data.

3.3. Conditional classification error

The goal of the models presented here is to predict the melodies in the dataset. It is out of the scope of this work to
evaluate the subjective artistic quality of the predicted melodies. A more interesting measure of melodic prediction is the
out-of-sample conditional classification error for the Local model, given by Eq. (4), but using instead

m̂ j
t = arg max pLocal(k)

(
m j

t

∣∣c j,m j
1, . . . ,m j

t−1

)

in the definition of ε
j
t . The same technique can be applied to compute the classification error rate for the IOHMM if using

the appropriate distribution derived from Eq. (2). This measure is very similar to the unconditional error described in
Section 3.2. However, the models now have access to the true previous melodic observations when trying to guess the next
one. This is different from the unconditional error rate, where each model tries to predict whole sequences when only given
chord progressions.

The only objective performance measure we can provide about a melodic prediction given a chord progression is to
tell if a predicted melody is similar or not to the one provided in the dataset with the same chord progression. However,
while the space of plausible melodies is huge, we only have access to a very small number of sequences to measure the
performance of the models given a chord progression. Moreover, given a particular sequence of chords, one can imagine
that a very high number of melodies would be considered more or less musically similar to the ones in the dataset. Among
all these melodies, some may not share a single note with the true melody associated with this sequence of chords in the
test set. A good melodic prediction model would be likely to generate any one of these melodies, thus producing a very
high unconditional error rate.

The conditional error rate alleviates this problem by measuring the prediction performance of a model in regions of the
observation space where data is present, leading to a much more reliable performance measure in this context. Moreover,
distributions that would generalize well according to such a measure could also be sampled to generate realistic melodies
given chord progressions and initial melodic motives. The Junction Tree Algorithm for marginalization [13] allows us to fix
the state of some variables in the graphical model while finding the most probable states for other variables. Out-of-sample
conditional classification error rates for the IOHMMs presented in Section 2.3 are shown in Table 3. We do not provide
conditional classification error rates for the Local model described in Section 2.2, because they would be identical to the
unconditional classification error rates shown in Table 1. When making a prediction, such models are completely unaware
of previous observations in time. Also, we do not provide average negative log-likelihoods, since this measure is not well
adapted to prediction tasks, as we noted in Section 3.

Again, the HMM produces higher out-of-sample conditional classification error rate than the IOHMMs which benefit from
chord symbols given as inputs. In Table 3, the conditional error rates are much lower than the unconditional ones for
the same models. For each chord representation, the prediction accuracy gained when observing previous melodic notes is
much higher than the differences in error rates for each chord representation obtained in Table 2. This means that observing
previous melodic notes gives more information about the likely choices for the current melody than any chord information.

In Table 2, the Naive representation was the best one in terms of unconditional prediction error rate. On the other hand,
this representation has the highest conditional prediction error rate among all the IOHMMs. When knowing nothing about
the previous melodic observations, the model performs better when provided with a more detailed chord representation.
However, given previous melodic observations, smoothed chord representations lead to better generalization in terms of
prediction error rate. The Naive representation overfits the training data because it leads to models with higher capacity.
Finally, no representation is statistically significantly better than another with a confidence level of 90% among the three
best representations in Table 3.
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4. Conclusions

The main motivation behind this paper was to better understand the statistical relations between chord representations
and the actual choice of notes in polyphonic music. To this end, we compared four chord representations using melodic
prediction as a benchmark task. Surprisingly, the Naive representation where each chord is conceived as a discrete obser-
vation apparently performs well in terms of unconditional prediction error rates. Nevertheless, this representation overfits
when past melodic observations are used to condition the predictions. In this case, smoothed chord representations seems
more appropriate. Given the obtained results, representing chords only by their roots seems to be a good compromise, espe-
cially when all the songs to be analyzed are transposed to the same key. While being extremely simple, this representation
inherently includes smoothing related to perceptual relations between notes. The Root + mM7 representation that is used
in some important music information retrieval papers [3,19] is not optimal in terms of out-of-sample classification error
and average negative log-likelihood for both probabilistic models presented in this paper. However, in practice, the actual
choice of a chord representation should always be made considering the application to be developed.

An interesting observation when looking at the results of the experiments done in Section 3 is that the behavior of
the average out-of-sample likelihood does not follow the trends of the average prediction error rate (conditional or un-
conditional). On the one hand, the likelihood is a measure of the fit of a whole distribution to a dataset. However, the
classification error seems to be a better descriptor of the fit of the modes of a distribution. These remarks are applicable
to any domain where parameters of models have to be learned on small datasets. Provided a nearly infinite amount of
data, the two evaluation measures that we presented would lead to the same ranking of the models. Thus, likelihood and
prediction error would probably be more comparable when measured with models trained and evaluated with much more
data. How much data is needed in this particular framework to obtain such a behavior is still an open question that needs
to be addressed. Another important observation is that when learning parameters on small datasets, the chosen capacities
for the models appear to be even more crucial than when learning on large dataset.

Also, given realistic datasets, optimizing the likelihood of a model with respect to training data may not be the best
strategy when one is only interested in the modes of the distribution, which can be the case when doing prediction. An
alternative learning strategy would be to maximize the sum of the differences between the probabilities of the observed
classes and the probabilities of the most probable wrong classes instead of just maximizing the sum of the log probabilities
of the observed classes. This approach is referred to as the minimum classification error (MCE) algorithm [12].

Finally, it would be interesting to append these models to existing music information retrieval algorithms to improve
their performance. As a comparison, language models are regularly used in speech recognition algorithms to constrain their
search space to reasonable solutions [17].
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