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a b s t r a c t

In this extension of earlier work, we point out several ways how amultiresolution analysis
can be derived from a finitely supported interpolatory matrix mask which has a positive
definite symbol on the unit circle except at −1. A major tool in this investigation will be
subdivision schemes that are obtainedbyusing convolution or correlation operations based
on replacing the usual matrix multiplications by Kronecker products.
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1. Introduction

In the recent papers [1,2] we introduced and studied full rank interpolatory vector subdivision schemes. In particular, we
investigated in [1] an extension of positivity of the symbol to the vector case and the implied convergence of associated
subdivision schemes. Keeping in mind that the symbol of a finitely supported mask A = (Aj : j ∈ Z) is the matrix valued
Laurent polynomial A(z) =

∑
j Aj z

j, one of the main results in [1] can be formulated as follows.

Theorem 1. If A is a finitely supported mask such that the associated symbol A(z) satisfies A(−1) = 0, the interpolatory
condition A(z)+ A(−z) = 2I , z ∈ C∗ and is positive definite on {z ∈ C : |z| = 1} \ {−1}, then there exists a canonical spectral
factor B of A such that A(z) = 1

2B
H(z) B(z) and an orthogonalB-refinable function G ∈ Lr×r2 (R).

This result allowed us to introduce and investigate various different subdivision schemes which were in part classical
stationary ones, but there also naturally appeared a nonstandard type of subdivision scheme which we called correlated
since it consists of applying the subdivision scheme to the data sequence as well as to the ‘‘identity sequence’’ Iδ and then
correlating the results:

SnB :=
1
2n
(
SnBδI

)T
? SnB, (1)
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where SB denotes the usual stationary subdivision schemewith respect toB. The notational details will be explained in the
next section.
Each of these subdivision schemes – if convergent – defines a refinable function where refinability has to be understood

either in the classical or in a more general sense. These schemes are:

(1) the subdivision scheme SA itself, based on the full rank interpolatory mask A whose symbol A(z) is assumed to be
positive definite on the unit circle. The associated matrix refinable function (if it exists) is a cardinal function F and a
partition of the identity, that is, F(k) = δk,0 I and

∑
k F(· − k) = I . However, the convergence of SA or, equivalently, the

existence of the cardinal refinable function F could not be concluded from the assumptions of Theorem 1. Whether or
not this refinable function exists is still an open question.

(2) The subdivision scheme SB based on the full rank maskB whose symbol is the canonical spectral factor, of A(z), i.e.

A(z) =
1
2
BH(z)B(z).

According to [1], the associated matrix refinable function G exists, is of full rank and is orthogonal so that the associated
subdivision scheme converges in Lr2(R).

(3) The correlated subdivision scheme SB based on the full rank maskB. The associated limit matrix function F? ∈ C r×ru (R),
whose existence was proved in [1], is refinable in the following sense:

F? =
1
2

∑
k∈Z

∑
j∈Z

BTkF?(2 · −j+ k)Bj. (2)

Furthermore, F? is cardinal, F?(k) = δ0k I , and satisfies the partition of the identity property∑
k∈Z

F? (· − k) = I .

Note that in the scalar case r = 1 the two functions F and F∗ coincide as also do the respective subdivision schemes and
refinement equations.

(4) The subdivision scheme SC based on the mask C defined by means of the Kronecker product of symbols as

C(z) =
1
2
B(z)⊗ B

(
z−1

)
, (3)

and its associated vector refinable functionΦ , that is, a solution of the refinement equation

Φ =
∑
k∈Z

C Tk Φ (2 · −k)

which could be derived directly from F?.

In this paper, wewill consider twomore aspects. First, wewill investigatemore closely properties of the subdivision scheme
SC based on the full rank mask C, proving that the subdivision scheme converges and that its associated full rank basic limit
function H is stable and thus can be used to define a multiresolution analysis (usually abbreviated as ‘‘MRA’’). Second, we
will definemultiresolution analyses and/or filter banks associated to all the above-mentioned ‘‘refinable’’ functions, pointing
out some of the connections between them. All these MRAs will be suitable for vector data processing, and could be applied
to vector valued time series, for example, in the analysis of EEG signals, cf. [3].

2. Notation and background

For r ∈ N we write an r × r matrix A ∈ Rr×r as A =
[
Ajk : j, k = 1, . . . , r

]
and denote by `r×r

∞
(Z) the Banach space of

all r × r matrix valued bi-infinite sequences with bounded operator norm, considered as convolution operators on `r×1(Z).
More precisely,A =

(
Aj : j ∈ Z

)
∈ `r×r
∞
(Z), is defined by

‖A‖ := ‖A‖∞ :=
∑
j∈Z

∣∣Aj∣∣∞ <∞, |A|∞ = max
1≤j≤r

r∑
k=1

∣∣Ajk∣∣ . (4)

For notational simplicity we write `r
∞
(Z) for `r×1

∞
(Z) and denote vector sequences by lowercase letters. Moreover, C r×ru (R)

will denote the Banach space of all uniformly continuous uniformly bounded r × r matrix valued functions on R with the
norm

‖F‖∞ := sup
x∈R
|F(x)|∞ <∞.

For two matrix sequences we introduce the convolution ‘‘∗’’ and the correlation ‘‘?’’ defined, respectively, as

(A ∗B)j :=
∑
k∈Z

Aj−k Bk, (A ?B)j :=
∑
k∈Z

Aj+k Bk
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and between a matrix function and a matrix sequence as

(F ∗B) :=
∑
k∈Z

F(· − k) Bk, (F ?B) :=
∑
k∈Z

F(· + k) Bk.

Similarly, we introduce the Kronecker convolution ‘‘ ’’ and the Kronecker correlation ‘‘ ’’ between matrix sequences and
betweenmatrix functions andmatrix sequences, respectively,where themultiplication betweenmatrices is nowaKronecker
product: for two r × r matrices A and B this is defined as

A⊗ B := [aij B, i, j = 1, . . . , r].

Closely related to Kronecker products is the operator vec(X) which, given a matrix X ∈ Rm×n with column vectors
x1, . . . , xn ∈ Rm, is defined as

vec(X) =

x1
...
xn

 .
The Kronecker convolution and correlation between matrix valued sequences are defined as(

A B
)
j :=

∑
k∈Z

Aj−k ⊗ Bk,
(
A B

)
j :=

∑
k∈Z

Aj+k ⊗ Bk,

and, between a function and a sequence, as

F B :=
∑
k∈Z

F(· − k)⊗ Bk, F B :=
∑
k∈Z

F(· + k)⊗ Bk.

Finally, the Kronecker convolution ‘‘ ’’ and correlation ‘‘ ’’ will be also considered between two matrix valued functions,
say F and G , producing the matrix valued functions whose elements are constructed via the Kronecker product and
convolution or correlation of functions as

F G :=
∫

R
F(t)⊗ G(· − t) dt =

[
fjk ∗ G : j, k = 1, . . . , r

]
,

and

F G :=
∫

R
F(t)⊗ G(· + t) dt =

[
fjk ? G : j, k = 1, . . . , r

]
,

respectively. Next we state an elementary but interesting observation about Kronecker type convolution and correlation.

Lemma 2. Let F and G be two finitely supported and continuous r × r matrix valued functions. Let H = F G and c = a b
for a, b ∈ `r

∞
(Z). Then,

H ∗ c = (F ? a) (G ? b) and H ? c = (F ∗ a) (G ∗ b) . (5)

If H = F G and c = a b, on the other hand, we have

H ∗ c = (F ∗ a) (G ∗ b) and H ? c = (F ? a) (G ? b) . (6)

Proof. For H = F G and for c = a b the matrix function H ∗ c can be written as

H ∗ c =
∑
k∈Z

H(· − k)
∑
j∈Z

ak+j ⊗ bj

=

∑
k∈Z

∫
R
F(t)⊗ G(· − k+ t) dt

∑
j∈Z

ak+j ⊗ bj

=

∫
R

(∑
k∈Z

F(t + k) ak

)
⊗

(∑
j∈Z

G(· + j+ t) bj

)
dt

=
(
F ? a) (G ? b

)
where we used the well-known formula (AB)⊗ (CD) = (A⊗ C) (B⊗ D), cf. [4], to complete the proof. Practically identical
arguments can be used to verify the second identity in (5) and (6). �
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Proposition 3. Let F and G be two finitely supported and continuous r × r matrix valued functions. Let H = F G and
c ∈ `r

2
∞
(Z). Then the matrix function H ∗ c can be written as

H ∗ c =
r∑
`=1

(
F ? u`

) (
G ? v`

)
for suitable choices of u`, v` ∈ `r

∞
(Z). If, on the other hand, H = F G then

H ∗ c =
r∑
`=1

(
F ∗ u`

) (
G ∗ v`

)
.

Proof. As shown in [5], any sequence c ∈ `r2
∞
(Z) can be written as the sum of r Kronecker convolutions of sequences in

`r
∞
(Z) as c =

∑r
`=1 u

` v` where the sequences u`, v` are even explicitly given as

u`k :=


(ck)`
(ck)`+r
(ck)`+2r
...

(ck)`+(r−1)r

 , v`k = δk0e` k ∈ Z, ` = 1, . . . , r. (7)

Thus, for H = F G and for c ∈ `r2
∞
(Z) Lemma 2 completes the proof. For the second identity we just note that u`, v` can

be chosen in a way similar to (7) such that c =
∑

` u
` v`. �

The subdivision operator SA based on themaskA ∈ `r×r
∞
(Z) is defined as the operator that maps any c = (ck : k ∈ Z) ∈

`r
∞
(Z) to

(SAc)j =
∑
k∈Z

Aj−2k ck, j ∈ Z.

Thus, for any finitely supported A ∈ `r×r0 (Z), the subdivision operator SA is a continuous linear map from `r(Z) to `r(Z)
which can be easily extended to an operator from `r×s(Z) to `r×s(Z), s ≥ 1, by acting on the column vectors of matrix
sequences separately. Throughout this paper we will tacitly assume that the mask is real and finitely supported, hence
Aj = 0 for j 6∈ [−N,N] for some suitable N ∈ N.
The subdivision scheme then consists of iterative applications of the subdivision operator to an initial sequence c0 := c

yielding

cn+1 := SAcn = Sn+1A c0, n ≥ 0.

A subdivision scheme is said to be uniformly convergent if for any c ∈ `r
∞
(Z) there exists a uniformly continuous vector

valued function fc such that

lim
n→∞

sup
j∈Z

∥∥∥(SnAc)j − fc
(
2−nj

)∥∥∥
∞

= 0. (8)

An equivalent description of convergence is to demand the existence of the basic limit function as the limit of the matrix
sequence SnAδI , where (δI)k = δk,0I , that is, the existence of a uniformly continuous matrix valued function F such that

lim
n→∞

sup
j∈Z

∥∥∥(SnAδI)j − F
(
2−nj

)∥∥∥
∞

= 0. (9)

In fact, in the case of convergence of the subdivision scheme we have that

fc = F ∗ c =
∑
j∈Z

F(· − j) cj.

The basic limit function is refinablewith respect toA, which means that it satisfies the functional equation

F = F ∗ A (2·) =
∑
j∈Z

F (2 · −j) Aj. (10)

In the Lr2-setting (8) is replaced by

lim
n→∞

2−n/2
∥∥µn (fc)− SnAc∥∥2 = 0, fc ∈ Lr2(R)
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where themean value operator at level n ∈ N is defined for f ∈ Lr2 (R) as

µn (f ) (k) := 2n
∫ 2−n(k+1)

2−n k
f (t) dt, k ∈ Z,

cf. [6–8].
As usual, we associate both to the maskA and to the subdivision operator SA the symbol A(z), which is a matrix valued

Laurent polynomial of the form

A(z) =
∑
k∈Z

Ak zk, z ∈ C∗ := C \ {0}

which in turn naturally defines the matrix valued trigonometric polynomial

Â(θ) =
1
2
A
(
e−iθ

)
, θ ∈ R/2πZ.

The rank of the maskA or of the associated subdivision scheme SA is the number

R(A) := dim

{
y ∈ Rr :

(∑
j∈Z

A2j

)
y =

(∑
j∈Z

A2j+1

)
y = y

}
, (11)

satisfying, for convergent schemes, 1 ≤ R(A) ≤ r , cf. [9]. A subdivision scheme SA is said to be of full rank if R(A) = r .
As pointed out in [2], full rank schemes appear most naturally in the context of interpolatory vector subdivision schemes
which are characterized by the property that for any c ∈ `r

∞
(Z)

(SAc)2j = cj, j ∈ Z, (12)

or, equivalently, A2j = δj0 I , j ∈ Z. We can also describe full rank and interpolatory properties of a subdivisionmask in terms
of the symbol A(z), recalling that:

(1) A is of full rank iff A(1) = 2I and A(−1) = 0,
(2) A is interpolatory iff A(z)+ A(−z) = 2I ,
(3) an interpolatory subdivision scheme is of full rank iff A(1) = 2I ,

see again [2]. If a convergent subdivision scheme is interpolatory, then its associated basic limit function is cardinal, i.e., it
satisfies F(k) = δ0k I , vanishing at all integers except zero where its value is the identity matrix I .
Throughout the paper we will always assume that we are given a maskA satisfying the assumptions of Theorem 1, that

is, A(−1) = 0, A(z) + A(−z) = 2I , z ∈ C∗, and that A is (strictly) positive definite on the unit circle except at −1. Under
these circumstances the existence of the mask B and the existence of the associated orthogonal refinable function G are
ensured.

3. Properties of the subdivision scheme SC

Using the spectral factorB ofA, introduced in Theorem 1, we define the mask C ∈ `r
2
×r2(Z) by means of the Kronecker

correlation as

C =
1
2
(B B), Cj =

1
2

(∑
k

Bj+k ⊗ Bk

)
, j ∈ Z. (13)

As already shown in [1], this mask is of full rank, i.e., C(1) = 2I , C(−1) = 0. To show that also C leads to a convergent
subdivision scheme, we define the Kronecker autocorrelation function

H := G G(−·) =
∫

R
G(t)⊗ G(t − ·) dt

and first note that

Ĥ(ξ) = Ĝ(ξ)⊗ Ĝ(ξ) =
[̂
gjk(ξ) Ĝ(ξ) : j, k = 1, . . . , r

]
,

hence, by Hölder’s inequality, Ĥ ∈ Lr
2
×r2

1 (R) and thereforeH ∈ C r2×r2u (R), the space of uniformly continuous r2× r2 matrix
valued functions. Moreover, since C is finitely supported we also have that H is of finite support.

Proposition 4. The subdivision scheme SC converges with basic limit function H ∈ C r×ru (R).
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Proof. Continuity of H has already been observed above, and so we proceed showing that H is a refinable matrix function.
To that end, we consider Ĥ = Ĝ ⊗ Ĝ and use the refinability of G to realize that for ξ ∈ R

1
2
Ĥ(ξ/2) Ĉ(ξ/2) =

1
2

(
Ĝ(ξ/2)⊗ Ĝ(ξ/2)

)(1
2
B̂(ξ/2)⊗ B̂(ξ/2)

)
=
1
2

(
Ĝ(ξ/2) B̂(ξ/2)

)
⊗
1
2

(
Ĝ(ξ/2) B̂(ξ/2)

)
= Ĝ (ξ) Ĝ (ξ)
= Ĥ (ξ) .

To show convergence, we first observe that a simple inductive proof gives that for n ≥ 0

n∏
j=0

1
2
Ĉ
(
2−jξ

)
=

(
n∏
j=0

1
2
B̂
(
2−jξ

))
⊗

(
n∏
j=0

1
2
B̂
(
2−jξ

))
. (14)

Indeed, the case n = 0 is just the product formula above for Kronecker products, while in the general case we note that
n+1∏
j=0

1
2
Ĉ
(
2−jξ

)
=

(
n∏
j=0

1
2
Ĉ
(
2−jξ

))(1
2
B̂
(
2−n−1ξ

)
⊗
1
2
B̂
(
2−n−1ξ

))

=

(
n∏
j=0

1
2
B̂
(
2−jξ

))
⊗

(
n∏
j=0

1
2
B̂
(
2−jξ

))(1
2
B̂
(
2−n−1ξ

)
⊗
1
2
B̂
(
2−n−1ξ

))

=

(
n+1∏
j=0

1
2
B̂
(
2−jξ

))
⊗

(
n+1∏
j=0

1
2
B̂
(
2−jξ

))
by another application of the product formula. Hence, since the infinite product for B̂ converges to Ĝ , the limit of (14) exists
for n → ∞ and is Ĝ ⊗ Ĝ = Ĥ . But convergence of the cascade algorithm is equivalent to convergence of the subdivision
scheme and this completes our proof. �

Since SC is a full rank scheme and converges by Proposition 4, we can apply [10, Proposition 1] to conclude that∑
k∈Z

H (· − k) = I (15)

and so the rows and columns of H are linearly independent, respectively. Moreover, we note that all the rows hTj , j =
1, . . . , r2 of H , i.e., HT =

[
h1, . . . , hr2

]
, are refinable vector functions with respect to C, so that for j = 1, . . . , r2 we have

hTj (x) =
∑
k∈Z

hTj (2x− k) Ck, or hj(x) =
∑
k∈Z

C Tk hj (2x− k) .

As already observed in [11], we again face the situation that in matrix refinable functions the columns are linearly
independent while the rows are refinable.
Another important property of H is stated in the following result.

Theorem 5. The function H is stable, i.e., H ∗ c = 0 implies that c = 0.

Proof. We recall, once more from [1], that the Fourier transform Ĝ of G has the property that there exists a constant ρ > 0
such that

∣∣det Ĝ(ξ)∣∣ ≥ ρ for ξ ∈ [−π, π] — this fact was used in the proof of [1, Theorem 2.2], where the function was
named Φ and the underlying argument to give a lower estimate for the infinite product is very similar to the one used
in [12]. It is based on the fact that under the assumptions on A the trigonometric polynomial B̂ is strictly positive definite
on [−π/2, π/2] so that the determinant of the infinite product can be estimated from below by a positive constant.
Since Ĥ = Ĝ ⊗ Ĝ , the determinant formula for Kronecker products, det(X ⊗ Y ) = (detX)r (det Y )r , X, Y ∈ Rr×r , yields

that for ξ ∈ [−π, π]we have∣∣det Ĥ(ξ)∣∣ = ∣∣det Ĝ(ξ)∣∣r ∣∣∣det Ĝ(ξ)∣∣∣r = ∣∣det Ĝ(ξ)∣∣2r ≥ ρ2r
and therefore Ĥ−1 is a well-defined continuous function on [−π, π]. Now suppose that for some sequence c we have
H ∗ c = 0, then, taking the Fourier transform,

Ĥ(ξ) ĉ(ξ) = 0, ĉ(ξ) :=
∑
k∈Z

ck e−ikξ , ξ ∈ R.
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But then also

0 = Ĥ−1(ξ) Ĥ(ξ) ĉ(ξ) = ĉ(ξ)

for ξ ∈ [−π, π] and since the trigonometric series is 2π-periodic it follows that ĉ = 0, hence c = 0. �

We next recall that the matrix valued function H contains F?, more precisely, the vector Φ = vec (F?). Using (2), the
relationship is

Φ = vec (F?) = vec

(
1
2

∑
j,k∈Z

BTk F? (2 · −j) Bj+k

)

=
1
2

∑
j,k∈Z

vec
(
BTk F? (2 · −j) Bj+k

)
=

∑
j,k∈Z

1
2

(
BTj+k ⊗ BTk

)
vec (F?(2 · −j))

=

∑
j∈Z

(
1
2

∑
k∈Z

Bj+k ⊗ Bk

)T
vec(F?)(2 · −j) =

∑
j∈Z

C Tj Φ (2 · −j) .

Thus,Φ is a linear combination of the refinable rowvectors ofH or, in otherwords, there exists a vector y such thatΦ = HTy.
Since F? is cardinal, we have that for k ∈ Z

δkvec(I) = vec (F?(k)) = HT (k) y

and summation over k ∈ Z yields together with (15) that

vec(I) =

(∑
k∈Z

HT (k)

)
y = y,

henceΦ = HT vec(I). Thus, we can consider the two nested chains of spaces

Tn = span Rr2
{
H
(
2n · −j

)
, j ∈ Z

}
(16)

and

Tn = span Rr2
{
ΦT

(
2n · −j

)
, j ∈ Z

}
(17)

of vector and scalar valued functions, respectively. They are connected by

ΦT ∗ c
(
2n·
)
=

∑
j∈Z

ΦT
(
2n · −j

)
cj =

∑
j∈Z

vec(I)TH
(
2n · −j

)
cj

= vec(I)T H ∗ c
(
2n·
)
.

Remark 6. The vector fieldΦ could appear to be a good basis for a scalar multiresolution analysis of the multiwavelet type.
Unfortunately, even the minimal requirement, namely stability of Φ cannot be guaranteed. More precisely: even if F is a
stable function, the vector field vec(F) will usually not be stable. The simplest counterexample is to choose F = f I where
f is a stable scalar refinable function, for example a cardinal B-spline with simple knots. Note that a degree one cardinal
B-spline is also interpolatory.

4. Multiresolution analyses, filters and filter banks

4.1. Interpolatory multiresolution analysis based on F

We start by discussing how to build an MRA and associated filter banks based on the refinable cardinal function
F := limn→∞ SnAδI under the assumption that SA is uniformly convergent. Of course, this ‘‘prediction–correction’’ approach
is not new and essentially dates back at least to Faber [13] where the decay of wavelet coefficients (in the sense explained
below) of piecewise linear scalar interpolants was used to construct continuous, nowhere differentiable functions. For the
finitely supported and continuous r× r matrix function F cardinality means that F(k) = δk0 I , k ∈ Z, while refinability with
respect toAmeans that

F = F ∗ A(2·) =
∑
k∈Z

F (2 · −k) Ak.

The MRA generated by F consists of the spaces

Vk := span Rr
{
F
(
2k · −j

)
: j ∈ Z

}
=
(
F ∗ `r(Z)

) (
2k·
)
, k ∈ N0,
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where the nestedness V0 ⊂ V1 ⊂ · · · is equivalent to the refinability of F . Moreover, the limit

V∞ := lim
k→∞

Vk =
⋃
k∈Z

Vk

is dense in C ru(R), the space of uniformly continuous function vectors of dimension r since, in addition,∑
k∈Z

F (· − k) = I .

This can be proved by a ‘‘test function’’ argument as in [8,9]. Hence, for the refinable cardinal F , the spaces Vk satisfy all
requirements of a multiresolution analysis, cf. [14, p. 221], since:

(1) Vk ⊂ Vk+1, k ∈ N0, and V∞ is dense in C ru(R),
(2) any V0 is translation invariant,
(3) a function belongs to Vk if its dilated version belongs to Vk+1,
(4) the generating cardinal function F is stable, i.e., for any c ∈ `r

∞
(Z)

‖c‖`r∞(Z) ≤ ‖F ∗ c‖Lr∞(R) ≤ C ‖c‖`r∞(Z) , C = ‖F‖Lr∞(R) <∞. (18)

The next step consists of defining the cardinal projections Pk : C ru(R)→ Vk, defined as the interpolant

Pkg =
∑
j∈Z

F
(
2k · −j

)
g
(
2−kj

)
=: F ∗ σ2−kZg

(
2k·
)
, g ∈ C ru(R),

with the sampling operator σhf := (f (jh) : j ∈ Z). Note that these projections are even more suitable than the inner
products in usual wavelet analysis sincemost functions are available in sampled form. In particular, the canonical projection
P0 is

P0g =
∑
k∈Z

F (· − k) g(k).

The wavelet spaces are now defined by means of the canonical projections.

Definition 7. The wavelet spacesWk, k ≥ 0, are defined as

Wk = {f ∈ Vk+1 : Pkf = 0} =
{
f ∈ Vk+1 : f

(
2−kj

)
= 0, j ∈ Z

}
.

Writing f ∈ Vk+1 as

f = F ∗ c
(
2k+1·

)
=

∑
j∈Z

F
(
2k+1 · −j

)
cj,

it is easily seen that f
(
2−kZ

)
= 0 if and only if c2j = 0, hence:

Wk = span Rr
{
F
(
2k · −j

)
: j ∈ 2Z+ 1

}
, (19)

so that wavelets and scaling functions coincide except on the translational factor. The wavelet decomposition by itself is
quite simple as well: starting with f ∈ Vn, we first decompose it into

f = Pn−1f + (I − Pn−1) f

where the first one belongs to Vn−1 while the second one clearly vanishes at 2n−1Z so that it belongs toWn−1. Continuing
with decomposing Pn−1f recursively L > 0 times, we get the complete wavelet decomposition

f = Pn−Lf + Qn−Lf + Qn−L+1f + · · · + Qn−1f

where Qn−k := (I − Pn−k) Pn−k+1 = Pn−k+1 − Pn−k is the projection operator on the wavelet spaceWn−k.
In order to express this process in terms of filter banks, then by means of discrete wavelet decomposition and

reconstruction schemes, we start with decomposition and assume that

f = P1f =
∑
k∈Z

F (2 · −k) ck ∈ V1

is a given function to be decomposed where the decomposition has to be performed in terms of the coefficient sequence c .
One part is almost trivial, namely

P0f =
∑
k∈Z

F (· − k) c2k,

hence the decomposition low pass filter is just subsampling:

c1k = (↓2c)k = c2k, k ∈ Z. (20)
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The refinement equation of F allows us to rewrite P0f as

P0f = F ∗ SAc1(2·),

hence, the high pass filter becomes

Q0f = (I − P0) f = F ∗
(
c − SAc1

)
(2·) ,

and since
(
c − SAc1

)
2k = 0, we indeed have that

(I − P0) f =
∑
j∈Z

F (2 · −(2j+ 1))

(
c2j+1 −

∑
k∈Z

A2j+1−2kc2k

)

=

∑
j∈Z

F (2 · −(2j+ 1))

(
c2j+1 −

(∑
k∈Z

A2j+1−kck − c2j+1

))
=

∑
j∈Z

F (2 · −(2j+ 1))
(̃
A ∗ c

)
2j+1

where Ã = 2Iδ0 − A. Hence, the wavelet coefficients are given by means of convolution and subsampling as

d1j =
(̃
A ∗ c

)
2j+1 , j ∈ Z.

Conversely, reconstruction is simple as well by setting

c2j = c1j
c2j+1 = (SAc1)2j+1 + d1j =

(
SAc1 + ↑2d

1)
2j+1

where, as usual, given a sequence a, the upsampling operator constructs a new sequence b such that b2j = aj, b2j+1 = 0.
With the translation filter τ , τc := c (· + 1), we thus can describe the filter bank in the usual way as

c →
↗ τ Ã → ↓2 → d1

�

↘ I → ↓2 → c1

→ ↑2 → τ−1 ↘

⊕

→ ↑2 → A ↗

→ c (21)

The primal/dual high and low pass filters are

Q = τ Ã, P = I, Q̃ = τ−1, P̃ = A,

with symbols

Q (z) = z (2 I − A(z)) , P(z) = I,
Q̃ (z) = z−1 I, P̃(z) = A(z),

so that

Q̃ (z)Q (z)+ P̃(z) P(z) = 2I − A(z)+ A(z) = 2I

which is nothing but the perfect reconstruction property of the filter bank.

4.2. Multiresolution analysis based on H

Due to the refinability of the matrix function H ,

H =
∑
j∈Z

H(2 · −j) Cj,

the spaces

Tn := span Rr2
{
H(2n · −k) : k ∈ Z

}
are obviously nested. Also, since H is stable and a partition of the identity by Theorem 5 and (15), we can construct a
multiresolution analysis based on it. To construct an MRA in Lr

2

2 (R) based on H , we make use of an interesting connection
between the scaling spaces {Vn} and {Tn} generated by G and H , respectively. Recall that the construction of an MRA based
on the orthogonal matrix function G , in particular, the construction of the wavelet, has been described in [11].
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Definition 8. For n ∈ Z the Cassata product space Vn Vn of Vn with itself is defined via

Vn Vn :=

{
f ∈ Lr

2

2 (R) : f =
r∑
`=1

m` n`, m`, n` ∈ Vn, ` = 1, . . . , r

}
.

If Vn ⊂ Lr×r2 (R) then the Hölder inequality automatically gives the Cassata product space Vn Vn as a subspace of
Lr×r1 (R). On the other hand, the same Fourier transform argument given before Proposition 4 to show that H was uniformly
continuous, could be applied here to show that the elements of Vn Vn even have to be uniformly continuous. In fact, we
give a more direct and explicit proof of that fact now in Proposition 9 where we show that the Cassata product space is
generated by H via convolutions.

Proposition 9. For each n ∈ Z the multiresolution analysis spaces Tn generated by H coincide with the Cassata product space
Vn Vn of Vn, generated by G .

Proof. Let f ∈ Vn Vn and letm` = G ∗ c` (2n·) and n` = G ∗ d` (2n·), ` = 1, . . . , r be the respective representations in Vn.
By the second identity of (5) we have that

r∑
`=1

m` n` =
∑̀
r=1

(
G G

)
?
(
c` d`

) (
2n·
)
= H ∗

∑̀
r=1

(
(c` d`)(−·)

) (
2n·
)

belongs to Tn. Conversely, if f ∈ Tn, it can be written as

f =
∑
j∈Z

H(2n · −j)sj = (H ∗ s)(2n·)

where s = {sj} ∈ `(Z)r
2
. By making use of Proposition 3 we can write

f =
r∑
`=1

(
G ? u`

) (
G ? v`

)
(2n·)

which proves that f can bewritten as the sum of Kronecker correlations of functions belonging to Vn, that is f ∈ Vn Vn. �

Based on Proposition 9, we can easily achieve that each of complementary wavelet spaces Rn = Tn+1 	 Tn of the MRA
{Tn} is indeed the sum of three spaces. In fact, denoting with {Wn} the sequence of wavelet spaces associated to {Vn}, we
have that:

Tn+1 = Tn ⊕ Rn
but, on the other hand,

Tn+1 = Vn+1 Vn+1 = (Vn ⊕Wn) (Vn ⊕Wn)
= (Vn Vn)︸ ︷︷ ︸

Tn

⊕ (Vn Wn)⊕ (Wn Vn)⊕ (Wn Wn)︸ ︷︷ ︸
Rn

.

This formula, which is very similar to the types of decompositions that appear in tensor product wavelets, allows obtaining
a fast decomposition/reconstruction algorithm for function vectors belonging to Lr

2

2 (R): One first decomposes a signal
s ∈ `r

2
(Z) by means of (7) and then applies the orthogonal multiresolution based on G on the components separately.

Note that one part of this decomposition is simple and even data independent since v` essentially consists of unit vectors
and δ-sequences.

4.3. Filters and filter banks based on F?

For the function F?, which is only refinable in themore general sense of (2), the situation is somewhat different. Here, the
concept of filters and filter banks associated to an MRA will only yield a set of discrete operations working on discrete vector
data c ∈ `r

∞
(Z). On level n this sequence will be related to sampling values of a function, say g ∈ C r(R), at the grid 2−n Z,

i.e., cnj = g
(
2−nj

)
where the upper index denotes the sampling level. Since F? is a cardinal function, we can define the level

n interpolant

fn := F? ∗ cn
(
2n·
)
=

∑
j∈Z

F?
(
2n · −j

)
cnj , (22)

which has the property that

fn
(
2−nk

)
= cnk = g

(
2−nk

)
. (23)
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To build a matrix filter bank, we will again make use of a prediction–correction strategy as in [13] that always identifies
a vector cn with the associated function fn. Note that whether the spaces Vn spanned by F? (2n · −k) are nested or not
(and there is no strong reason to expect them to be nested) is completely irrelevant at this point. To build the
prediction–correction scheme we first downsample cn to get the subsequence cn−1 as

cn−1 = ↓2c
n, i.e. cn−1j = cn2j, j ∈ Z,

and once more relate it to the interpolant on level n− 1,

fn−1 := F? ∗ cn−1
(
2n−1·

)
, fn−1

(
21−nk

)
= g

(
21−nk

)
, k ∈ Z. (24)

In fact, (22) and (24) can easily be extended to a general decomposition process based on the downsampled sequences
ck = ↓2ck+1, k = 0, . . . , n− 1, and the associated interpolants

fk := F? ∗ ck
(
2−k·

)
,

satisfy the nested interpolation property

fk
(
2−kj

)
= ckj = g

(
2−kj

)
.

Here ‘‘nested’’ means that if fk interpolates g at some grid point, then so does f` for k ≤ ` ≤ n.
We will use the subsampled sequences as predictors for the values of g; of course, cn−1 will usually predict g at 21−nZ

but will normally fail to give the correct value at 2−nZ \ 21−nZ. This is the reason why a correction has to be applied which
is computed by substituting the refinement equation (2) for F? into fn−1

fn−1 =
∑
j∈Z

F?
(
2n−1 · −j

)
cn−1j =

1
2
(SBδI)T ? F? ∗ SBcn−1

(
2n·
)

and then considering the difference from fn — but only at integer points where we can easily compare the functions. And
indeed, for k ∈ Zwe get that

(fn − fn−1)
(
2−n(2k+ 1)

)
=

∑
j∈Z

F? (2k+ 1− j) cnj −
1
2
(SBδI)T ? F? ∗ SBcn−1 (2k+ 1)

= cn2k+1 −
(
SBcn−1

)
2k+1 =

(
(I − SB↓2) c

n)
2k+1 ,

where, as in [1], we consider the correlated subdivision operator SB of (1) and recall from there that SB = S1B = SA, so that
the ‘‘wavelet’’ coefficients of this interpolatory multiresolution analysis on the integers are computed as

dnk :=
(
(I − SA↓2) c

n)
2k+1 , k ∈ Z. (25)

The reconstruction of cn from cn−1 and dn is straightforward, namely

cn = SAcn−1 + τ↑2d
n, τ c :=

(
cj+1 : j ∈ Z

)
.

This is the standard interpolatory multiresolution analysis based on the interpolatory maskA.

Remark 10. Weencountered a rather curious behavior ofmultiresolution analyses that clearly can be observed in the vector
subdivision case only: thoughwe cannot prove the existence of a refinable function relative toA, the filter bank based on SA
can be perfectly explained and motivated in terms of a uniformly continuous cardinal function F?. In particular, all results
on approximation order of F? immediately would lead to decay estimates for the wavelet coefficients from the filter bank.
In the scalar case all the effects pointed out here are only apparent in a very trivial sense since F , F? and even H coincide
there.
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