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Gradual heating of green leaves up to non-physiological temperatures is often used to estimate thermal
stability of photosynthetic apparatus. However, a complete sequence of heat-induced disassembly and
denaturation of chlorophyll-containing protein complexes (CPCs) has not been reported yet. In this work, we
heated (1 °C·min−1) barley leaves to temperatures selected according to the changes in the chlorophyll
fluorescence temperature curve (FTC) and we analyzed CPC stability by two-dimensional native Deriphat/
SDS–PAGE. The first distinct change in both structure and function of photosystem II (PSII) appeared at 40–
50 °C. PSII core (CCII) dimers began to dissociate monomers, which was accompanied by a decrease in PSII
photochemistry and reflected in FTC as the first fluorescence increase. Further changes in CPCs appeared at
57–60 °C, when FTC increases to its second maximum. Photosystem I (PSI) cores (CCI) partially dissociated
from light-harvesting complexes of PSI (LHCI) and formed aggregates. The rest of CCI–LHCI complexes, as
well as the CCI aggregates, degraded to the PSI-A/B heterodimer in leaves heated to 70 °C. Heating to these
temperatures led to a complete degradation of CCII components and corresponding loss of PSII
photochemistry. Trimeric light-harvesting complexes of PSII (LHCII) markedly dissociated to monomers
and denatured, as evidenced by a release of large amount of free chlorophylls. Between 70 and 80 °C, a
complete degradation of LHCII occurred, leaving the PSI-A/B heterodimer as the only detectable CPC in the
membrane. This most thermostable CPC disappeared after heating to 90 °C, which corresponded to a loss of
PSI photochemistry.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

In the 1960s and the 1970s, investigations of photosynthetic
activities in heated chloroplast preparations revealed that photosys-
tem I (PSI) is more thermostable than photosystem II (PSII) (for
review, see [1]). In the subsequent decade, research was focused on
the correspondence between the inactivation and the denaturation of
photosystems. Characteristic endothermic transitions of thylakoid
membranes or photosystem preparations were obtained using
differential scanning calorimetry (DSC).

The first DSC transition appearing at 42 to 48 °C was shown to
reflect a disruption of the PSII donor side with corresponding loss of
oxygen evolution [2], but no PSII protein was observed to denature
during this transition [3]. A concomitant decrease in the amount of the
high potential form of cytochrome b559 [2] and oxidized tyrosine D [3]
implied that this transition involves structural changes in integral
proteins of PSII. This rearrangement of PSII was supported by later
findings that the heat-induced disruption of PSII donor side is
associated with the release of components of oxygen evolving
+420 58 5225737.
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complex [4] and a change of the midpoint potential of the primary
quinone acceptor QA [5].

The second endothermic transition in thylakoid membranes
appears at about 60 °C (at neutral pH). It is accompanied by loss of
electron transport through PSII [6] and it probably represents a
denaturation of the PSII reaction centers. The next DSC transition at
about 75 °C reflects a denaturation of light-harvesting complex of PSII
(LHCII) [7]. The temperatures of these two DSC transitions were
shown to be affected by particular sample preparation and the buffers
used [3]. The nature of DSC transitions appearing in thylakoid
membranes above 80 °C [2,7] has not been determined yet, but
some of these transitions could reflect a denaturation of PSI.

It should be noted that the mentioned denaturation temperatures
of individual chlorophyll-containing protein complexes (CPCs)
determined by DSC were obtained at standard linear heating rate
1 °C·min−1. A decrease of heating rate to 0.125 °C·min−1 can lower
the DSC transitions by about 5 °C, as was recently demonstrated for
isolated LHCII [8]. Thus, a thermal dose absorbed by the linearly
heated CPCs can influence the denaturation temperatures.

From 1990s, conformation changes of CPCs during their heat
denaturation have been studied using various techniques based on
optical spectroscopy. Using the infrared absorption of amide I, De Las
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Rivas and Barber [9] documented that the reaction center of PSII
changes its secondary structure at about 42 °C and that PSII core
denatures around 60 °C [10], which confirmed the results of previous
DSC studies. Using circular dichroism (CD) spectroscopy, Dobrikova et
al. [11] showed that the heat denaturation of LHCII is preceded by a
dissociation of trimeric LHCII to its monomeric form. This occurs at
temperature between 60 and 74 °C, depending on the presence of
surrounding lipids [12].

The heat-induced changes in the secondary structure of PSI have
been reported only recently. Using infrared spectroscopy and 77K
chlorophyll fluorescence spectra in isolated PSI complexes, Hu and
coworkers [13] observed the major conformation transition at 60 to
70 °C, which was accompanied by the energetic disconnection of LHCI
from PSI core. Denaturation of PSI was shown to take place in a wide
temperature interval 70–90 °C [13].

All the abovementioned denaturation studies were performed
with isolated thylakoid membranes or CPCs and therefore a question
arises as to whether the heat transition temperatures are the same for
CPCs in vivo. There are only a few studies which are focused on direct
determination of the of heat stability of CPCs in vivo [14,15]. The
authors employed native electrophoresis to study the heat-induced
disassembly of LHCII and PSII after heating of leaves at temperatures
not exceeding 50 °C. However, in these studies the leaves were heated
at fixed temperatures (1 h and 5 min, respectively), and therefore the
obtained results are hardly comparable with the in vitro denaturation
studies using linear heating regime. There exist in vivo studies that
use the linear heating regime, but they present only an indirect
estimate of the CPC thermostability. These studies employ mainly the
measurement of chlorophyll fluorescence (fluorescence temperature
curve; FTC) [16–19] and thermo(chemi)luminescence (for reviews,
see [20,21]) in continuously heated leaf samples. In order to
understand these heat-induced changes in chlorophyll emission, it
is important to directly analyze the disassembly and denaturation of
CPCs during linear heating of leaves in vivo. At the same time, this
analysis would enable the comparison of the data obtained in vivo
with the in vitro denaturation studies.

In this work, we have analyzed the irreversible disassembly and
denaturation of CPCs during linear heating of barley leaf segments. In
order to obtain comparable results, we have used heating rate
1 °C·min−1 that was used in several previous DSC and FTC studies. In
our approach, the changes of CPCs were determined using a two-
dimensional native Deriphat/SDS–PAGE optimized for the separation
of CPCs from barley [22,23]. Corresponding changes in the function of
photosystems were detected directly in heated leaf segments by the
simultaneous measurement of PSII fluorescence and PSI absorption
changes. The results enabled us to determine a sequence of heat-
induced structural/functional changes in CPCs in vivo within 25 to
90 °C and their relevance to the changes in FTC.

2. Materials and methods

2.1. Plant material

Barley (Hordeum vulgare L. cv. Akcent) seedlings were grown at
25 °C in a growth chamber with 16/8 hr photoperiod at 100 μmol
photons·m−2·s−1 (photosynthetically active radiation, PAR). Middle
parts of 8-day-old primary leaves were linearly heated (1 °C·min−1)
from 25 °C to selected temperatures in the dark. After heating, the leaf
segments were immediately cooled down in a water bath (25 °C, 30 s)
and within 1 min used for the preparation of thylakoid membranes or
for the measurement of photosystem function at room temperature.

2.2. Fluorescence temperature curve (FTC)

FTC is a dependence of chlorophyll fluorescence intensity on
linearly increasing temperature. The FTC was measured with leaf
segments using a fluorescence spectrophotometer F-4500 (Hitachi,
Tokyo, Japan) extended by the laboratory setup with fiber optics
allowing the measurement outside the sample chamber. Fluores-
cence was excited on the upper leaf side at 436 nm (10 μmol
photons·m−2·s−1) and detected at 680 nm. The spectral slit-width
of the excitation and emission monochromator was 10 and 5 nm,
respectively. Leaf segments were placed on a sample holder,
immersed in distilled water, and linearly heated from 25 to 90 °C
at a rate of 1 °C·min−1 using a home-built computer-controlled
heating device.

2.3. Preparation of thylakoid membranes

Thylakoid membranes for the subsequent electrophoretic separa-
tion of CPCs were isolated from unheated (25 °C) or preheated leaf
segments according to reference [22]. The membranes were resus-
pended in the extraction buffer (11.3 mM Tris, 87 mM glycine, 10%
glycerol (v/v)) to the final concentration of 1 mg chlorophyll/ml. The
chlorophyll content was determined spectrophotometrically in 80%
acetone according to Lichtenthaler [24].

2.4. Native Deriphat–PAGE, SDS–PAGE, and immunoblotting

Thylakoid membranes were solubilized with 20% decyl-β-D-
maltoside to yield the final 25:1 (w/w) ratio of detergent to
chlorophyll. Solubilized thylakoids were centrifuged at 7000×g for
135 s to remove the colorless insoluble material, and the green
supernatant was immediately applied to polyacrylamide gel. The
native Deriphat–PAGE of CPCs was performed according to published
methods [22,23,25]. The solubilized thylakoids (7 μL) were loaded
onto 6% (w/v) gel. Electrophoresis was performed at 2 °C in the dark
at a constant voltage 50 V for 15min and then at 90 V for 150min. The
gel containing green bands was scanned at 670 nm by a home-made
2-D gel densitometer [26]. Separated CPCs were analyzed and
identified by denaturing SDS–PAGE and by immunoblotting according
to reference [27]. The antibodies against D1 and CP47 were bought
from Agrisera Company, and the others were gifts from others. The
antibodies were detected using anti-rabbit (IgG)-peroxidase antibody
(Sigma).

2.5. Deriphat purification

The commercial Deriphat (powder; Cognis, Cincinnati, OH)
contained high amount of impurities disturbing CPCs; therefore, we
purified it before use. We heated water solution of Deriphat at 70–
80 °C and collected the crusts formed on the beaker surface as a
purified Deriphat.

2.6. Determination of molecular mass of CPCs

Molecular mass of CPCs resolved by green native Deriphat–PAGE
was determined using a method of Ferguson plot [28,29]. Solubilized
CPCs and standard proteins of known molecular masses were
electrophoresed in seven gels with different acrylamide concentration
(4.5%, 5%, 5.5%, 6%, 7%, 8%, and 9% (w/v)).

2.7. Measurement of photosystem function

PSII and PSI functions in heat-treated leaf segments were
monitored simultaneously using a Dual-PAM 100 with measuring
heads Dual E and Dual DB (Walz, Effeltrich, Germany) at room
temperature. PSII function was detected by the chlorophyll fluores-
cence ratio FV/FM (variable to maximum chlorophyll fluorescence
level) that reflects the maximum quantum yield of PSII photochem-
istry. PSI function was monitored as the light-induced increase in a
difference between the 830- and 875-nm leaf transmittance signals,



Fig. 2. Electrophoretograms of CPCs separated by native Deriphat–PAGE from thylakoid
membranes of barley leaf segments linearly heated (1 °C·min−1) to selected
temperatures (Fig. 1). SC: supercomplexes; PSI+CCII(2) band: PSI core with bound
LHCI and PSII core dimer (see also Fig. 3); CCI(1) band: monomeric PSI core; RC-47
band: reaction center of PS II (D1, D2, and CP47); LHCIIt(m): trimeric (monomeric)
form of LHCII; FP: free pigments, AG: aggregates.
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which reflect mainly the oxidation of P700, the donor of PSI. The
preheated leaves were irradiated using the 1-s red light pulse
(2000 μmol photons·m−2·s−1) to close the reaction centers of PSII
and to induce the oxidation of P700 (see [30,31]). Near infrared LEDs
emitting at 830 and 875 nm were both set at level 5. The chlorophyll
fluorescence during the 1-s pulse was measured using a modulated
measuring blue light.

3. Results

3.1. Fluorescence temperature curve (FTC)

Fig. 1 represents a typical FTCwith two characteristicmaxima (M1,
M2) measured with the primary leaf of 8-day-old barley at a heating
rate of 1 °C·min−1 within the temperature range of 25 to 90 °C.
Similar FTCs have been already reported for leaves of different species
(e.g., [32]), heating rates [18], and excitation wavelengths [33]. The
whole course of FTC reflects changes in the fluorescence intensity of
chlorophyll a [34].

The fluorescence level in FTC is rather constant up to 40 °C, but the
subsequent heating to 50 °C is accompanied by a gradual increase in
fluorescence intensity to the first maximum (M1) (Fig. 1). The latter
phase reflects a gradual accumulation of QA

− at the acceptor side of PSII
[35] due to the inhibition of electron transport from QA to QB [36–38],
which is connected with the irreversible structural change of PSII (see
Introduction). The initial part of this FTC phase is reversible [39,40], in
particular at higher heating rates [41]. Although a detailed molecular
mechanism of the heat-induced inhibition of electron transport from
QA to QB is not known, a critical temperature of the fluorescence
increase is often used as an indicator of PSII thermostability (see, e.g.,
[16–19]). The fluorescence decrease observed at 50 to 57 °C was
shown to be partially reversible [39,41] and reflects probably a
general temperature-dependent lowering of fluorescence quantum
yield of chlorophyll a molecules [42]. The subsequent FTC phases are
fully irreversible [18,43]. The steep increase of fluorescence to the M2
maximum (60 °C) has been ascribed to highly fluorescing chlorophyll
a released from CPCs [44]. Finally, the fluorescence decrease above
60 °C has been explained by a progressive formation of low-
fluorescing chlorophyll a-lipid aggregates [44]. A critical evaluation
of the alternative causes of the individual phases in FTC, as well as a
description of the heat-induced changes in chloroplasts responsible
for the accumulation of QA

−, can be found in references [21,38,44].
Based on the FTC shape in Fig. 1, we selected eight distinct

temperatures within the range 25 to 90 °C. The leaf segments heated
to these temperatures were rapidly cooled down to 25 °C and used to
Fig. 1. A typical chlorophyll fluorescence temperature curve (FTC) of a barley leaf at a
heating rate of 1 °C·min−1. Eight selected temperatures in FTC (indicated) were chosen
for the analysis of CPCs during heating. Excitation and emission wavelength were 436
and 680 nm, respectively.
monitor the irreversible disassembly and degradation of CPCs and
photosystem function during linear heating.

3.2. Pigment–protein complexes in control leaves

Native CPCs from thylakoid membranes of barley leaves were
separated by a green native Deriphat–PAGE (Fig. 2). The Deriphat–
PAGE has been developed as a method suitable for the separation of
native CPCs from barley leaves with low amount of released free
pigments [22]. The green bands in the gel were visualized by the
monochromatic imaging at 670 nm. This monochromatic light, which
coincides with the red absorption maximum of chlorophyll a, allows
visualization of even faint-green bands [26].

The molecular masses of separated CPCs, determined by the
method of Ferguson plot, were found to be about twice higher than
those estimated previously using a simple semilog plot [23]. Our
values are in agreement with present estimates of CPCs molecular
masses (for details, see Appendix). The separated CPCs were
identified using SDS–PAGE (Fig. 3) combined with immunodetection
of selected proteins and 77K chlorophyll fluorescence spectra.

The separation of CPCs from control leaf thylakoids resulted in five
main green bands with apparent molecular masses of approximately
435, 280, 215, 120, and 50 kDa (PSI+CCII(2), CCI(1), RC-47, LHCIIt,
and LHCIIm; Fig. 2). Western blot analysis and SDS–PAGE revealed
that the PSI+CCII(2) band contained dimeric core complex of PS II
(CCII(2)) and PSI, the core complex of photosystem I (CCI) with LHCI.
The CCI(1) band contained monomeric heterodimer of PSI-A/B and
several small proteins. In the RC-47 band, D1, D2, and CP47 proteins
were identified. LHCIIt and LHCIIm band contained trimeric and
monomeric form of LHC II, respectively. Small amount of CP43, which
was disconnected from CCII due to influence of Deriphat, co-migrated
with the LHC IIt band.

The appearance of bands with supercomplexes (SC), containing
both PSI and PSII proteins (Fig. 3), a faint band RC-47, and a very low
content of free pigments (FP), confirmed that the separation of CPCs
by Deriphat–PAGE was very mild. However, we note that a
purification of Deriphat was necessary to obtain highly native CPCs.
Without Deriphat purification, we observed much more distinct CCI
and RC-47 bands and no supercomplexes in the electrophoretograms
(not shown).

3.3. Pigment–protein complexes in heated leaves

The composition of CPCs was not affected by linear heating of
barley leaves up to 40 °C (Figs. 2 and 3), which corresponded with
the constant level of fluorescence detected in FTC (Fig. 1). The first
change in CPCs appeared after heating to 50 °C when CCII dimers
began to dissociate to monomers. This is documented by a relative
decrease in the amount of PSII core proteins (D1, D2, CP47, and
CP43) in the PSI+CCII(2) band in favor of the RC-47 band (Fig. 3).



Fig. 3. Two-dimensional denaturing SDS–PAGE analysis of thylakoid protein complexes of barley. Excised lanes from Deriphat–PAGE (Fig. 2) were denatured, placed on the top of the
SDS gel, electrophoresed on 12–20% (w/v) polyacrylamide gel containing 7 M urea and stained with Coomassie brilliant blue. Molecular mass markers (right): myosin (201 kDa), β-
galactosidase (116 kDa), bovine serum albumin (94 kDa), ovalbumin (50 kDa), carbonic anhydrase (37 kDa), soybean trypsin inhibitor (29 kDa), lysozyme (19 kDa), and aprotinin
(7 kDa).
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This PSII structural change was related to the fluorescence increase
to the M1 FTC maximum (Fig. 1), reflecting the inhibition of PSII
electron transport. The dissociation of CCII dimers was almost
complete after heating to 57 °C, which was the temperature just
prior to the increase of fluorescence to the M2 maximum in the FTC
(Fig. 1). After heating to 57 °C, a small amount of aggregates was
detected on the top of the gel, and the supercomplexes above the
PSI band almost completely disappeared (Figs. 2 and 3).

More pronounced changes in separated CPCs were detected after
linear heating to 60 °C, the temperature of the M2 FTC maximum
(Fig. 1). The PSI+CCII(2) band, involving just the PSI proteins,
became fainter (Figs. 2 and 3). A part of PSI proteins remained on the
top of the gel in the form of aggregates (Fig. 2), as evidenced by the
77K fluorescence emission spectrum (Fig. 4a). The spectrum of
aggregates showed a distinct band at about 720 nm, which is
attributed to chlorophyll a in CCI. This spectrum also revealed that
CCI in the aggregates is not connectedwith LHCI because the CCI–LHCI
complex emits above 720 nm [45]. In addition, the RC-47 band almost
completely disappeared, however, we did not observe any increase in
the amount of separated components D1, D2, and CP47 in the gel
(Figs. 2 and 3). This indicates that these PSII components were either
broken down or remained in the form of aggregates on the top of
the gel.

The PSI+CCII(2), CCI(1), and RC-47 bands completely disap-
peared after heating to 70 °C, and a new green band appeared in the
original position of RC-47 (Fig. 2). The molecular mass of this CPC was
about 220 kDa as detected by using Ferguson plot (not shown). SDS–
PAGE (Fig. 3) revealed that this new band contains only the PSI-A/B
heterodimer. This assignment was confirmed by immunoblotting (not
shown) and the measurement of 77K fluorescence emission spec-
trum, in which the 720-nm maximum was observed (Fig. 4b). In this
emission spectrum, the second band with the maximum below
680 nm also appeared, indicating that some chlorophyll a molecules
in the PSI-A/B complex became disconnected. A trace of the PSI-A/B



Fig. 4. 77K fluorescence emission spectra of aggregates remaining on the top of the gel
(see Fig. 2) after linear heating of barley leaves to 60 °C (a) and 70 °C (c) and of PSI-A/B
heterodimer separated by Deriphat–PAGE after heating to 70 °C (b). Excitation
wavelength was 436 nm.

Fig. 5. The maximum quantum yield of PSII photochemistry estimated from the ratio of
the variable (FM–FO) andmaximal fluorescence intensity (FV/FM) (a) and the amplitude
of light-induced oxidation of P700 (b) in barley leaves linearly heated (1 °C·min−1) to
various temperatures. For experimental details, see Materials and methods. Data
represent means±SD from four measurements.
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complex at the position of RC-47 band is also visible after heating to
60 °C (Fig. 3).

The other significant changes in CPCs after heating to 70 °C were a
reduction of the level of LHCIIt and aggregates and a dramatic increase
in the amount of free pigments (Fig. 2). The aggregates contained
monodispersed LHCII complexes, as revealed by the 77K fluorescence
emission spectrum (Fig. 4c). The observed narrow spectrum with the
maximum at 680 nm is typical for LHCII [46].

After heating of leaves to 80 °C, only the PSI-A/B complex
remained in the gel (Figs. 2 and 3). A small amount of chlorophyll-
containing aggregates remaining on the top of the gel contained a part
of weakly bound chlorophyll a and b, which was deduced from the
low-wavelength emission maxima in 77K emission spectra under
preferential excitation of chlorophyll a and b (not shown). The
heating of leaves to 90 °C destroyed also the PSI-A/B (Figs. 2 and 3). A
trace of chlorophyll-containing aggregates with weakly bound
chlorophylls remained on the top of the gel.
3.4. PSII and PSI function

In order to reveal the connection between the heat-induced
changes in the structure of CPCs and the function of photosystems, the
photochemical activities of PSII and PSI were detected simultaneously
in preheated leaves at room temperature (see Materials and
methods). While the functionality of PSII was monitored via the
measurement of the maximum quantum yield of PSII photochemistry
(the parameter FV/FM), the photochemical function of PSI was
estimated from the measurement of the amplitude of flash-induced
oxidation of P700.

A significant decrease in PSII photochemistry was detected after
preheating of leaves to 50 °C, when FV/FM ratio dropped from 0.8 to
about 0.5 (Fig. 5a). This pronounced decrease coincided with the
monomerization of CCII (Figs. 2 and 3) and with the increase of
fluorescence intensity to the M1 FTC maximum (Fig. 1). The
preheating of leaves to higher temperatures led to a gradual decrease
in FV/FM ratio. PSII photochemistry completely disappeared in leaves
preheated to 70 °C (Fig. 5a). Compared to PSII photochemistry, the PSI
photochemistry was much more heat tolerant. The amplitude of P700
photooxidationwas almost unchanged in leaves preheated up to 80 °C
and dropped to zero after preheating to 90 °C (Fig. 5b).

4. Discussion

In this work, we studied a gradual disassembly and degradation of
CPCs from thylakoidmembranes during linear heating of barley leaves
up to 90 °C and corresponding changes in the function of
photosystems and FTC. A use of the native Deriphat–PAGE with
purified Deriphat allowed us to separate PSI with large amount of CCII



Table 1
Molecular masses of CPCs from thylakoid membranes of barley leaves as determined by
the method of Ferguson plot compared with those evaluated by semilog plot and those
reported by Peter and Thornber [22,23] for the same separation method and plant
material.

Pigment–protein
complex

Molecular mass (kDa)

Ferguson plot Semilog plota Peter and Thornber

PSI+CCII(2) 435 260 230
CCI(1) 280 120 120
RC-47 215 105 140b

LHCIIt 120 45 72
LHCIIm 50 24 25–35

a 7% (w/v) polyacrylamide gel was used.
b Molecular mass of the monomeric PSII reaction center that contained D1, D2, CP47,

and CP43.

Fig. 6. Ferguson plot of Deriphat gels. Slopes were determined from linear fitting of the
dependence of the migration distance of standard proteins on the percent gel
concentration. Molecular mass markers: egg albumin (45 kDa), bovine serum albumin
(66 kDa), lactate dehydrogenase (140 kDa), catalase (232 kDa), and ferritin (440 kDa).
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dimer and even some supercomplexes, making this technique similar
to the blue-native PAGE (e.g., [47]).

4.1. Temperature range 25 to 50 °C

The first observed change in CPCs, the disassembly of CCII dimer
(Figs. 2 and 3), took place between 40 and 50 °C. This temperature
range corresponds with the temperature of the first DSC maximum
detectable in isolated thylakoid membranes. This DSC transition does
not involve any apparent degradation of PSII proteins, but it is
associated with damage to the donor side of PSII (see Introduction).
The relation between the disassembly of CCII and damage to the PSII
donor side is not accidental. Hankamer et al. [48] and Danielsson et
al. [49] have shown that the PSII activity measured as a rate of
oxygen evolution is always higher in the samples having dimeric
CCII. In line with these findings, in our experiments the heat-induced
monomerization of CCII was accompanied by a decrease in PSII
photochemistry (Fig. 5a) and by corresponding steep fluorescence
increase to the M1 FTC maximum (Fig. 1). We note that the heat-
induced disassembly of PSII dimer in this temperature range has also
been observed in barley leaves preheated at fixed temperature (45 to
47 °C, 1 h) at low light [14].

4.2. Temperature range 50 to 60 °C

Marked changes in separated CPCs appeared after heating of the
leaves to 60 °C. The pronounced disappearance of CCII from the gel
indicates an extensive disassembly and degradation PSII complex.
However, the degradation was not complete because the maximum
yield of PSII photochemistry after heating did not drop to zero (Fig.
5a). The observed FV/FM value of 0.35 indicates that a part of CCII
remained active. It seems that these active PSII centers did not enter
into the gel and remained in the form of aggregates on the top of the
gel. This relatively high thermostability of PSII photochemistry is
supported by the previous DSC studies with thylakoid membranes,
showing that CCII denatures at about 60 °C [6].

The heating of leaves to 57–60 °C induced the first changes in
the organization of PSI. CCI markedly dissociated from LHCI and
formed aggregates remaining on the top of the gel (Figs. 2–4). The
heat-induced energetic disconnection of LHCI from CCI within 55 to
70 °C, interpreted from the measurement 77K fluorescence emission
spectra, has been already documented in heated leaves [18],
isolated chloroplasts [50], or isolated PSI complexes [13]. The
formation of aggregates containing CCI components has been
previously reported in detached Arabidopsis leaves senescing for
several days [51].

The changes in the organization of CPCs after heating at 57 to 60 °C
were accompanied by fluorescence increase to the M2 FTC maximum
(Fig. 1), which reflects a weakening of chlorophyll a-protein
interaction [34]. Ilík et al. [44] have suggested that this increase
originates in the fluorescence of chlorophyll a released from some
CPCs to the lipid fraction. Interestingly, we did not observe any
significant increase in the amount of free chlorophylls in the gel after
heating of leaves from 57 to 60 °C. This finding indicates that the
fluorescence increase to the M2 FTC maximum may be connected
with the observed structural changes in CCII or PSI rather then with a
release of chlorophyll a. A suggestion that the M2 FTC maximum
originates in PSI has already been mentioned [52,53].

4.3. Temperature range 60 to 90 °C

A marked disruption of trimeric LHCII, observed in leaves
heated to 60 to 70 °C, was accompanied by a complete loss of PSII
photochemical activity and by a pronounced release of chlorophyll
molecules. The high amount of free chlorophyll indicates that the
LHCII monomerization was followed by a significant denaturation
of LHCII monomers (Figs. 2 and 3). The observed temperature
range of LHCII denaturation agrees with that obtained in DSC
studies in vitro [3,7,11].

After heating of leaves to 70 °C, the PSI CPC was detected only as
the PSI-A/B heterodimer (Figs. 2 and 3). However, the activity of
PSI, measured as the photooxidation of P700, remained unaffected.
The most thermostable CPC, PSI-A/B complex, withstood also the
heating to 80 °C; however, heating to 90 °C led to its destruction
that corresponded with a disappearance of P700 photooxidation
(Fig. 5b).

In summary, the main observed changes in the organization of PSII
and PSI, i.e., the disassembly of CCII and the disconnection of LHCI
from CCI with a separation of PSI-A/B heterodimer corresponded with
the fluorescence increases in FTC. The observed heat-induced changes
in PSI organizationmarkedly resemble those that appeared in spinach
leaves photoinhibited at low temperature in the presence of
diethylthiocarbamate, the inhibitor of superoxide dismutase [54].
Hwang et al. [54] also observed the dissociation of LHCI from CCI and
the separation of a new green band in native PAGE, which was mainly
composed of PSI-A and PSI-B. These authors attributed these
structural changes to the accumulation of superoxide, a reactive
oxygen species (ROS), and proposed these steps to occur before the
breakdown of CCI. These results indicate that our heat-induced
changes in PSI can also be induced by the formation of ROS. This
relationship is expected as heating of leaves or thylakoid membranes
above 60 °C even in the dark leads to a production of ROS [55,56].
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Appendix

There is a discrepancy between the values of molecular masses of
CPCs reported in recent papers and the values that were estimated by
Peter and Thornber [22,23] using Deriphat–PAGE. Markedly low
molecular masses of CPCs separated by Deriphat–PAGE were also
reported by Santini et al. [57] and Del Duca et al. [58]. In all these
studies, authors used for the estimation of molecular masses a simple
semilog plot, i.e., a direct comparison of mobilities of CPCs and protein
standards in a polyacrylamide gel of one density. However, as noted
by Poggese et al. [59], the use of a Ferguson plot is needed for amaking
proper estimate of molecular masses of CPCs separated by Deriphat–
PAGE. The method of Ferguson plot, based on the measurement of
mobility of protein complexes in gels of various density, can eliminate
the effect of protein charges and shapes that influence the mobilities
of protein complexes.

When a simple semilog plot was used for the estimation of CPC
molecular masses, we obtained values that were very similar to those
reported by Peter and Thornber [22,23]. However, when we used the
Ferguson plot, the results were markedly different (Table 1). The CPC
molecular masses were calculated using calibration plot obtained
with protein standards (Fig. 6), and our results were very similar to
those reported recently for CPCs separated by different methods
(Table 1, e.g., [47]). The comparison presented in Table 1 clearly
shows that the method of a Ferguson plot is essential for a proper
estimation of molecular masses of CPCs separated by native PAGE.
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