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Abstract Ocular diseases include various anterior and posterior segment diseases. Due to the unique
anatomy and physiology of the eye, efficient ocular drug delivery is a great challenge to researchers and
pharmacologists. Although there are conventional noninvasive and invasive treatments, such as eye drops,
injections and implants, the current treatments either suffer from low bioavailability or severe adverse
ocular effects. Alternatively, the emerging nanoscience and nanotechnology are playing an important role
in the development of novel strategies for ocular disease therapy. Various active molecules have been
designed to associate with nanocarriers to overcome ocular barriers and intimately interact with specific
ocular tissues. In this review, we highlight the recent attempts of nanotechnology-based systems for
imaging and treating ocular diseases, such as corneal d iseases, glaucoma, retina diseases, and choroid
diseases. Although additional work remains, the progress described herein may pave the way to new,
highly effective and important ocular nanomedicines.
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Figure 1 Ocular anatomy and administration routes of both tradi-
tional drugs and nanosystems: the black arrows show different eye
structures and the red arrows show various administration routes.
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1. Introduction

Ocular diseases directly affect human vision and quality of life. A
survey from 39 countries estimated that 285 million people suffer
visual impairment. Of these, 65% are over 50 years old, and 82%
of blind patients are over 501. Significant achievements have been
made in the discovery of ocular pathological mechanisms and
management of ocular disease. However, due to the special
physiological barriers and anatomical structures of the human
eye, diagnoses and treatments of these disorders can suffer from
low efficiency and lack of specificity. The current therapeutic
methods seldom can completely restore vision loss or detect severe
ocular diseases at an early stage2. Therefore, the development of
improved diagnostics and therapeutics for ocular diseases is
receiving intense attention.

Emerging nanotechnology and nanoscience methods are
increasingly being applied to biopharmaceutics. Nanoscience is
an interdisciplinary field that combines material science, physics,
chemistry and biology, whereas nanotechnology involves the
design and fabrication of different materials in nanometer scale
at least in one dimension3–6. Several nanotechnology-based
strategies have been developed and aimed at management of
ocular diseases: bioadhesive enhancement, sustainable release,
stealth function, specifically targeted delivery, and stimuli respon-
sive release, etc7–9. Therefore, many attempts have been focused
on fabrication of multi-functional nanosystems for ocular diseases
therapy by improving drug (or gene) delivery to both the anterior
and posterior segments of the eye.

In this review, we have focused on advances in development of
nanotechnology-based systems for ocular diseases therapy and
imaging. First, the specific anatomy and the attendant constraints in
ocular drug administration are introduced. Some conventional and
alternative drug administration routes are summarized and compared
as well. Second, for a deeper insight of nanosystems mechanism,
several examples of nanosystems for management of ocular disease
are highlighted and reviewed. Then, some typical studies are
summarized. Finally, we summarize the perspective of nanotechnol-
ogy and existing challenges in ocular diseases therapy and diagnosis.
This review will provide both inspiration and impetus for better
design and development of intractable ocular disease managements.
2. Ocular anatomy and constraints to ocular drug delivery

The human eye is a globular structure organ with size of about
24 mm, and consists of two main parts: the anterior and posterior
segments10 (Fig. 1). The both parts have various biological barriers
to protect the eye from foreign substances. The anterior portion
includes the corneal, iris, lens, and aqueous humor. The posterior
portion consists of the vitreous body, retina, choroid, and back of
the sclera. The cornea is transparent and contains five layers:
epithelium, Bowman's membrane, stroma, Descemet's membrane,
and endothelium11,12. The human corneal epithelium is the most
important part of corneal barrier since it has multilayers of corneal
epithelial cells which interconnect by tight junctions. These tight
junctions can severely limit ocular penetration of drugs, especially
many types of hydrophilic molecules. The corneal stroma is
mostly composed of charged and highly organized hydrophilic
collagen which hinders passage of hydrophobic molecules13–15. In
recent studies, various efflux transporters on epithelial cells were
proved to be of importance in preventing permeation of anti-viral
and anti-glaucoma drugs16–18.
Please cite this article as: Weng Yuhua, et al. Nanotechnology-based strategie
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The intraocular environment contains two main barriers: blood–
aqueous and blood–retina barrier. The blood–aqueous barrier is
composed of the nonpigmented epithelium of the ciliary body,
which specifically includes the iris epithelium, iris vessel endothe-
lium with tight junction, and Schlemm's canal endothelium. The
tight junctions of cells control both active and paracellular
transport14,19,20. The blood–retinal barrier is divided into inner
and outer blood–retinal barriers. The former one is composed of
retinal vascular endothelium with tight junctions. The latter
includes a monolayer of retinal pigment epithelium (RPE) with
tight junctions19,21. These two components restrict penetration of
molecules into the intraocular chamber, resulting in inefficient
therapy on intraocular tissues.

In addition, topical drug administration to the anterior segment
of the eye is often limited by clearance mechanisms of the corneal
surface and other precorneal factors, including eye blinking, tear
film, tear turnover, solution drainage and lacrimation22. Human
tear film has a rapid restoration time of only 2–3 min. Thus, most
topically administered drugs are washed away within a few
seconds after instillation. When topical drug solution volume is
more than 30 μL (the upper limit volume that can be accommo-
dated in the cul-de-sac), most of the drug is wasted by either
nasolacrimal drainage or gravity-induced drainage23. Hampered by
these factors and ocular barriers, the efficacy of the total
administered drugs is less than 5%, suggesting the poor bioavail-
ability of ocular drugs23,24.
3. Benefits and limitations of ocular delivery routes

3.1. Systemic administrations

Intravenous injection and oral dosing are known systemic admin-
istration methods for ocular drug delivery. Since the choroid of the
eye has a vascular choroid plexus structure, drugs can easily enter
the choroid through blood vessels. However, the outer blood–
retinal barrier of RPE cells governs the entry of drugs from the
choroid into the retina. The tight junctions of RPE cells hamper
most of the drugs and only 1%–2% of administrated drugs can
s for treatment of ocular disease. Acta Pharmaceutica Sinica B (2016),
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Figure 2 Schematic illustration of different nanotechnology-based ocular delivery systems.
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access to the retina and vitreous body21,25. Thus, a difficult
challenge remains to deliver drugs into the deep inner side of
the eye by systemic administration.

3.2. Topical administration

3.2.1. Eye drops
Eye drops are the main form of topical administration due to good
patient compliance and economical considerations. Drugs dis-
solved in eye drops are usually adsorbed by two routes: the corneal
route (cornea, aqueous humor, intraocular tissue), and the con-
junctiva route (conjunctiva, sclera, choroid, retina, vitreous body).
Due to the corneal barrier and pre-corneal factors, less than 5% of
totally administered drugs can reach the aqueous humor26. As a
result, eye drops have to be frequently administered to maintain
therapeutic drug concentrations. Eye drops are proven to be
efficient in treating corneal diseases, iris diseases and glaucoma.
However, they are less efficient in treating posterior eye diseases,
including intraocular cancers and retina diseases, even when
following frequent dosage regimens27.

3.2.2. Topical injections
Among various topical injections, intravitreal injection is the most
common administration route by injection of drug solution or
suspension into the vitreous cavity through a 27- or 30-gauge
needle. Usually a 20–100 μL volume solution can be directly
injected into the vitreous cavity without discomfort28. Intravitreal
injections, which result in high local drug concentrations in the
vitreous body and retina, can serve as an efficient route of
administration for treating posterior eye diseases29. However, drug
distribution patterns in the vitreous are heterogeneous because of the
gel like structure. Molecular distribution is greatly dependent on the
drug's molecular weight and the vitreous pathophysiological condi-
tion30–32. It is reported that small molecules can rapidly spread out
in the vitreous, whereas linear molecules with molecular weight
more than 40 kDa or globular molecules larger than 70 kDa, have a
longer retention time in the vitreous body. In addition, one of the
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most important compositions in the vitreous body—hyaluronan, is
prone to interact with cationic nanoparticles and liposomal gene
complexes through electrostatic interaction, leading to nanoparticle
aggregation and reduction of the efficiency of gene delivery33–35.
Furthermore, intravitreal injection is an invasive method which has
to penetrate all the layers of the ocular globe and can result in series
of side effects such as retinal detachment, iritis, uveitis, cataract,
endophthalmitis, and intraocular hemorrhage. Repeated injections
increase the incidence of these complications.

Periocular injection includes a series of topical injections which
are employed to overcome drawbacks of systemic administration
and to increase the drug concentration in intraocular tissues.
Periocular deliveries through retrobulbar, peribulbar, sub-tenon
and subconjunctival injection are less invasive than intravitreous
injection. Drugs administered by periocular delivery routes can
reach the posterior segment of the eye by penetration of either
corneal choroid or scleral. However, most of these routes suffer
from great drawbacks such as inefficiency in prolonging the drug
retention time34,36–38.
4. Types of nanosystems available for treatment and
diagnosis of ocular diseases

During the past decades, nanotechnology seems to offer new
perspectives in management of ocular diseases by either realizing
controlled release, ensuring low eye irritation, improving drug
bioavailability or enhancing ocular tissue compatibility39–42. Var-
ious nanosystems have been designed to deliver their payloads into
both anterior and posterior segment of the eye. These nanosystems
are mainly made from natural or synthetic polymeric materials.
Many colloidal systems such as micelles, liposomes, niosomes,
dendrimers, in situ hydrogels, and cyclodextrins are of this type.
Other forms, including nanoparticles, implants, nanoparticle-
contained contact lens, films, as well as other delivery systems,
have also been intensely exploited to deliver drug and gene to the
inner side of eye via appropriate administration routes (Fig. 2). To
date, many efforts have been made on both carrier design and
s for treatment of ocular disease. Acta Pharmaceutica Sinica B (2016),
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Table 1 Typical nanotechnology-based strategies for ocular anterior diseases application.

Formulation Material
type

Payload Size
(nm)

Functions Clinical
stage

Ref.

Nanowafer Polymer Axitinib 500 The drug loaded nanowafer was nontoxic and could
treat corneal neovascularization more efficiently
compared to the commercial eye drop even at a lower
dosage.

Preclinical 44

Nanoparticle Chitosan Gene �200 The nanoparticle showed superior transfection efficiency
in anterior segment of the eye.

Preclinical 45

Hydrogel
(Virgan)

Polymer Ganciclovir – Topical treatment drug for herpes simplex virus
infection in the eye.

Market 46–
49

Nanosuspention Polymer Diclofenac 105 Enhanced penetration and retention effect in corneal
tissues was achieved through topical administration.

Preclinical 50

Nanoparticle Polymer Flurbiprofen 200–300 Following topical administration of the formulation, an
enhanced anti-inflammation effect was achieved
towards to a built animal model.

Preclinical 51

Nanoparticle Polymer Dexamethasone
sodium
phosphate

100–500 The drug loaded nanoparticles could not cause
inflammation in the eye and improved the efficacy for
prevention of corneal graft rejection.

Preclinical 52

Nanoscale
dispersed
oilment

Polymer – 100 The formulation not only retained the advantages of eye
ointment, but also showed better efficacy in repairing
the tear film and restoring the corneal surface.

Preclinical 53

Hydrogel Polymer Diclofenac – The micellar supramolecular hydrogel could extend the
retention time on corneal surface and improve drug
bioavailability in the eye.

Preclinical 54

Nanoparticle Polymer Flurbiprofen 100 Nanoparticle formulation showed an inhibition effect of
miotic response in a rabbit trauma model with a lower
concentration of drugs. More drugs from the
nanoparticles penetrated into the aqueous humor
compared to commercial eye drops.

Preclinical 55

Nanoparticle Polymer Pilocarpine 83 Studies showed that the duration of miotic response had
increased by 40% for the nanoparticle formulation.

Preclinical 56

Liposome Polymer Coenzyme-Q10 100–200 The liposomes exhibited a markedly anti-cataract effect
and could increase the activities of superoxide
dismutase and reduced glutathione.

Preclinical 57

–Data not found.
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exploring the mechanisms of their biological actions. Meanwhile,
much attention is being focused on the fabrication and modification
of muti-functional nanocarriers for ocular target therapy.
5. Nanosystems for ocular anterior disease therapy

Eye drops are the most accessible and common formulations for
treatment of common ocular anterior diseases, such as corneal
injury, dry-eye, keratitis, conjunctivitis and cataract. However, this
route of administration suffers from poor bioavailability due to the
corneal barrier and pre-corneal factors. Experimental and clinical
research has shown that frequent and long-term use of eye drops
can result in tear film instability, corneal surface impairment, and
cornea and conjunctiva inflammation43. Alternatively, consider-
able effort is being directed towards prolonging drug retention
time on the ocular surface and improving drug penetration.
Nanosystems are an emerging part of this strategy.

During the past decades, some typical nanosystems have been
developed for ocular anterior disease application, as summarized
in Table 144-57. For example, flurbiprofen-loaded PLGA nanopar-
ticles with a size distribution around 200 nm have demonstrated a
burst release and an ensuing gradual release profile in vitro.
Therapy with this approach showed an improved anti-
inflammatory effect as compared to commercial flurbiprofen eye
Please cite this article as: Weng Yuhua, et al. Nanotechnology-based strategie
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drops on the rabbit ocular inflammation model51. In addition,
flurbiprofen-loaded nanoparticles with a uniform size around
100 nm showed an equivalent inhibitory effect on the miotic
response in a rabbit surgical trauma model even at a lower dosage
than commercial eye drops. This effect was attributed to the
increased release of drugs from the nanoparticles and subsequent
penetration into the aqueous humor55. Such progress indicates the
great impact of colloidal nanocarriers on the enhanced bioavail-
ability of ocular drugs such as flurbiprofen51,55,58,59. However,
some concerns exist regarding the possible rapid clearance of these
formulations from the eye surface.

Recently, the in situ gel system is becoming a research hotspot,
especially stimuli-responsive hydrogel such as pH-, thermo-, and
ion-sensitive hydrogels. Moreover, there are commercial products
such as Timoptic-XEs and Virgans, which are ion-activated and
pH sensitive hydrogel, respectively. Once the hydrogel is instilled
onto the eye surface, the loaded drugs or nanoparticles can escape
from the hydrogel upon eye blinking and then release drugs in a
sustainable way. Recently, a micellar supramolecular hydrogel was
fabricated with methoxy poly (ethylene glycol) block polymer and
α-cyclodextrin. In vivo distribution results showed that the hydro-
gel could significantly enhance penetration and retention of the
anti-inflammatory drug diclofenac, as compared with the micelle
formulation54. Similar to hydrogel, nanoparticles loaded contact
lens is a kind of polymeric nanodevice encapsulated with drugs.
s for treatment of ocular disease. Acta Pharmaceutica Sinica B (2016),
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Nanotechnology-based strategies for treatment of ocular disease 5
Wearers of contact lens can benefit from long drug retention time
on the corneal surface60. As expected, a nanowafer containing
arrays of drugs could withstand eye blinking and remain on the
corneal surface for several hours. This formulation not only
sustained a controlled drug release for hours to days, but also
provided enhanced therapeutic efficacy in treating corneal neo-
vascularization in a murine model44 (Fig. 3).
Figure 3 A fabricated nanowafer can improve the corneal wound healing in a mouse cornea burn model44. (A) Fluorescence images of mouse
corneal surface; (B) Quantitative analysis of corneal surface healing. (Reproduced with permission from ACS artcile (direct link: http://pubs.acs.
org/doi/full/10.1021/nn506599f).
Although many studies have applied nanosystems to ocular
drug delivery, the mucoadhesive and penetration mechanisms
between nanoparticles and corneal barrier deserve more under-
standing. Corneal epithelium has been shown to be the major
barrier for penetration and permeation, which can prevent particles
even smaller than 2171 nm in penetrating into the intraocular
space61. However, the significance of nanoparticle size and surface
chemistry during the penetration process are still controversial. In
an earlier study of bovine eyes with removed epithelium, the
surface chemistry-dependent penetration characteristics were
investigated on two nanoparticles with the same size and different
numbers of thiolated groups (SH). Results showed that the
interaction between functional groups and collagen of corneal
stroma other than the particle size is a major resistance factor
during the penetration process. Better penetration into cornea
stroma was observed by PEGylation with polyethylene glycol of
Please cite this article as: Weng Yuhua, et al. Nanotechnology-based strategie
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higher molecular weight (for example 5000 Da) other than the low
molecular polyethylene glycol (750 Da)61 (Fig. 4).
6. Nanosystems for ocular posterior disease therapy

In contrast to diseases of the anterior eye, posterior diseases occur
most commonly in the retina and choroid. Examples include age-
related macular degeneration (AMD), choroidal neovascularization
(CNV), glaucoma, retinoblastoma (Rb) and posterior uveitis.
Generally speaking, eye drops present less drug bioavailability
in posterior ocular tissues than in the anterior segment, due to the
long diffusion distance from corneal surface to the retina or
choroid. Moreover, frequent intraocular injections will lead to
potential undesired side effects and poor patient compliance62.

Thus, many efforts during the past decades have been made to
improve delivery systems for the treatment of ocular posterior disease.
Progress has focused on improving the controlled long-term delivery
systems to reduce frequency of injections, including hydrogel,
nanoparticles, nanoimplants and nanosized vesicles (Fig. 5). Light-
activated solution made from polycaprolactone dimethacrylate (PCM)
and hydroxyethyl methacrylate (HEMA) has been successfully
fabricated and injected into the suprachoroidal space of rabbit eye
s for treatment of ocular disease. Acta Pharmaceutica Sinica B (2016),
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Figure 4 Fluorescence images of bovine cornea with removed epithelium after exposed to silica nanoparticles of 0.5 h (A) and 1 h (B). The
nanoparticles had a consistent size distribution and were functioned by thiolated groups and PEGylated 5000 Da, respectively61. Reproduced with
permission from ACS article. (direct link: http://pubs.acs.org/doi/full/10.1021/mp500332m).

Figure 5 (A) Schematic illustration of a multifunctional nanoparticle modified with a nuclear localization signaling peptide (NLS) and cell
permeable peptide (TAT) to deliver gene to the posterior segment of the eye for blinding eye disease treatment63. The strategy includes three
functions: (1) A biocompatible lipid molecule was used to pack DNA along with another biocompatible protamine molecule together as a non-viral
nanoparticle carrier; (2) The modified peptides have both cell penetrating and nuclei targeting functions thus leading to the gene delivery to eye
cells; (3) DNA was used to carry target gene and promote the cell-specific gene expression. (B) A light-activated, in situ forming hydrogel system
was designed to realize sustainable release of bevacizumab for age-related macular degeneration (CNV) therapy63. Reproduced with permission
from ACS articles (direct links: http://pubs.acs.org/doi/full/10.1021/nl502275s; http://pubs.acs.org/doi/abs/10.1021/mp300716t).
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Figure 6 Comparison of the intraocular pressure (IOP) between a commercial eye drop (Xalatan) and latanoprost-loaded liposome in rabbit
glaucoma model. The data showed that after a single subconjunctival injection of the liposome, the IOP reduced for up to 120 days and then further
reduced over another 180 days after a second injection. The results were comparable to daily eye drop (Xalatan)64. Reproduced with permission
from ACS article (direct link: http://pubs.acs.org/doi/abs/10.1021/nn4046024).

Nanotechnology-based strategies for treatment of ocular disease 7
for CNV therapy. Following the rapid light-activated cross-linking,
the solution could form in situ hydrogel for a sustained delivery of
bevacizumab (an anti-VEGF antibody used to treat CNV) over 60
days63 (Fig. 5B). However, this system is limited due to the toxicity
of the photoinitiator to eyes. Natarajan et al.64 developed a drug-
loaded nano unilamellar vesicle which could obviously reduce the
intraocular pressure and realize a sustainable release of drug over 120
days via a single subconjunctival injection (Fig. 6). These inspiring
results have catalyzed the development of similar systems for
glaucoma therapy.

Retina pigment epithelial (RPE) cells are of great importance for
vision. They are not only the main forces of blood–retina barrier,
but also centrally involved in the pathogenesis of retinal disor-
ders65,66. CD44 is overexpressed in the surface of RPE and hence
can be used as a key target for a number of drugs and gene-based
therapeutics67,68. In Martens's work, a nonviral polymeric gene
complex with hyaluronic acid (HA) coating was demonstrated and
shown to be efficiently taken up by RPE cells via the CD44-receptor
mediated endocytosis, resulting in a high gene delivery and
expression of green fluorescent protein (GFP) in the eye69.

Analogous approaches to intraocular cancer therapy (such as
retinoblastoma (Rb) and uveal melanoma), are more complicated than
discussed above. In addition to biological barriers in the posterior
segment, the specific microenvironment of intraocular cancers is
another therapeutic obstacle. Thus, strategies have been developed to
either enable targeted delivery or to improve bioavailability of
intraocular cancer drugs. Among numerous moieties that present on
intraocular cancer cells, folate receptor has been studied as a delivery
target for researchers70–72. Based on reports that folate receptors are
overexpressed in Rb cells74, folate-linked PLGA and chitosan nano-
particles have been proposed with sustainable, controllable and targeted
delivery of anticancer drug-doxorubicin (DOX) to Rb cells73,74. In
addition to the single-function nanosystem, multi-functional systems
have been drawing great attention to realize diagnosis, treatment, and
other functions simultaneously. Mitra et al.75 prepared polyethylenei-
mine (PEI) capped gold nanoparticles (AuNPs) which were also
conjugated with a novel epithelial cell adhesion molecule (EpCAM)
Please cite this article as: Weng Yuhua, et al. Nanotechnology-based strategie
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antibody and siRNA molecules. They found these gene delivery
systems were significantly internalized by Rb cells resulting in
cytotoxicity. Despite great efforts devoted to the intraocular cancer
therapy, the current studies are mainly limited in the stage of in vitro
assessment, due to the lack of mature intraocular cancer animal models.

Photodynamic therapy (PDT) is an emerging therapeutic
strategy which has been widely used for numerous disease
treatments. PDT consists of three functional modules: a light-
activated photosensitizer, an energy laser beam to induce activa-
tion, and a surrounding oxygen environment with the ability to
produce a toxic compound. One commercial drug Visudynes used
for AMD treatment is a typical PDT product. The active ingredient
of Visudynes is a photoactivated drug-verteporfin. Upon a
689 nm laser depositing with a proper intensity, the drug can
generate reactive oxygen species (ROS) and induce neovascular
endothelial cell death, resulting in vessel occlusion and ending the
growth of choroidal neovascular cells76,77. Recently, researchers
have designed carbohydrate-targeted mesoporous silica nanoparti-
cles (MSN) encapsulated with both anti-cancer drug camptothecin
(CPT) and one-photon or two-photon photosensitizers. Encoura-
ging results were achieved showing that the MSN nanoparticles
presented an interesting therapeutic property by killing Rb cells
efficiently in vitro78. Similar results were found in Wang et al.'s
work, in which dendrimeric nanocarriers were developed with
excellent cellular uptake, significant photoefficiency, and superior
phototoxicity in Rb cells79. Although PDT showed great promis-
ing potential in some cancer treatments, more efforts are required
on the development of delivery nanosystems to implement PDT in
ocular applications. Some current nanosystems applied in ocular
posterior disease treatments are given in Table 2.
7. Nanotechnology in ocular disease diagnostics

There are several approaches employed for clinical ocular disease
diagnoses, such as optical coherence tomography (OCT), fundus
photography, fluorescein angiography, positron emission
s for treatment of ocular disease. Acta Pharmaceutica Sinica B (2016),
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tomography (PET), magnetic resonance imaging (MRI), ultraso-
nography and confocal microscopy. They have played a significant
role in monitoring disease recovery. For example, MRI is useful
for monitoring progress of ocular diseases such as diabetic
retinopathy, AMD, and ocular tumor angiogenesis by in vivo
imaging of neovascularization85–87. However, due to poor imaging
sensitivity or imaging resolution, each of these approaches has
limited advantages for disease diagnosis. For example, PET has
high sensitivity but limited spatial resolution, while MRI has good
spatial resolution but low sensitivity88,89. In order to overcome
these drawbacks, nanotechnology seems to provide multiple
options. Anderson et al.90 developed a Gd-perfluorocarbon nano-
particulate emulsion linked with a biotinylated anti-αvβ3 mono-
clonal integrin antibody DM101. The system showed a site-
directed contrast enhancement of angiogenic vessels in a rabbit
corneal neovasculature model. After administrating the targeted
agent for 90 min, the average MRI signal intensity was enhanced
by 25% in vivo. Gold nanoparticles are particularly attractive
contrast agents for OCT. It is reported that the optical resonance
wavelengths of gold nanoparticles can be precisely tuned over a
broad range because of their easily controlled sizes and shapes91.
A typical example was shown upon OCT imaging of phantom
samples. Gold nanocages (35 nm edge length) showed a cross
section absorption about five orders of magnitude larger than
conventional indocyanine green in the near-infrared spectral
region92. Quantum dots have broad excitation spectrum and
narrow emission wavelength, which renders them as good choices
for tumor imaging93. CdSe quantum dots functionalized with
targeted peptides could accumulate in tumors by binding tumor
blood endothelial cells after intravenous injection94.

Although nanotechnologies in tumor diagnosis and therapy have
been developed and evaluated in recent years, there are only limited
studies focusing on ocular disease application. Yet strategies used in
other diseases can also guide the treatment and diagnosis in ocular
disease. Recently, Hitomi et al.95 developed a hydrogel nanosystem
that combined tumor targeting, triggered drug delivery, and photo-
to-heat conversion together to enable multimodal imaging and also
controlled release of therapeutic cargo in human tumor xenografts.
In this study, peptide targeted phage particles, heat sensitive–based
liposome (HSL), mesoporous silica nanoparticles (MSNPs), and
photon-to-heat conversion were integrated into a hydrogel system.
The HSL and MSNPs could generate heat after NIR laser
illumination. The heat induced release of hydrogel contents and
meanwhile the loaded drugs were controlled to release at tumor
site95. Techniques referred in this study offered a nanoplatform that
allowing design of different formulations with specific ligands (such
as antibodies, peptides and aptamers) and nanocarriers for different
types, size and growth rate tumors. Nanoplatforms referred here
exhibited great potential for clinical application or diagnostic
therapeutic monitoring and targeted delivery to malignant tumors
and ocular diseases. Some potential nanotechnology-based strategies
in ocular diseases diagnostics are summarized in Table 3.
8. Challenges and perspective

8.1. Challenges

Nanotechnology has been proven to be a powerful and effective tool
for treatment and detection of ocular diseases by fabricating
nanosystems. In this review, we have focused on advances in
design and development of nanosystems for various ocular diseases.
s for treatment of ocular disease. Acta Pharmaceutica Sinica B (2016),

http://dx.doi.org/10.1016/j.apsb.2016.09.001
http://dx.doi.org/10.1016/j.apsb.2016.09.001
http://dx.doi.org/10.1016/j.apsb.2016.09.001


Table 3 Potential nanotechnology-based strategies for ocular disease diagnostics.

Formulation Material type Size
(nm)

Target Functions Clinical
stage

Ref.

Nanoparticle Gd �260 Corneal
neovascularization

The agent showed contrast enhancement of angiogenic vessels
in a rabbit corneal neovasculature model.

Preclinical 90

Nanoparticle Silver 80 Retina Silver nanoparticles coated with calcium indicator showed
minimal damage to retinal cells and could apply for mouse
retina imaging.

Preclinical 96

Nanocage Gold 35 Retina Gold nanocages exhibited strong optical resonance of 5 orders
of magnitude larger than conventional dyes by OCT imaging.

Preclinical 92

Nanoparticle Quantum dots 3–6 Intraocular cancer The nanoparticles showed enhanced fluorophores in eye
imaging.

Preclinical 94,97

Nanoparticle Magnetic
nanoparticles
(Fe3O4)

10 Retinal
detachment

Magnetically guided diffusion of nanoparticles was found in an
in vitro model of human vitreous humor.

Preclinical 98
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Several nanosystems with different payloads have shown great
potential in ocular delivery either in vitro or in vivo. However,
several challenges still remain to be addressed in future studies,
including: (1) Among numerous studies of ocular disorder therapy
by nanotechnology, many studies are focused on in vitro studies,
and less in vivo studies have been accomplished. In the future, more
efforts should be made in this area and animal models especially the
ocular cancers model should be established. (2) Although the rabbit
is most commonly used animal because of the comparable size of
human eye, rabbit eye has a higher surface sensitivity, higher mucus
production and lower blinking frequency, lower tear production99.
These differences would lead to a better result of bioadhesion and
retention in the ocular surface thus made the effect of nanosystems
unauthentic to human beings. (3) For targeted delivery, the
biomarkers are the most common types of target. As a result the
ocular disease related biomarkers should be fully understood as well
as the cellular and molecular mechanism of their functions. (4) It is
reported that nanoparticles seem to grow in size and aggregate
inside the tissues after intravitreous injection or other administration
route33–35. This phenomenon could decrease the delivery efficiency
and affect drug distribution. Further studies need to improve our
understanding of the fundamentals of nanoparticles and facilitate
development of proper delivery routes for application.
8.2. Perspective

Considering the above aspects which deserve more efforts,
nanotechnology has great application potential in ocular disease
therapy and diagnosis. As a unique and relatively closed organ, the
eye is always considered to be a perfect research object for gene
and drug delivery because the systemic circulation is usually
omitted. Data from wiley website revealed that more than 1500
gene therapy clinical trials for ophthalmology are underway100.
There are various nanomaterials used for nanosystem fabrication.
However, their toxicities are not completely understood in the eye,
especially for those repeated dosage materials. It seems that
colloidal carriers and some FDA approved materials have more
potential in application. In addition to delivery systems, future
non-invasive delivery routes will be emphasized for ocular
diseases in both segments. Finally, all-in-one systems which might
combine diagnostic and therapeutic functions may be introduced to
enable visual tracking during the ocular disease treatment.
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