Contractible bonds in graphs

Sean McGuinness

17 London Road, Syosset, NY 11791, USA
Received 21 August 2001
Available online 8 December 2004

Abstract

This paper addresses a problem posed by Oxley (Matroid Theory, Cambridge University Press, Cambridge, 1992) for matroids. We shall show that if G is a 2-connected graph which is not a multiple edge, and which has no K_{5}-minor, then G has two edge-disjoint non-trivial bonds B for which G / B is 2 -connected. © 2004 Elsevier Inc. All rights reserved.

MSC: 05C38; 05C40; 05C70

Keywords: Bond; Minor; Contractible

1. Introduction

For a graph G we shall let $\varepsilon(G)$ and $v(G)$ denote the number of edges and vertices in G, respectively. For a set of edges or vertices A of $V(G)$, we let $\mathbf{G (A)}$ denote the subgraph induced by A. For sets of vertices $X \subseteq V(G)$ and $Y \subseteq V(G)$ we denote the set of edges having one endpoint in X and the other in Y by $[\mathbf{X}, \mathbf{Y}]$. A cutset is a set of edges $[X, \bar{X}]$ for some X. A cutset which is minimal is called a bond or cocycle; that is, $B=[X, \bar{X}]$ is a bond if and only if both $G(X)$ and $G(\bar{X})$ are connected subgraphs. A bond B is said to be trivial if $B=[\{v\}, V(G) \backslash\{v\}]$ for some vertex v. A collection of edge-disjoint bonds of a graph which partitions its edges is called a bond decomposition. If in addition all its bonds are non-trivial, then the decomposition is said to be non-trivial.

[^0]For $A \subset E(G)$ we let \mathbf{G} / \mathbf{A} denote the graph obtained by contracting the edges of A. For $v \in V(G / A)$ we denote by $>\mathbf{v}<_{\mathbf{A}}$ the vertices in the component of $G^{\prime}=G(A) \cup V(G)$ corresponding to v. For an edge $e \in E(G / A)$ we let $>\mathbf{e}<\mathbf{A}$ denote the corresponding edge in G. Similarly, for a subset of vertices (resp. edges) X of G / A we let $>\mathbf{X}<\mathbf{A}$ denote the subset of vertices (resp. edges) $\bigcup_{x \in X}>x<_{A}$. For a subgraph H of G / H induced by $V(H)$ we let $>\mathbf{H}<_{\mathbf{A}}$ denote the subgraph of G induced by $>V(H)<A$. For each vertex $v \in V(G)$ we associate the vertex $u \in V(G / A)$ where $v \in>u<_{A}$. We denote u by $\langle\mathbf{v}\rangle_{\mathbf{A}}$. Similarly, for an edge $e \in E(G) \backslash A$ we associate the edge $e^{\prime} \in E(G / A)$ where $e=>e^{\prime}<A$. We denote e^{\prime} by $\langle\mathbf{e}\rangle_{\mathbf{A}}$. For a subset of vertices $X \subseteq V(G)$ we let $\langle\mathbf{X}\rangle_{\mathbf{A}}=$ $\left\{\langle v\rangle_{A}: v \in X\right\}$ and for a subset of edges $Y \subset E(G)$ we let $\langle\mathbf{Y}\rangle_{\mathbf{A}}=\left\{\langle e\rangle_{A}: e \in Y \backslash A\right\}$.
J. Oxley proposed the following problem in [7]:
1.1 Problem. Let M be a simple connected binary matroid having cogirth at least 4. Does M have a circuit C such that $M \backslash C$ is connected?

Here, by cogirth of a matroid M we mean the minimum cardinality of a cocircuit in M. For graphic matroids, this problem has been answered in the affirmative by a number of authors including Jackson [3], Mader [5], and Thomassen and Toft [8]. Recently, Goddyn and Jackson [1] proved that for any connected, binary matroid M having cogirth at least 5 which does not have either a F_{7}-minor or a F_{7}^{*}-minor, there is a cycle C for which $M \backslash C$ is connected. For cographic matroids, the above problem translates as follows. A circuit T in $M^{*}(G)$ corresponds to a bond in G. The matroid $M^{*}(G) \backslash T$ is connected if and only if either $|E(G / T)|=1$ or G / T is loopless and 2-connected. Oxley's problem for cographic matroids can be restated as:
1.2 Problem. Given G is a 2-connected, 3-edge connected graph with girth at least 4 , does G contain a bond B such that G / B is 2 -connected?

We say that a collection of edges A in a 2 -connected graph G is contractible if G / A is 2 -connected. We say that a bond is good if it is both non-trivial and contractible. We call two edge-disjoint good bonds a good pair of bonds.

In [4], an example is given which shows that the answer to this problem is in general negative. The main result of this paper addresses Oxley's problem in the case of non-simple cographic matroids. Here there is a small example of a graph based on K_{5} which has no contractible bonds: let B be a bond of cardinality 6 in K_{5}, and let G be the graph obtained from K_{5} by duplicating each edge in $E\left(K_{5}\right) \backslash B$ and then subdividing both edges of each resulting digon exactly once (see Fig. 1). Then G is 2 -connected with girth at least 4 , but contracting any bond of G leaves a graph which is not 2 -connected. We say that a digon is isolated if it is a multiple 2-edge consisting of two non-loop edges $\{e, f\}$ where no other edge has the same end vertices as e and f. In [2], the following theorem was proved which confirmed a conjecture of Jackson [3]:
1.3 Theorem. Let G be a 2-connected graph having $k \in\{0,1\}$ vertices of degree 3 and which has no Petersen graph minor and which is not a cycle. Then G has 2 - k edge-disjoint

Fig. 1.
cycles C which are not isolated digons for which $G \backslash E(C)$ is 2-connected, apart for possibly some isolated vertices.

In this paper, the main result is the analog of the above result in the case of cographic matroids:
1.4 Theorem. Let G be a 2-connected graph which is not a multiple edge and which has no triangles. If G has no K_{5}-minor, then it has a good pair of bonds.

The proof strategy of the main theorem is to use the minimum counterexample approach, reducing as much as possible such a graph so that its structure is more apparent. The first step is to show that it is non-planar. Then we use a Wagner-type result for graphs without a K_{5}-minor to decompose the graph. In the initial stages of the proof, the problem of finding contractible bonds in planar graphs is examined. Certain lemmas are given here which play a central role in the main proof. Thereafter, we examine the case of non-planar graphs where we show that our graph G can be decomposed into a planar graph G_{1} and another graph G_{2} where G_{1} and G_{2} meet along a 3 -vertex cut $\left\{v_{1}, v_{2}, v_{3}\right\}$. The bulk of the paper involves showing that certain contractible bonds for G_{1} and G_{2} can be 'spliced' together to form contractible bonds in G. The splicing is easier or harder depending on the mutual distances between v_{1}, v_{2}, and v_{3}. We are able to succeed in our splicing operation for two main reasons; firstly, we have a great deal of flexibility in how we choose our contractible bonds in G_{1}, and secondly, by attaching "gadgets" to the vertices v_{1}, v_{2}, v_{3}, in G_{1} and G_{2}, we are able to coerce the constructed contractible bonds in G_{1} and G_{2} to have certain favourable properties.

2. Contractible bonds in planar graphs

A cycle C in a 2-connected graph G is said to be removable if it is not an isolated digon and $G \backslash E(C)$ is 2-connected apart from possibly some isolated vertices. A cycle which bounds a face of a plane graph is said to be facial. We say that a cycle in a 2 -connected plane graph is good if it is both non-facial and removable. We call two edge-disjoint good cycles a good pair of cycles. The following theorems were shown in [6]:
2.1 Theorem. Let G be a 2-connected plane graph which is not a cycle. Given G has $k \in\{0,1\}$ vertices of degree 3 , there exists $2-k$ good cycles in G.
2.2 Theorem. Let G be a 2-connected plane graph having at most $k \in\{0,1\}$ faces which are triangles. Assuming G is not a multiple edge, there exists $2-k$ edge-disjoint good bonds.

The following lemmas play a central role in the proof of the main theorem.
2.3 Lemma. Let G be a 2-connected plane graph with no vertices of degree 3. Letv $\in V(G)$ be a vertex of degree 4 where one or two isolated digons are incident with v. If G has no good cycle not containing v, then G is the union of a good pair of cycles, and each vertex has degree 2 or 4 .

Proof. Suppose G has no good cycle not containing v. By Theorem 2.1, G has a good pair of cycles, say C_{1} and C_{2} containing v and hence also edges of a digon incident to v, say D, having edges e and f and vertices u and v. We may assume that $e \in E\left(C_{1}\right)$. Suppose that C_{1} contains no vertices of degree 5 . Let $G^{\prime}=G \backslash E\left(C_{1}\right)$. Then G^{\prime} is 2-connected (apart from possibly some isolated vertices) and has no vertices of degree 3. It follows by Theorem 2.1 that if G^{\prime} is not a cycle, then it has a good pair of cycles, one of which does not contain v. The cycle not containing v, say C_{1}^{\prime}, is seen to be good in G. This is because $G^{\prime} \backslash E\left(C_{1}^{\prime}\right)$ is 2-connected except for possibly isolated vertices, and $G \backslash E\left(C_{1}^{\prime}\right)$ is obtained from $G^{\prime} \backslash E\left(C_{1}^{\prime}\right)$ by replacing the edges of C_{1}. Since f and e are the edges of $G^{\prime} \backslash E\left(C_{1}^{\prime}\right)$ and $E\left(C_{1}\right)$, respectively, and have the same endpoints, $G^{\prime} \backslash E\left(C_{1}^{\prime}\right)$ is 2-connected except for possibly isolated vertices. Since by assumption no such cycle in G exists, G^{\prime} must be a cycle, and in this case, G is the union of a good pair of cycles. We may therefore assume that C_{1} contains at least one vertex of degree 5 . Let w be the first vertex of degree 5 we encounter while travelling from v along C_{1} where edge e of digon D is traversed first. Let P be the path representing the portion of C_{1} traversed from v to w, and let $G^{\prime}=G \backslash E(P)$. Then G^{\prime} is 2-connected and has exactly one vertex of degree 3, namely v. By Theorem 2.1, there is a good cycle in G^{\prime}, and this cycle cannot contain v. Furthermore, this cycle is seen to be good in G, and this is contrary to our assumption. Thus no such vertex w can exist and this completes the proof of the lemma.

A path P in a 2-connected graph G is said to be removable if $G \backslash E(P)$ is 2-connected aside possibly for some isolated vertices.
2.4 Lemma. Let G be a 2-connected plane graph having no vertices of degree 3. Let $v \in V(G)$ be a vertex of degree 5 which is incident with two isolated digons. If G has no
good cycle not containing v, then G is the union of a good pair of cycles and a removable path from v to a vertex of degree 5. Moreover, all vertices of G have degree 2 or 4 , except for v and another vertex of degree 5, and the removable path may chosen to contain any edge incident with v.

Proof. We suppose that G has no good cycles not containing v. By Theorem 2.1, G has a good pair of cycles. Let C_{1} and C_{2} be two such cycles. Since there are two digons incident with v, the cycles C_{1} and C_{2} contain edges of one such digon. Suppose that C_{1} contains no vertices of degree at least 5, apart from v. Then $G^{\prime}=G \backslash E\left(C_{1}\right)$ is 2-connected (apart from possibly some isolated vertices) and has exactly one vertex of degree 3 , namely v. By Theorem 2.1, there exists a good cycle C^{\prime} in G^{\prime}. Such a cycle does not contain v, and is also seen to be good in G. To see this, one can use the same argument as was used in the proof of Lemma 2.3. Since this is contrary to our assumption, C_{1} must contain a vertex of degree at least 5 , apart from v. Let w be the first vertex of degree at least 5 that we encounter while travelling along C_{1} from v. Let P be the path representing the portion of C_{1} traversed from v to w, and let $G^{\prime}=G \backslash E(P)$. Then $d_{G^{\prime}}(v)=4$ and there are 1 or 2 digons incident with v. If G^{\prime} has a good cycle not containing v, then such a cycle is clearly good in G. Thus no such cycle exists in G^{\prime} and hence Lemma 2.3 implies that G^{\prime} is the union of a good pair of cycles. These cycles are also a good pair in G. Observing that each (non-isolated) vertex in G^{\prime} has degree 2 or 4 , and each internal vertex of P has degree 2 or 4 in G, we conclude that each vertex of G has degree 2 or 4 , except for v and w which have degree 5 . The above arguments also demonstrate that for any edge incident with v, there is a good cycle containing it, and such a cycle must contain w. Thus for any edge incident with v we can choose the removable path P so that it contains this edge.
2.5 Lemma. Let G be a 2-connected plane graph having no vertices of degree 3. Let $v \in V(G)$ be a vertex of degree 6 where v is incident with three isolated digons. If G has no good cycle not containing v, then we have two possibilities for G :
(i) G is the edge-disjoint union of three good cycles, and all vertices of G have degree 2 or 4, except for v and at most one other vertex of degree 6.
(ii) G is the edge-disjoint union of three good cycles and a removable path between two vertices of degree 5. Moreover, all vertices of G have degree 2 or 4 , apart from v and two vertices of degree 5 .

Proof. We suppose that G has no good cycle which does not contain v. By Theorem 2.1, G has a good pair cycles, say C_{1} and C_{2} which contain v and hence also edges of a digon incident to v. Suppose C_{1} contains no vertices of degree at least 5 , apart from v. Let $G^{\prime}=G \backslash E\left(C_{1}\right)$. Then G^{\prime} is 2-connected (apart from possibly some isolated vertices), and has no vertices of degree 3 . Moreover, $d_{G^{\prime}}(v)=4$, and v is incident with exactly one digon in G^{\prime}. If G^{\prime} contains a good cycle which avoids v, then such a cycle is also good in G. To see this, one can use the similar arguments as were used in the proof of Lemma 2.3. Thus no such cycles exist in G^{\prime}, and hence by Lemma 2.3 the edges of G^{\prime} are partitioned by a good pair cycles. These cycles together with C_{1} decompose the edges of G into good cycles. Consequently, each vertex of G has degree 2,4 , or 6 . Suppose G has two vertices of
degree 6 apart from v, say w and z. Let P be the path from w to z in C_{1} which contains v. Let $G^{\prime \prime}=G \backslash E(P)$. Then $G^{\prime \prime}$ is 2-connected (apart from possibly some isolated vertices), has no vertices of degree 3 , and $d_{G^{\prime}}(w)=d_{G^{\prime}}(z)=5$, and $d_{G^{\prime}}(v)=4$. The vertex v is incident with one isolated digon in $G^{\prime \prime}$, and $G^{\prime \prime}$ contains no good cycles which avoid v. In this case, Lemma 2.3 implies that $G^{\prime \prime}$ is the union of a good pair of cycles. This is impossible since both w and z have odd degree (equal to 5) in $G^{\prime \prime}$. We conclude that two such vertices w and z cannot exist in G, and consequently, G has at most one other vertex of degree 6 , apart from v. Then (i) holds.

Suppose now that C_{1} contains at least one vertex of degree at least 5 , apart from v. Let P be a path traversed by moving along C_{1} from v until one first reaches a vertex of degree at least 5, say u. Let $G^{\prime}=G \backslash E(P)$. Then G^{\prime} is 2-connected, $d_{G^{\prime}}(v)=5$, and v is incident with two isolated digons. We have that G^{\prime} contains no good cycles which avoid v, as such cycles are seen to be good in G. By Lemma 2.4, G^{\prime} is the union of a good pair of cycles C_{1}^{\prime} and C_{2}^{\prime}, and a removable path P^{\prime} from v to a vertex of degree 5 in G^{\prime}, say w. Furthermore, each (non-isolated) vertex of G^{\prime} has degree 2 or 4, apart from v and w which have degree 5. If $u=w$, then $d_{G}(u)=6$, and G has no vertices of odd degree. Then we can show, as in the previous paragraph, that (i) holds. We suppose therefore that $u \neq w$. This means that G has exactly 2 odd degree vertices which are u and w and every other vertex has degree 2 or 4 apart from v which has degree 6 . Then $d_{G^{\prime}}(u)=4$, and $d_{G^{\prime}}(w)=5$, and one of the cycles C_{1}^{\prime} or C_{2}^{\prime} contains both u and w. We may assume that C_{1}^{\prime} contains u and w. Let $P^{\prime \prime}$ be the path from u to w in $C_{1}^{\prime \prime} \backslash\{v\}$, and let $G^{\prime \prime}=G \backslash E\left(P^{\prime \prime}\right)$. We have that $G^{\prime \prime}$ is 2-connected (apart from possibly some isolated vertices), v is incident with three isolated digons in $G^{\prime \prime}$, and $G^{\prime \prime}$ has no odd degree vertices. Repeating previous arguments, we deduce that $G^{\prime \prime}$ is the edge-disjoint union of three good cycles, say $C_{i}^{\prime \prime}, i=1,2,3$. Moreover, all (non-isolated) vertices have degree 2 or 4 , apart from v and at most one other vertex of degree 6 . If v is the only vertex of degree 6 in $G^{\prime \prime}$, then all the vertices of G have degree 2 or 4 , apart from u, w, and v which have degrees 5 , 5 , and 6 , respectively. Then (ii) is seen to hold. If $G^{\prime \prime}$ has another vertex of degree 6 , apart from v, then this vertex must be w. Thus $d_{G}(w)=7, d_{G}(u)=5, d_{G}(v)=6$, and all other vertices of G have degree 2 or 4. Since $d_{G}(u)=5$, one of the cycles $C_{i}^{\prime \prime}, i=1,2,3($ which are good in $G)$, say $C_{1}^{\prime \prime}$, does not contain u (but contains v). Now $C_{1}^{\prime \prime}$ contains no vertices of degree 5 , and thus by the first part of the proof, G is the edge-disjoint union of three good cycles. This yields a contradiction. We conclude that in this case, G has exactly one vertex of degree 6 , namely v, and hence all the vertices of G have degree 2 or 4 , with the exception of u, w, and v which have degrees 5,5 , and 6 , respectively. In this case, (ii) holds with $C_{i}^{\prime \prime}, i=1,2,3$ and $P^{\prime \prime}$.
2.6 Lemma. Let G be a 2-connected graph and suppose S is a proper subset of edges such that $G \backslash S$ is connected and $G^{*}=G / S$ is 2-connected. Suppose that B^{*} is a contractible subset of edges in G^{*}. Let $B=>B^{*}<s$. If B is not contractible in G, then G / B contains loops.

Proof. Let S, B, and B^{*} be as in the statement of the lemma. We suppose that B is not contractible in G, and $G^{\prime}=G / B$ contains no loops. Let $S^{\prime}=\langle S\rangle_{B}$. If G^{\prime} contains 2 or

Fig. 2. Δ-sum of G_{1} and G_{2}.
more blocks K^{\prime} where $E\left(K^{\prime}\right) \nsubseteq S^{\prime}$, then G^{\prime} / S^{\prime} has 2 or more blocks. However,

$$
G^{\prime} / S^{\prime}=G / B / S^{\prime}=(G / S) / B^{*}=G^{*} / B^{*}
$$

which is 2-connected. So at most one such block exists. Thus if G^{\prime} has more than one block, then we can find a block K^{\prime} of G^{\prime} where $E\left(K^{\prime}\right) \subseteq S^{\prime}$. If K^{\prime} is not a loop, then the edges of $>K^{\prime}<_{B}$ form a cutset in G, which means that the edges of S must also be a cutset in G. However, this is impossible since $G \backslash S$ is connected. Thus K^{\prime} is a loop. So if B is not contractible in G then G / B must contains loops, and moreover, G / B minus its loops is a 2-connected graph.

2.1. The \triangle-sum of two graphs

Following the definition given in [9], we define a $\Delta-$ sum of two graphs G_{1} and G_{2} with $\varepsilon\left(G_{i}\right) \geqslant 7, i=1,2$ to be the graph obtained by 'glueing' together G_{1} and G_{2} along the edges of a given triangle in both G_{1} and G_{2} and then deleting the edges of this triangle (see Fig. 2). We denote such a graph by $\mathbf{G}_{\mathbf{1}} \oplus_{\Delta} \mathbf{G}_{\mathbf{2}}$.
2.7 Lemma. Let G be a \triangle-sum of planar graphs $G=G_{1} \oplus_{\Delta} G_{2}$ where G_{1} is a plane graph. Let $B=[X, \bar{X}]$ be a bond of G and let C be a cycle which bounds a face of G_{1}. Then $|B \cap E(C)| \leqslant 2$.

Proof. Let $G=G_{1} \oplus \triangle G_{2}$ where the \triangle-sum occurs along a triangle $T=u v w$. Let C be a cycle which bounds a face of G_{1} and let $B=[X, \bar{X}]$ be a bond of G. Suppose $|B \cap E(C)| \geqslant 3$, and $e_{1}=x_{1} y_{1}, e_{2}=x_{2} y_{2}$, and $e_{3}=x_{3} y_{3}$ are three edges in $B \cap E(C)$. We may assume that $x_{i} \in X, i=1,2,3$, and we meet the edges e_{1}, e_{2}, e_{3} in this order as we move along C. So while traversing C we meet the vertices $x_{1}, y_{1}, y_{2}, x_{2}, x_{3}, y_{3}$ in this order (noting that it is possible that $y_{1}=y_{2}$ or $x_{2}=x_{3}$). Since B is a bond, both $G(X)$ and $G(\bar{X})$ are connected. So there exists a path P from x_{1} to x_{2} in $G(X)$ and a path Q from y_{1} to y_{3} in $G(\bar{X})$. Either $P \subset G_{1}$ or $E(P) \cap E\left(G_{1}\right)$ is a vertex disjoint union of two paths P_{1} and P_{2} where $P_{j}=u_{j 1} u_{j 2} \cdots u_{j n_{j}}, j=1,2$, and $u_{11}=$ $x_{1}, u_{2 n_{2}}=x_{2}$. If the latter occurs, then $u_{1 n_{1}}, u_{21} \in\{u, v, w\}$. Since $T=u v w$ is a triangle of G_{1}, it follows that $u_{1 n_{1}} u_{21} \in E\left(G_{1}\right)$, and $P^{\prime}=P_{1} \cup P_{2} \cup\left\{u_{1 n_{1}} u_{21}\right\}$ is a path in G_{1} from x_{1} to x_{2}. Since Q does not intersect P it does not intersect P^{\prime} either. However, since G_{1} is plane, any path from y_{1} to y_{3} in G_{1} must cross P^{\prime} and this yields a contradiction. If $P \subset G_{1}$, the same conclusion holds. We conclude that no such cycle C can exist.

3. Reductions on a minimum counterexample

We suppose that Theorem 1.4 is false and suppose that G is a minimal counterexample where $\varepsilon(G)$ is minimum subject to $v(G)$ being minimum. By Theorem 2.2 we may assume that G is non-planar.

We call a path P between two vertices of degree at least 3 a thread if it is an edge, or if all its internal vertices have degree 2 . We define the length of P to be the number of its edges and we denote it by $|P|$.

Claim 1. G has no thread of length 3 or greater.
Proof. Suppose $T=u_{0} e_{0} u_{1} \cdots e_{k-1} u_{k}$ is a thread where $k \geqslant 3$. Let $G^{\prime}=\left(G \backslash\left\{u_{1}, \ldots\right.\right.$, $\left.\left.u_{k-1}\right\}\right) \cup\left\{u_{0} u_{k}\right\}$. Suppose G^{\prime} contains no triangles. Then by the minimality of G, the graph G^{\prime} has a good pair of bonds, say B_{1} and B_{2}. We may assume that $u_{0} u_{k} \notin B_{1}$. Then B_{1} and $C=\left[\left\{u_{1}, \ldots, u_{k-1}\right\}, \overline{\left\{u_{1}, \ldots, u_{k-1}\right\}}\right]$ are a good pair of bonds in G.

We suppose instead that G^{\prime} contains a triangle (which must contain $u_{0} u_{k}$). Let $G^{\prime \prime}$ be the graph obtained from G^{\prime} by deleting $u_{0} u_{k}$ and adding a vertex u together with the edges $u u_{0}$ and $u u_{k}$. The graph $G^{\prime \prime}$ has no triangles since G has no edge between u_{0} and u_{k}; for otherwise it would have a triangle (since G^{\prime} has a triangle). Thus by assumption, $G^{\prime \prime}$ has a good pair of bonds, say B_{1} and B_{2}. If $B_{i}, i \in\{1,2\}$ do not contain the edges $u u_{0}$ or $u u_{k}$, then they are a good pair in G. If for some $i \in\{1,2\} B_{i}$ contains one of the edges incident to u, for example $u_{0} u$, then $B_{i}^{\prime}=\left(B_{i} \backslash\left\{u u_{0}\right\}\right) \cup\left\{e_{0}\right\}$ is a contractible bond in G. So the bonds B_{1}, B_{2} give rise to a good pair of bonds in G.

Claim 2. Between any two vertices of G there is at most one thread.
Proof. Suppose P_{1} and P_{2} are threads between two vertices u and v. By Claim 1, a thread of G has at most one internal vertex. Thus, given that G is triangle-free, both P_{1} and P_{2} have the same length. Let G^{\prime} be the graph obtained from G by deleting all the internal vertices of P_{2}. Then G^{\prime} is 2-connected, triangle-free, and therefore has a good pair of bonds. Such bonds are easily seen to be extendable to a good pair of bonds in G.

For positive integers m and n we let $\mathbf{K}_{m, n}$ denote the complete bipartite graph with parts of size m and n. We let G_{8} denote the Wagner graph which is the graph obtained from an 8 -cycle $v_{1} v_{2} \cdots v_{8} v_{1}$ by adding the chords $v_{i} v_{i+4}, i=1,2,3,4$.

Claim 3. G is not a subdivision of $K_{3,3}$ or G_{8}.
Proof. Using Claim 1, this is a straightforward exercise which is left to the reader.

3.1. The graph hom (G)

For a graph G none of whose components are cycles, we define a graph $\operatorname{hom}(\mathbf{G})$ to be the graph obtained from G by suppressing all its vertices of degree 2 . For a subgraph H of G we define $\operatorname{hom}(\mathbf{G} \mid \mathbf{H})$ to be the subgraph of $\operatorname{hom}(G)$ induced by $V(\operatorname{hom}(G)) \cap V(H)$.

Claim 4. $\operatorname{hom}(G)$ is 3-connected.
Proof. It suffices to show that G has no 2-separating set apart from the neighbours of a vertex of degree 2 . Suppose the assertion is false, and there exists a 2 -separating set of $G,\left\{v_{1}, v_{2}\right\}$ which separates 2 subgraphs G_{1} and G_{2}; that is, $G=G_{1} \cup G_{2}$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=$ $\left\{v_{1}, v_{2}\right\}$, where $G_{i}, i=1,2$ is not a single vertex joined to v_{1} and v_{2}. We have $E(G)=$ $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. We shall consider two cases.

Case 1: Suppose $e=v_{1} v_{2} \in E(G)$ (and thus $e \in E\left(G_{1}\right) \cap E\left(G_{2}\right)$). Then both G_{1} and G_{2} are 2-connected and triangle-free, and moreover, $\varepsilon\left(G_{i}\right)<\varepsilon(G), i=1,2$. For $i=1,2$ the graph G_{i} has a good pair of bonds $B_{i 1}$ and $B_{i 2}$. We may assume that $e \notin B_{11} \cup B_{21}$. One sees that B_{11} and B_{21} is a good pair of bonds in G.

Case 2: Suppose $v_{1} v_{2} \notin E(G)$. If $G_{i} \cup\left\{v_{1} v_{2}\right\}$ does not contain a triangle, for $i=1,2$, then we can repeat more or less the same arguments as in Case 1. So we suppose it has a triangle. Then $v_{1} v_{2}$ is an edge of this triangle. Let $G_{i}^{\prime}=G_{i} \cup\left\{u_{i}, u_{i} v_{1}, u_{i} v_{2}\right\}, i=1,2$, where $u_{i}, i=$ 1,2 are new vertices added to G_{i} having neighbours v_{1} and v_{2}. The graph G_{i}^{\prime} is triangle-free for $i=1,2$ and has a good pair of bonds, say $B_{i 1}^{\prime}$ and $B_{i 2}^{\prime}$. If $B_{i j}^{\prime}, j \in\{1,2\}$ contain no edges incident to u_{i}, then they are seen to be a good pair of bonds in G. We may assume that B_{11}^{\prime} and B_{12}^{\prime} contain edges incident to u_{1}. We suppose without loss of generality that $u_{1} v_{1} \in B_{11}$ and $u_{1} v_{2} \in B_{12}^{\prime}$. Let $B_{i j}^{\prime}=\left[P_{1 j}^{\prime}, Q_{1 j}^{\prime}\right], i, j=1,2$. We can assume that at least one of B_{21}^{\prime} or B_{22}^{\prime} contains an edge incident to u_{2}. Suppose without loss of generality that B_{21}^{\prime} contains $u_{2} v_{1}$. We may assume that $v_{1} \in P_{11}^{\prime}\left(\operatorname{and} u_{1}, v_{2} \in Q_{11}^{\prime}\right), v_{2} \in P_{12}^{\prime}\left(\right.$ and $\left.u_{1}, v_{1} \in Q_{12}^{\prime}\right)$, and $v_{1} \in P_{21}^{\prime}\left(\right.$ and $\left.u_{2}, v_{2} \in Q_{21}^{\prime}\right)$. The set $A_{1}=\left[\left(Q_{12}^{\prime} \cup P_{21}^{\prime}\right) \backslash\left\{u_{1}, u_{2}\right\},\left(P_{12}^{\prime} \cup Q_{21}^{\prime}\right) \backslash\left\{u_{1}, u_{2}\right\}\right]$ is seen to be a good bond in G. Similarly, if B_{22}^{\prime} contains $u_{2} v_{2}$, then, assuming $v_{2} \in P_{22}$, the
set $A_{2}=\left[\left(P_{11}^{\prime} \cup Q_{22}^{\prime}\right) \backslash\left\{u_{1}, u_{2}\right\},\left(Q_{11}^{\prime} \cup P_{22}^{\prime}\right) \backslash\left\{u_{1}, u_{2}\right\}\right]$ is a good bond of G. We conclude that regardless of whether B_{22}^{\prime} contains $u_{2} v_{2}$ or not, G will have a good pair of bonds. This concludes Case 2.

The proof of the claim follows from Cases 1 and 2.

4. Good separations

A separation (or separating set) of a graph G is a set of vertices $S \subset V(G)$ such that $G \backslash S$ has more components than G. A separation with k vertices is called a k-separation. We say that two subgraphs G_{1} and G_{2} are separated by a separation S if $E\left(G_{1}\right) \cap E\left(G_{2}\right)=\emptyset$, $V\left(G_{1}\right) \cap V\left(G_{2}\right) \subseteq S, V\left(G_{i}\right) \backslash S \neq \emptyset, i=1,2$, and any path from a vertex of G_{1} to a vertex of G_{2} must contain a vertex of S. Extending this, we say that k subgraphs G_{1}, \ldots, G_{k} are separated by a separating set S if any pair of subgraphs $G_{i}, G_{j}, i \neq j$ is separated by S.

We call a separating set $\left\{v_{1}, v_{2}, v_{3}\right\}$ which separates two subgraphs G_{1} and G_{2} a good separation if $G=G_{1} \cup G_{2}, V\left(G_{1}\right) \cap V\left(G_{2}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$, and it satisfies an additional three properties:
(i) $G_{1} \cup\left\{v_{1} v_{2}, v_{2} v_{3}, v_{1} v_{3}\right\}$ is planar and has a plane representation where the triangle $v_{1} v_{2} v_{3}$ bounds a 3-face.
(ii) $\left|V\left(\operatorname{hom}\left(G \mid G_{1}\right)\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}\right| \geqslant 2$.
(iii) There is no good bond of G contained in G_{1}.

Our principle aim in this section is to show that G has good separations. We shall use a variation of Wagners theorem which can be found in [9].
4.1 Theorem. Let G be a 3-connected non-planar graph without a K_{5}-minor and which is not isomorphic to $K_{3,3}$ or G_{8}. Assume G to have a designated triangle Tor edge e. Then G is a \triangle-sum $G_{1} \oplus_{\Delta} G_{2}$ where G_{2} contains T or e, whichever applies, and G_{1} is planar.

Our aim is to show that G has a good separation. To this end, we shall need the following lemma:
4.2 Lemma. Let G be a 3-connected non-planar graph without a K_{5}-minor, and which is not isomorphic to G_{8}. Then there exists a 3-separating set $\left\{v_{1}, v_{2}, v_{3}\right\}$ which separates three subgraphs G_{1}, G_{2}, G_{3} where $G=G_{1} \cup G_{2} \cup G_{3}, V\left(G_{1}\right) \cap V\left(G_{2}\right) \cap V\left(G_{3}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$, and $G_{i} \cup\left\{v_{1} v_{2}, v_{2} v_{3}, v_{1} v_{3}\right\}$ is planar for $i=1,2$.

Proof. By induction on $|E(G)|$. Suppose that G is a 3-connected, non-planar graph which is not isomorphic to G_{8} and which has no K_{5}-minor. If G is isomorphic to $K_{3,3}$, then the lemma is is seen to be true. We shall therefore assume that G is not isomorphic to $K_{3,3}$. In addition, we assume that the lemma holds for any graph having fewer edges than G which satisfies the requirements of the lemma. By Theorem $4.1, G$ can be expressed as a Δ-sum $G_{1} \oplus_{\Delta} G_{2}$ where G_{1} is planar. If G_{2} is planar, then G would be planar since a \triangle-sum of two planar graphs is also planar. Thus G_{2} is non-planar, and moreover it is 3-connected and contains no K_{5}-minor. Also, G_{2} is not isomorphic to $K_{3,3}$ or G_{8} since it contains the triangle
$v_{1} v_{2} v_{3}$. The graph G_{2} has less edges than G since by the definition of \triangle-sum, $\left|E\left(G_{1}\right)\right| \geqslant 7$, and hence

$$
\left|E\left(G_{2}\right)\right|=|E(G)|-\left|E\left(G_{1}\right)\right|+6<|E(G)| .
$$

Consequently, by the inductive assumption, the lemma holds for G_{2}, and it contains a 3separating set $\left\{u_{1}, u_{2}, u_{3}\right\}$ which separates three subgraphs G_{21}, G_{22}, and G_{23} where $G_{21} \cup$ $G_{22} \cup G_{23}=G_{2}, V\left(G_{21}\right) \cap V\left(G_{22}\right) \cap V\left(G_{23}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$, and $G_{2 j} \cup\left\{u_{1} u_{2}, u_{2} u_{3}, u_{1} u_{3}\right\}$ is planar for $j=1,2$. We have that $\left\{v_{1}, v_{2}, v_{3}\right\} \subset V\left(G_{2 j}\right)$, for some j. If this holds for $j=1$ or $j=2$, then $G_{1} \oplus_{\Delta} G_{2 j}$ is planar. The set $\left\{u_{1}, u_{2}, u_{3}\right\}$ is seen to be the desired 3-separation of G. The proof of the lemma now follows by induction.

Claim 5. G has a good separation $\left\{v_{1}, v_{2}, v_{3}\right\}$.

Proof. By Lemma 4.2, there exists a 3 -separating set $\left\{v_{1}, v_{2}, v_{3}\right\}$ which separates three subgraphs G_{1}, G_{2}, G_{3} where $V\left(G_{1}\right) \cap V\left(G_{2}\right) \cap V\left(G_{3}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$, and $G_{i} \cup\left\{v_{1} v_{2}, v_{2} v_{3}\right.$, $\left.v_{1} v_{3}\right\}$ is planar for $i=1,2$. We suppose that $\left|V\left(\operatorname{hom}\left(G \mid G_{i}\right)\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}\right|=1$ for $i=1,2$ and let $V\left(\operatorname{hom}\left(G \mid G_{i}\right)\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}=\left\{u_{i}\right\}, i=1,2$. Since $\operatorname{hom}(G)$ is 3-connected, there exists three threads $T_{i 1}, T_{i 2}, T_{i 3}$ from u_{i} to v_{1}, v_{2}, v_{3}, respectively, which meet only at u_{i}. Suppose $\left|T_{11}\right|+\left|T_{12}\right|+\left|T_{13}\right| \geqslant\left|T_{21}\right|+\left|T_{22}\right|+\left|T_{23}\right|$. Let $G^{\prime}=G \backslash\left(V\left(G_{2}\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}\right)$. The graph G^{\prime} is 2-connected and contains a good pair of bonds which can easily be extended to a good pair of bonds of G. We conclude that for some $i \in\{1,2\}$ we have $\left|V\left(\operatorname{hom}\left(G \mid G_{i}\right)\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}\right| \geqslant 2$. We may assume that this holds for $i=1$. Suppose there is a good bond B of G contained in G_{1}. Then neither G_{2} nor G_{3} contains a good bond of G. If $\mid V\left(\operatorname{hom}\left(G \mid G_{2}\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\} \mid \geqslant 2\right.$, then G_{2} can play the role of G_{1} as in the definition of a good separation and we are done. We suppose therefore that $\mid \operatorname{V}\left(\operatorname{hom}\left(G \mid G_{2}\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\} \mid=\right.$ 1. Then, using the same arguments as before, we have $\left|\operatorname{V}\left(\operatorname{hom}\left(G \mid G_{3}\right)\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}\right| \geqslant 2$. If G_{3} is planar, then G_{3} can play the role of G_{1} as in the definition of a good separation and we are done. We suppose therefore that G_{3} is non-planar. Then it has a 3-separating set $\left\{w_{1}, w_{2}, w_{3}\right\}$ similar to $\left\{v_{1}, v_{2}, v_{3}\right\}$ which separates 3 subgraphs H_{1}, H_{2}, H_{3} where H_{1} and H_{2} are planar, and $\left|V\left(\operatorname{hom}\left(G \mid H_{1}\right)\right) \backslash\left\{w_{1}, w_{2}, w_{3}\right\}\right| \geqslant 2$. If there is a good bond C of G where C is contained in H_{1}, then B and C would be a good pair of bonds. Thus H_{1} contains no good bonds, and $\left\{w_{1}, w_{2}, w_{3}\right\}$ would be the desired separating set.

4.1. The type of a good separation

Suppose $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a good separation of G. Suppose that in G_{1} for each $i \neq j$ we have $\operatorname{dist}_{G_{1}}\left(v_{i}, v_{j}\right)=1$ or $\operatorname{dist}_{G_{1}}\left(v_{i}, v_{j}\right) \geqslant 3$. Let $G_{1}^{\prime}=G_{1} \cup\left\{v_{1} v_{2}, v_{2} v_{3}, v_{1} v_{3}\right\}$. Then G_{1}^{\prime} is a 2 -connected planar graph with one triangle namely $v_{1} v_{2} v_{3}$. By Theorem 2.2, G_{1}^{\prime} has a good bond B^{\prime} which contains no edges of this triangle. Thus B^{\prime} is also good in G, and this contradicts the choice of G_{1}. Hence in a good separation $\left\{v_{1}, v_{2}, v_{3}\right\}$ it holds for at least one pair of vertices v_{i}, v_{j} that $\operatorname{dist}_{G_{1}}\left(v_{i}, v_{j}\right)=2$.

We say that a good separation $\left\{v_{1}, v_{2}, v_{3}\right\}$ is of type $k, k \in\{1,2,3\}$ if there are exactly k pairs of vertices $v_{i}, v_{j}, i \neq j$ where $\operatorname{dist}_{G}\left(v_{i}, v_{j}\right)=2$. Since G contains no triangles, if $\operatorname{dist}_{G_{1}}\left(v_{i}, v_{j}\right)=2$, then $\operatorname{dist}_{G_{2}}\left(v_{i}, v_{j}\right) \geqslant 2$ (similarly, if $\operatorname{dist}_{G_{2}}\left(v_{i}, v_{j}\right)=2$, then $\left.\operatorname{dist}_{G_{1}}\left(v_{i}, v_{j}\right) \geqslant 2\right)$.

4.2. The graphs G_{1}^{\prime} and G_{2}^{\prime}

We shall define a graph \mathbf{G}_{1}^{\prime} obtained from G_{1} in the following way: For every pair of vertices $v_{i}, v_{j} i \neq j$ if $\operatorname{dist}_{G_{1}}\left(v_{i}, v_{j}\right)=2$, then provided there is no vertex of degree 2 in G_{1} with neighbours v_{i} and v_{j}, we shall add such a vertex to G_{1} and label it $\mathbf{w}_{i j}^{1}$. If such a vertex already exists in G_{1}, then we give it the same label $w_{i j}^{1}$. If $\operatorname{dist}_{G_{1}}\left(v_{i}, v_{j}\right) \neq 2$, then provided there is no edge between v_{i} and v_{j} in G_{1}, we shall add such an edge to G_{1}.

We define a graph \mathbf{G}_{2}^{\prime} from G_{2} in a corresponding way(with analogous vertices $\mathbf{w}_{i j}^{2}$) with one additional requirement. If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a separation of type 3 , then provided G_{2} does not have a vertex of degree 3 with v_{1}, v_{2}, v_{3} as its neighbours, we shall add such a vertex and label it \mathbf{w}_{2}. If such a vertex already exists in G_{2}, then we shall give it the same label w_{2}.

By Claim 2, G_{1} and G_{2} cannot both have vertices of degree 2 with common neighbours v_{i}, v_{j}. If such a vertex exists in G_{1} or G_{2}, then we label it by $w_{i j}$ in G. The three different possibilities for G_{1}^{\prime} and G_{2}^{\prime} are depicted in Fig. 3.

Given $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a good separation, we may assume throughout that G_{1}^{\prime} has a plane representation where v_{1}, v_{2}, v_{3} belong to a face which we denote by \mathbf{F}. We have that $|F|=$ 4,5 , or 6 depending on whether the separation has type 1,2, or 3 . We let \mathbf{K} denote the cycle which bounds F. For all $i \neq j$, let $\mathbf{F}_{i j}$ denote the face of G_{i}^{\prime} containing v_{i} and v_{j} (where $F_{i j} \neq F$), and let $\mathbf{K}_{i j}$ denote the cycle which bounds $F_{i j}$. We denote the dual of G_{1}^{\prime} by \mathbf{H}_{1}^{\prime} and we let \mathbf{u} be the vertex of H_{1}^{\prime} corresponding to the face F in G_{1}^{\prime}. The vertex u has exactly three neighbours which we denote by $\mathbf{u}_{1}, \mathbf{u}_{2}$, and \mathbf{u}_{3}. For each vertex $v \in V\left(G_{1}^{\prime}\right)$ we let $\boldsymbol{\Phi}(\mathbf{v})$ denote the face in H_{1}^{\prime} corresponding to v. For $i=1,2,3$ we let $\boldsymbol{\Phi}_{i}=\boldsymbol{\Phi}\left(v_{i}\right)$.

4.3. Wishbones and minimal good separations

A wishbone is a graph consisting of a vertex joined to three other vertices by disjoint threads, where at least one of the threads has length 2.

Claim 6. Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a good separation. Then G_{1} does not contain an induced subgraph which is a wishbone.

Proof. Suppose that G_{1} contains a wishbone T as an induced subgraph. We shall assume that T consists of a vertex a joined to vertices a_{1}, a_{2}, a_{3} by threads T_{1}, T_{2}, and T_{3}, respectively. If for some $i \neq j$ we have $\left|T_{i}\right| \geqslant 2$ and $\left|T_{j}\right| \geqslant 2$, then letting $S=V(T) \backslash\left\{a_{1}, a_{2}, a_{3}\right\}$ one sees that $B=[S, \bar{S}]$ is a good bond of G. This gives a contradiction, as $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a good separation and hence G_{1} contains no good bonds of G. Thus $\left|T_{i}\right| \geqslant 2$ for at most one value of i, and we can assume without loss of generality that $\left|T_{1}\right| \geqslant 2$ and $\left|T_{2}\right|=\left|T_{3}\right|=1$. By Claim 1 , we have that G has no threads of length 3 or longer, and as such $\left|T_{1}\right|=2$. Let $T_{1}=a b a_{1}$. If a_{2} and a_{3} are not joined by a thread of length 2 , then $B=[\{a, b\}, \overline{\{a, b\}}]$ is a good bond of G

Fig. 3. The graphs G_{1}^{\prime} and G_{2}^{\prime} as defined for G of type 1,2 , or 3 .
which is contained in G_{1}. Again, this yields a contradiction. Thus there is a thread of length 2 between a_{2} and a_{3}. Let $G^{\prime}=G \backslash\{a, b\}$. We have that G^{\prime} is 2 -connected and therefore has a good pair of bonds, say B_{1}^{\prime} and B_{2}^{\prime}. Let $B_{i}^{\prime}=\left[X_{i}^{\prime}, V\left(G^{\prime}\right) \backslash X_{i}^{\prime}\right], i=1,2$. For $i=1,2$ we can assume that $\left|X_{i}^{\prime} \cap\left\{a_{1}, a_{2}, a_{3}\right\}\right| \leqslant 1$. We have that $\left\langle a_{2}\right\rangle_{B_{i}^{\prime}} \neq\left\langle a_{3}\right\rangle_{B_{i}^{\prime}}, i=1,2$ as a_{2} and a_{3} are joined by a thread. Thus if $a_{1}, a_{2}, a_{3} \notin X_{i}^{\prime}$, then B_{i}^{\prime} is a good bond of G. Suppose for $i=1,2,3$ it holds that $a_{i} \notin X_{1}^{\prime} \cap X_{2}^{\prime}$. Then the bonds $B_{i}^{\prime}, i=1,2$ can easily be modified to yield a good pair of bonds of G. We therefore suppose that for some $i \in\{1,2,3\}$ that $a_{i} \in X_{1}^{\prime} \cap X_{2}^{\prime}$. If $a_{1} \in X_{1}^{\prime} \cap X_{2}^{\prime}$, then $\left[X_{1}^{\prime}, V(G) \backslash X_{1}^{\prime}\right]$ and $\left[X_{2}^{\prime} \cup\{b\}, V(G) \backslash\left(X_{1}^{\prime} \cup\{b\}\right)\right]$ are a good pair of bonds. Suppose that $a_{2} \in X_{1}^{\prime} \cap X_{2}^{\prime}$ or $a_{3} \in X_{1}^{\prime} \cap X_{2}^{\prime}$. Then $\left[X_{1}^{\prime}, V(G) \backslash X_{1}^{\prime}\right]$ and $\left[X_{2}^{\prime} \cup\{b\}, V(G) \backslash\left(X_{2}^{\prime} \cup\{b\}\right)\right]$ are a good pair of bonds of G. We conclude that G_{1} contains no induced subgraph which is a wishbone.

We say that a good separation $\left\{v_{1}, v_{2}, v_{3}\right\}$ is minimal if there is no other good separation contained in $V\left(G_{1}\right)$.

Claim 7. Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a minimal good separation of G. Then for $i=1,2,3$ the vertex v_{i} has at least 2 neighbours in $V\left(\operatorname{hom}\left(G \mid G_{1}\right)\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$.

Proof. Suppose the claim is false and assume without loss of generality that v_{1} only has one neighbour in $V\left(\operatorname{hom}\left(G \mid G_{1}\right)\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$. We may assume that v_{1} is joined by a thread T to a vertex a where $d_{G_{1}}(a) \geqslant 3$. Since $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a good separation, we have $\left|V\left(\operatorname{hom}\left(G \mid G_{1}\right)\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}\right| \geqslant 2$. If $\left|V\left(\operatorname{hom}\left(G \mid G_{1}\right)\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}\right|>2$, then $\left\{a, v_{2}, v_{3}\right\}$ would be a good separation of G, contradicting the fact that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is minimal. Thus $\operatorname{hom}\left(G \mid G_{1}\right)$ has exactly five vertices v_{1}, v_{2}, v_{3}, a, and an additional vertex b. Since $\operatorname{hom}(G)$ is 3-connected, b is joined by three disjoint threads T_{1}, T_{2}, T_{3} to a, v_{2}, and v_{3} respectively. By Claim 6, G_{1} has no induced subgraph which is a wishbone. Thus $\left|T_{i}\right|=1, i=1,2,3$ and $b a, b v_{2}, b v_{3} \in E(G)$. Since $d_{G_{1}}(a) \geqslant 3$, we have that a is joined to at least one of v_{2} or v_{3} by a thread T. If $|T|=1$, then G_{1} contains a triangle. Consequently, $|T|=2$. If a is not joined to both v_{2} and v_{3} by threads, then G_{1} would have an induced subgraph containing T which is a wishbone. Thus a is joined to both v_{2} and v_{3} by threads of length 2. Let $S=V\left(G_{1}\right) \backslash\left\{v_{1}, v_{2}, v_{3}, b\right\}$. Then $[S, \bar{S}]$ is seen to be a good bond contained in G_{1}. This contradicts the fact that $\left\{v_{1}, v_{2}, v_{3},\right\}$ is a good separation. We conclude that v_{1} has at least 2 neighbours in $V\left(G_{1}^{\prime} \backslash K\right)$, and the same applies to v_{2} and v_{3}.

5. \boldsymbol{G}_{1}-good bonds and \boldsymbol{H}_{1}-good cycles

Suppose $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a good separation. Then G_{1} contains no good bonds of G. This means that G_{1}^{\prime} has no good bond $B=\left[X, V\left(G_{1}^{\prime}\right) \backslash X\right]$ such that $X \subset V\left(G_{1}^{\prime}\right) \backslash V(K)$. In the dual H_{1}^{\prime}, this means that H_{1}^{\prime} has no good cycle which does not contain u. We say that a good bond $B^{\prime}=[X, Y]$ in G_{1}^{\prime} is \boldsymbol{G}_{1}-good if $X \backslash V(K) \neq \emptyset$, and $Y \backslash V(K) \neq \emptyset$. A cycle in H_{1}^{\prime} corresponding to a G_{1}-good bond is called a \boldsymbol{H}_{1}-good cycle. That is, a good cycle C^{\prime} in H_{1}^{\prime} is H_{1}-good if both its interior and exterior contain faces $\Phi(v)$ where $v \in V\left(G_{1}^{\prime}\right) \backslash V(K)$.

According to Lemmas 2.3-2.5, we can find a decomposition of H_{1}^{\prime} into two or more good cycles and at most one removable path (between vertices of degree 5). We have exactly four possibilities:
(a) A decomposition into two good cycles $\left(d_{H_{1}^{\prime}}(u)=4\right)$.
(b) A decomposition into two good cycles and a removable path $\left(d_{H_{1}^{\prime}}(u)=5\right)$.
(c) A decomposition into three good cycles $\left(d_{H_{1}^{\prime}}(u)=6\right)$.
(d) A decomposition into three good cycles and a removable path $\left(d_{H_{1}^{\prime}}(u)=6\right)$.

If all the cycles in the decomposition are H_{1}-good, then we say that the decomposition is H_{1}-good.

5.1. Swapping cycles

Suppose C_{1}^{\prime} and C_{2}^{\prime} are two edge-disjoint cycles in H_{1}^{\prime} which contain u. Suppose $w, w^{\prime} \in$ $V\left(C_{1}^{\prime}\right) \cap V\left(C_{2}^{\prime}\right)$ where $w, w^{\prime} \neq u$. For $i=1,2$ we let $C_{i}^{\prime}\left[w w^{\prime}\right]$ denote the path in $C_{i}^{\prime} \backslash\{u\}$ between w and w^{\prime}, and let $C_{i}^{\prime}\left[w u w^{\prime}\right]$ denote the path in C_{i}^{\prime} between w and w^{\prime} which contains
u. If $C_{i}^{\prime}\left[w w^{\prime}\right], i=1,2$ contain no vertices of $V\left(C_{1}^{\prime}\right) \cap V\left(C_{2}^{\prime}\right)$ other than w and w^{\prime}, we can define two new cycles

$$
C_{1}^{\prime \prime}=C_{1}^{\prime}\left[w u w^{\prime}\right] \cup C_{2}^{\prime}\left[w w^{\prime}\right], \quad C_{2}^{\prime \prime}=C_{2}^{\prime}\left[w u w^{\prime}\right] \cup C_{1}^{\prime}\left[w w^{\prime}\right] .
$$

We call $C_{i}^{\prime \prime}, i=1,2$ the cycles obtained by swapping C_{1}^{\prime} and C_{2}^{\prime} between w and w^{\prime}.
We can also define a swap between a cycle and a path. Let C be a cycle of H_{1}^{\prime} containing u and let P be a path in H_{1}^{\prime} with terminal vertices w_{0} and w_{t} which is edge-disjoint from C. Suppose $w, w^{\prime} \in V(C) \cap V(P)$ and $C\left[w w^{\prime}\right]$ and $P\left[w w^{\prime}\right]$ contain no vertices of P apart from w and w^{\prime}. We can define a new cycle C^{\prime} and path P^{\prime}. Assuming w occurs first while travelling from w_{0} to w_{t} along P, we let

$$
C^{\prime}=C\left[w u w^{\prime}\right] \cup P\left[w w^{\prime}\right], \quad P^{\prime}=P\left[w_{0} w\right] \cup C\left[w w^{\prime}\right] \cup P\left[w^{\prime} w_{t}\right] .
$$

5.1 Lemma. If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a minimal good separation, then there exists a H_{1}-good decomposition of H_{1}^{\prime}.

Proof. We suppose that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a minimal good separation. Then there is a decomposition \mathcal{D} of H_{1}^{\prime} as specified by one of (a)-(d). We may assume that \mathcal{D} is maximal in the sense that one cannot replace any members of \mathcal{D} so as to obtain a decomposition with a greater number of H_{1}-good cycles. We suppose that \mathcal{D} is not H_{1}-good. Let $C_{1}^{\prime} \in \mathcal{D}$ be a cycle which is not H_{1}-good. We can assume that the interior of C_{1}^{\prime} contains no faces $\Phi(v)$, where $v \in V\left(G_{1}^{\prime}\right) \backslash V(K)$. We may also assume that the interior also contains exactly one of the faces $\Phi_{i}, i \in\{1,2,3\}$ say Φ_{1}. By Claim 7, the vertex v_{1} has at least two neighbours in $V\left(\operatorname{hom}\left(G \mid G_{1}\right)\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$. Thus C_{1}^{\prime} contains a vertex $w \neq u, u_{1}, u_{2}, u_{3}$ and two edges $e^{\prime}, e^{\prime \prime} \in E\left(C_{1}^{\prime}\right)$ incident with w where $e^{\prime} \in \Phi\left(v_{1}^{\prime}\right)$ and $e^{\prime \prime} \in \Phi\left(v_{1}^{\prime \prime}\right)$, the vertices $v_{1}^{\prime}, v_{1}^{\prime \prime}$ being neighbours of v_{1} in $V\left(G_{1}^{\prime}\right) \backslash V(K)$. We have that $d_{H_{1}^{\prime}}(w) \geqslant 4$, and thus there is a path or cycle of $\mathcal{D} \backslash\left\{C_{1}^{\prime}\right\}$ which contains w.

We suppose there is a cycle $C_{2}^{\prime} \in \mathcal{D} \backslash\left\{C_{1}^{\prime}\right\}$ which contains w. We observe that faces $\Phi\left(v_{1}^{\prime}\right)$, and $\Phi\left(v_{1}^{\prime \prime}\right)$ both belong to the interior of C_{2}^{\prime} or both belong to the exterior. Since $u \in V\left(C_{1}^{\prime}\right) \cap V\left(C_{2}^{\prime}\right)$, at least one of u^{\prime} s neighbours u_{1}, u_{2}, or u_{3} belongs to both C_{1}^{\prime} and C_{2}^{\prime}. This means that we can find a vertex $w^{\prime} \in V\left(C_{1}^{\prime}\right) \cap V\left(C_{2}^{\prime}\right) \backslash\{w, u\}$ where $C_{2}^{\prime}\left[w w^{\prime}\right]$ contains no vertices of C_{1}^{\prime} other than w and w^{\prime}. We perform a swap on C_{1}^{\prime} and C_{2}^{\prime} between w and w^{\prime} yielding two cycles $C_{1}^{\prime \prime}$ and $C_{2}^{\prime \prime}$ where

$$
C_{1}^{\prime \prime}=C_{1}^{\prime}\left[w u w^{\prime}\right] \cup C_{2}^{\prime}\left[w w^{\prime}\right], \quad C_{2}^{\prime \prime}=C_{2}^{\prime}\left[w u w^{\prime}\right] \cup C_{1}^{\prime}\left[w w^{\prime}\right]
$$

(see Fig. 4). The cycle $C_{12}^{\prime}=C_{1}^{\prime}\left[w w^{\prime}\right] \cup C_{2}^{\prime}\left[w w^{\prime}\right]$ contains exactly one of the faces $\Phi\left(v_{1}^{\prime}\right), \Phi\left(v_{1}^{\prime \prime}\right)$ in its interior (and hence exactly one in its exterior). Thus $C_{1}^{\prime \prime}$ contains exactly one of these faces in its interior, and one in its exterior. The same also applies to $C_{2}^{\prime \prime}$. We shall show that $C_{1}^{\prime \prime}$ and $C_{2}^{\prime \prime}$ are H_{1}-good. To show this, it suffices to show that they are removable. Let $H_{1}^{\prime \prime}=H_{1}^{\prime} \backslash E\left(C_{1}^{\prime \prime}\right)$, and let $v \in V\left(H_{1}^{\prime \prime}\right)$ be an arbitrary vertex where $d_{H_{1}^{\prime \prime}}(v) \geqslant 3$. Let $\mathcal{D}^{\prime}=\left(\mathcal{D} \backslash\left\{C_{1}^{\prime}, C_{2}^{\prime}\right\}\right) \cup\left\{C_{1}^{\prime \prime}, C_{2}^{\prime \prime}\right\}$. We note that \mathcal{D}^{\prime} contains at most one path since \mathcal{D} contains at most one path. Thus there is a cycle $C^{\prime} \in \mathcal{D}^{\prime} \backslash\left\{C_{1}^{\prime \prime}\right\}$ containing v, since $d_{H_{1}^{\prime \prime}}(v) \geqslant 3$. We have that $u, v \in V\left(C^{\prime}\right)$ and consequently u and v belong to the same block of $H_{1}^{\prime \prime}$. If $H_{1}^{\prime \prime}$ has no vertices v where $d_{H_{1}^{\prime \prime}}(v) \geqslant 3$, then $H_{1}^{\prime \prime}$ consists of a cycle plus possibly

Fig. 4. Swapping C_{1}^{\prime} and C_{2}^{\prime}.
some isolated vertices. In either case, $H_{1}^{\prime \prime}$ consists of one non-trivial block plus possibly some isolated vertices. This shows that $C_{1}^{\prime \prime}$ is removable in H_{1}^{\prime}, and the same applies to $C_{2}^{\prime \prime}$. We conclude that both $C_{1}^{\prime \prime}$ and $C_{2}^{\prime \prime}$ are H_{1}-good. However, this means that \mathcal{D}^{\prime} has more H_{1}-good cycles than \mathcal{D}, contradicting the maximality of \mathcal{D}.

From the above, we deduce that $\mathcal{D} \backslash\left\{C_{1}^{\prime}\right\}$ contains no cycles which contain w. Thus \mathcal{D} contains a path P^{\prime} which contains w. If C_{1}^{\prime} contains a vertex of P^{\prime} other than w or u, then we could swap C_{1}^{\prime} and P^{\prime} between two vertices so as to obtain an H_{1}-good cycle $C_{1}^{\prime \prime}$ and a removable path $P^{\prime \prime}$. Then $\left(\mathcal{D} \backslash\left\{C_{1}^{\prime}, P^{\prime}\right\}\right) \cup\left\{C_{1}^{\prime \prime}, P^{\prime \prime}\right\}$ would have more H_{1}-good cycles than \mathcal{D}, contradicting the maximality of \mathcal{D}. Thus C_{1}^{\prime} contains no such vertex, and in particular this means that C_{1}^{\prime} cannot contain both of the terminal vertices w_{0}, w_{t} of P^{\prime}. In particular, this means that $w_{0}, w_{t} \neq w$. However, since both terminal vertices have degree 5 , there is a cycle of $\mathcal{D} \backslash\left\{P^{\prime}, C_{1}^{\prime}\right\}$, say C_{2}^{\prime}, containing both of these vertices. Let $P^{\prime \prime}=C_{2}^{\prime}\left[w_{0} w_{t}\right]$. Then $H_{1}^{\prime \prime}=H_{1}^{\prime} \backslash E\left(C_{1}^{\prime}\right) \cup E\left(P^{\prime \prime}\right)$ is 2-connected, has no vertices of degree 3, and has no removable cycle which does not contain u. Thus by Lemma 2.3, $H_{1}^{\prime \prime}$ is the union of two good cycles, say $C_{2}^{\prime \prime}, C_{3}^{\prime \prime}$. Both $C_{2}^{\prime \prime}$ and $C_{3}^{\prime \prime}$ contain w_{0}, w_{t}, and at least one of them, say $C_{2}^{\prime \prime}$, contains w. We can swap C_{1}^{\prime} and $C_{2}^{\prime \prime}$ in H_{1}^{\prime} to obtain two H_{1}-good cycles $C_{1}^{\prime \prime}$ and $C_{2}^{\prime \prime \prime}$. If $C_{3}^{\prime \prime}$ is not H_{1}-good, then we can swap $C_{2}^{\prime \prime \prime}$ and $C_{3}^{\prime \prime}$ to obtain two H_{1}-good cycles. In either case, we obtain a H_{1}-good decomposition.

For a path in H_{1}^{\prime}, we call the corresponding subgraph in G_{1}^{\prime} a semi-bond. A decomposition of G_{1}^{\prime} consisting of two or more good bonds and at most one contractible semi-bond is said to be G_{1}-good if each of the bonds in the decomposition are G_{1}-good. That is, a decomposition of G_{1}^{\prime} is G_{1}-good if and only if the corresponding decomposition of H_{1}^{\prime} is H_{1}-good. The previous lemma immediately implies that we can find G_{1}-good decompositions in G_{1}^{\prime}.
5.2 Lemma. If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a minimal good separation, then there exists a G_{1}-good decomposition of G_{1}^{\prime}.

We shall need a slight refinement of the previous lemma.
5.3 Lemma. Suppose $|K|=6$ and $\left|K_{23}\right|=5$ where $K_{23}=v_{2} x y v_{3} w_{23}^{1} v_{2}$. Then one can choose a G_{1}-good decomposition consisting of bonds $B_{1 i}^{\prime}, i=1,2,3$ and semi-bond S so that $y v_{3} \notin S$.

Proof. Suppose $|K|=6$ and $\left|K_{23}\right|=5$. Let $e \in E\left(H_{1}^{\prime}\right)$ be the edge in H_{1}^{\prime} corresponding to $y v_{3}$. We can find a decomposition \mathcal{D} of H_{1}^{\prime} consisting of three good cycles $C_{i}^{\prime}, i=1,2,3$ and a removable path P^{\prime} where $e \notin E\left(P^{\prime}\right)$. We choose \mathcal{D} to have as many H_{1}-good cycles as possible subject to $e \notin E\left(P^{\prime}\right)$. We can now swap cycles and paths in the same way as was done in the proof of Lemma 5.1 to obtain the desired H_{1}-good decomposition.

6. Cross-bonds

For a good separation $\left\{v_{1}, v_{2}, v_{3}\right\}$, we call a bond B of G a cross-bond if either B is a good bond of G_{i}^{\prime} for $i=1$ or 2 , or $B \subseteq B_{1}^{\prime} \cup B_{2}^{\prime}$ where B_{i}^{\prime} is a good bond of G_{i}^{\prime} for $i=1$, 2 . A block of a graph is maximal connected subgraph which has no cut-vertex (separating vertex). Every graph has a unique block decomposition, where any two blocks share at most one vertex.

Claim 8. Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a minimal good separation of G and let B be a cross-bond of G.
(i) If $\left\langle v_{1}\right\rangle_{B},\left\langle v_{2}\right\rangle_{B}$, and $\left\langle v_{3}\right\rangle_{B}$ all belong to one block of G / B, then G / B is itself a block, and B is a good bond of G.
(ii) If no block of G / B contains all of $\left\langle v_{1}\right\rangle_{B},\left\langle v_{2}\right\rangle_{B}$, and $\left\langle v_{3}\right\rangle_{B}$, then G / B consists of exactly two blocks which meet at a cut-vertex of G / B which is one of $\left\langle v_{1}\right\rangle_{B},\left\langle v_{2}\right\rangle_{B}$, or $\left\langle v_{3}\right\rangle_{B}$.
(iii) If $\left\langle v_{i}\right\rangle_{B}=\left\langle v_{j}\right\rangle_{B}$ for some $i \neq j$, then G / B is itself a block, and B is a good bond of G.

Proof. Let B be a cross-bond. If B is a good bond of G_{i}^{\prime} for some i, then B is seen to be good in G and (i)-(iii) hold in this case. We suppose therefore that $B \subseteq B_{1}^{\prime} \cup B_{2}^{\prime}$ where B_{i}^{\prime} is a good bond of G_{i}^{\prime} for $i=1,2$. We let $B_{i}=B_{i}^{\prime} \cap E\left(G_{i}\right), i=1,2$.

We showed in Section 4 that $\operatorname{dist}_{G_{1}}\left(v_{i}, v_{j}\right)=2$, for some $i \neq j$. We can assume without loss of generality that $\operatorname{dist}_{G_{1}}\left(v_{1}, v_{3}\right)=2$ and $w_{13}^{i} \in V\left(G_{i}^{\prime}\right), i=1$, 2 . Now since B_{i}^{\prime} is contractible in G_{i}^{\prime}, it holds that $\left\langle v_{3}\right\rangle_{B_{i}^{\prime}} \neq\left\langle v_{1}\right\rangle_{B_{i}^{\prime}}\left(\right.$ since $w_{13}^{i} \in V\left(G_{i}^{\prime}\right)$). Thus $\left\langle v_{3}\right\rangle_{B_{i}} \neq$ $\left\langle v_{1}\right\rangle_{B_{i}}$ and not all the vertices $v_{i}, i=1,2,3$ contract into a single vertex in G / B_{i}. This also implies that $\left\langle v_{1}\right\rangle_{B \cap B_{1}} \neq\left\langle v_{3}\right\rangle_{B \cap B_{1}}$.

We shall first show that G / B contains no loops. Suppose that $e=x y \in E\left(G_{1}\right) \backslash B$ contracts into a loop $\langle e\rangle_{B}$ in G / B. Then $\langle X\rangle_{B}=\langle y\rangle_{B}$ and there is a path $P \subseteq G(B)$ between x and y. If $P \subseteq G_{1}$, then $\langle X\rangle_{B_{1}^{\prime}}=\langle y\rangle_{B_{2}^{\prime}}$, and consequently $\langle e\rangle_{B_{1}^{\prime}}$ would be a loop of G / B_{1}^{\prime}, a contradiction since B_{1}^{\prime} is good. Thus $P \nsubseteq G_{1}$ and a portion of P, say path Q, is contained in G_{2}. The path Q has terminal vertices v_{i} and v_{j} for some $i \neq j$. P is the union of three paths: $P=P_{1} \cup P_{2} \cup Q$ where we may assume that P_{1} has terminal vertices x and v_{i} and P_{2} has terminal vertices y and v_{j}. Since $Q \subseteq G_{2}$, it holds that $\left\langle v_{i}\right\rangle_{B_{2}^{\prime}}=\left\langle v_{j}\right\rangle_{B_{2}^{\prime}}$
and hence $w_{i j}^{2} \notin V\left(G_{2}^{\prime}\right)$. By the construction of G_{2}^{\prime}, it follows that $v_{i} v_{j} \in E\left(G_{2}^{\prime}\right)$, and hence $v_{i} v_{j} \in B_{2}^{\prime}$ since B_{2}^{\prime} is good (otherwise, edge $v_{i} v_{j}$ becomes a loop in $G_{2}^{\prime} / B_{2}^{\prime}$). Consequently, $v_{i} v_{j} \in B_{1}^{\prime}$, and $P_{1} \cup P_{2} \cup\left\{v_{i} v_{j}\right\}$ is a path in $G_{1}^{\prime}\left(B_{1}^{\prime}\right)$ between x and y. This would mean that $\langle e\rangle_{B_{1}^{\prime}}$ is a loop in $G_{1}^{\prime} / B_{1}^{\prime}$ yielding a contradiction (since B_{1}^{\prime} is good). If instead $e \in E\left(G_{2}\right) \backslash B$, then we obtain a contradiction with similar arguments. This shows that G / B contains no loops.

To show (i), suppose that $\left\langle v_{i}\right\rangle_{B}, i=1,2,3$ belong to the same block of G / B say X, and suppose that G / B has at least two blocks. Then G / B has another block Y which is not a loop and contains at most one of the vertices $\left\langle v_{i}\right\rangle_{B}, i=1,2,3$. Using the above, one can show that K is not a loop. Then Y contains a vertex $\langle a\rangle_{B}$ where $\langle a\rangle_{B} \notin V(X)$. Suppose that $a \in V\left(G_{1}\right)$. Since $G_{1}^{\prime} /\left(B_{1} \cap B\right)$ is 2-connected, $\langle a\rangle_{B_{1} \cap B},\left\langle v_{1}\right\rangle_{B_{1} \cap B}$, and $\left\langle v_{3}\right\rangle_{B_{1} \cap B}$ belong to the same block of $G_{1} /\left(B_{1} \cap B\right)$. However, since Y contains only at most one of the vertices $\left\langle v_{i}\right\rangle_{B}, i=1,2,3$, it must hold that $\left\langle v_{1}\right\rangle_{B}=\left\langle v_{3}\right\rangle_{B}$, yielding a contradiction. We conclude that $a \notin V\left(G_{1}\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$, and in a similar fashion, one can show that $a \notin V\left(G_{2}\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$. Thus no such vertex a exists, and hence no such block Y exists. We conclude that G / B is itself a block (hence 2 -connected), and thus B is good.

The above argument also shows that each block of G / B must contain at least two of the vertices $\left\langle v_{i}\right\rangle_{B}, i=1,2,3$. Thus if $\left\langle v_{i}\right\rangle_{B}=\left\langle v_{j}\right\rangle_{B}$ for some $i \neq j$, then G / B has only one block, itself, and hence B is good. This proves (iii).

If G / B has more than one block, then by the above argument it has exactly two blocks, separated by a vertex which is one of the vertices $\left\langle v_{i}\right\rangle_{B}, i=1,2,3$. This proves (ii).

Claim 9. Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a good separation and let B be a cross-bond of G. If for all $i \neq j,\left\langle v_{i}\right\rangle_{B} \neq\left\langle v_{j}\right\rangle_{B}$ and there exists a path from $\left\langle v_{i}\right\rangle_{B}$ to $\left\langle v_{j}\right\rangle_{B}$ in $(G / B) \backslash\left\langle v_{k}\right\rangle_{B}$ where $k \neq i, j$, then B is good.

Proof. Let B be a cross-bond, and suppose that $\forall i \neq j,\left\langle v_{i}\right\rangle_{B} \neq\left\langle v_{j}\right\rangle_{B}$ and there exists a path from $\left\langle v_{i}\right\rangle_{B}$ to $\left\langle v_{j}\right\rangle_{B}$ in $(G / B) \backslash\left\langle v_{k}\right\rangle_{B}$ where $k \neq i, j$. This implies that none of the vertices $\left\langle v_{i}\right\rangle_{B}, i=1,2,3$ are cut-vertices of G / B. According to Claim 8, B must be good.

7. Good separations of type 1

We suppose that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a minimal good separation which has type 1 . We have that $\operatorname{dist}_{G_{1}}\left(v_{i}, v_{j}\right)=2$ for some $i \neq j$. We can assume without loss of generality that $\operatorname{dist}_{G_{1}}\left(v_{1}, v_{3}\right)=2, w_{13}^{i} \in V\left(G_{i}^{\prime}\right)$, and $v_{1} v_{2}, v_{2} v_{3} \in E\left(G_{i}^{\prime}\right)$ for $i=1,2$. This we assume for the remainder of this section.

Claim 10. Given $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a good separation of type 1 and B is a cross-bond, we have that $\left\langle v_{1}\right\rangle_{B} \neq\left\langle v_{3}\right\rangle_{B}$, and $\left\langle v_{1}\right\rangle_{B}$ and $\left\langle v_{3}\right\rangle_{B}$ belong to the same block of G / B.

Proof. Let B be a cross-bond. We may assume that $B \subseteq B_{1}^{\prime} \cup B_{2}^{\prime}$ where B_{i}^{\prime} is contractible in G_{i}^{\prime} for $i=1,2$. We have that $\left\langle v_{1}\right\rangle_{B_{i}^{\prime}} \neq\left\langle v_{3}\right\rangle_{B_{i}^{\prime}}, i=1,2$, since B_{i}^{\prime} is contractible in
G_{i}^{\prime}. Thus $\left\langle v_{1}\right\rangle_{B_{i}} \neq\left\langle v_{3}\right\rangle_{B_{i}}, i=1,2$, and consequently, $\left\langle v_{1}\right\rangle_{B} \neq\left\langle v_{3}\right\rangle_{B}$. The bond B_{1}^{\prime} contains exactly 2 edges of the cycle $v_{1} v_{2} v_{3} w_{13}^{\prime} v_{1}$ and exactly one of the edges $v_{1} w_{13}^{\prime}$ or $v_{3} w_{13}^{\prime}$. As such, there is an edge in $G_{1} /\left(B \cap B_{1}\right)$ between $\left\langle v_{1}\right\rangle_{B \cap B_{1}}$ and $\left\langle v_{3}\right\rangle_{B \cap B_{1}}$. Since G_{2} is connected there is a path in $G_{2} /\left(B \cap B_{2}\right)$ from $\left\langle v_{1}\right\rangle_{B \cap B_{2}}$ to $\left\langle v_{3}\right\rangle_{B \cap B_{2}}$. Thus there is a cycle in G / B containing $\left\langle v_{1}\right\rangle_{B}$ and $\left\langle v_{3}\right\rangle_{B}$. This implies that $\left\langle v_{1}\right\rangle_{B}$ and $\left\langle v_{3}\right\rangle_{B}$ belong to the same block of G / B.

Claim 11. Given $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a good separation of type 1 and B is a cross-bond, if $v_{1} v_{2} \in B$ or $v_{2} v_{3} \in B$, then B is contractible.

Proof. If $v_{1} v_{2} \in B$, then $\left\langle v_{1}\right\rangle_{B}=\left\langle v_{2}\right\rangle_{B}$. By Claim $8, B$ is contractible. A similar conclusion holds if $v_{2} v_{3} \in B$.

Claim 12. Given $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a good separation of type 1 and B is a cross-bond, if there is a path from $\left\langle v_{1}\right\rangle_{B}$ to $\left\langle v_{2}\right\rangle_{B}$ in $(G / B) \backslash\left\langle v_{3}\right\rangle_{B}$ and a path from $\left\langle v_{2}\right\rangle_{B}$ to $\left\langle v_{3}\right\rangle_{B}$ in $(G / B) \backslash\left\langle v_{1}\right\rangle_{B}$, then B is good.

Proof. Let B be a cross-bond. Suppose that there is a path $\left\langle v_{1}\right\rangle_{B}$ to $\left\langle v_{2}\right\rangle_{B}$ in $(G / B) \backslash\left\langle v_{3}\right\rangle_{B}$ and a path from $\left\langle v_{2}\right\rangle_{B}$ to $\left\langle v_{3}\right\rangle_{B}$ in $(G / B) \backslash\left\langle v_{1}\right\rangle_{B}$. By Claim $10,\left\langle v_{1}\right\rangle_{B}$ and $\left\langle v_{3}\right\rangle_{B}$ belong to the same block of G / B. Thus there is a path from $\left\langle v_{1}\right\rangle_{B}$ to $\left\langle v_{3}\right\rangle_{B}$ in $(G / B) \backslash\left\langle v_{2}\right\rangle_{B}$. It now follows by Claim 9 that B is good.
7.1 Lemma. Let H be a 2-connected planar graph with girth at least 4 . If $E(H)$ is the edge-disjoint of two bonds $A_{i}=\left[X_{i}, Y_{i}\right], i=1,2$ then for $i=1,2$ the induced subgraph $G\left(A_{i}\right)$ is a forest with two components $G\left(X_{3-i}\right)$ and $G\left(Y_{3-i}\right)$.

Proof. We assume H has a plane embedding with f faces. Let $\varepsilon=|E(H)|$ and $v=|V(H)|$. Given that $E(H)$ is the disjoint union of two bonds $A_{i}=\left[X_{i}, Y_{i}\right] i=1,2$ we see that $A_{i}=E\left(G\left(X_{3-i}\right) \cup G\left(Y_{3-i}\right)\right) i=1,2$. For $i=1,2$ we have that $G\left(X_{i}\right)$ and $G\left(Y_{i}\right)$ are connected and thus $\left|E\left(G\left(X_{i}\right) \cup G\left(Y_{i}\right)\right)\right| \geqslant v-2, i=1,2$. Thus $\varepsilon=\left|A_{1}\right|+\left|A_{2}\right| \geqslant 2 v-4$. Let H^{*} be the geometric dual of H. The bonds A_{1} and A_{2} correspond to two cycles C_{1} and C_{2} in H^{*} which partition $E\left(H^{*}\right)$. Thus the maximum degree in H^{*} is at most 4 . However, since the girth of H is at least 4 , each face of H is bounded by a cycle of length at least 4. Thus the minimum degree in H^{*} is at least 4. It follows that H^{*} must be 4-regular. Thus $\varepsilon=\left|E\left(H^{*}\right)\right|=2\left|V\left(H^{*}\right)\right|=2 f$. Using Eulers formula, we have $v-\varepsilon+f=2$. Substituting $f=\frac{\varepsilon}{2}$ we obtain $\varepsilon=2 v-4$. Thus equality holds in the previous inequality, and this occurs only if for $i=1,2, G\left(A_{i}\right)$ is a forest with two components $G\left(X_{3-i}\right)$ and $G\left(Y_{3-i}\right)$.

7.1. The bonds $B_{i j}^{\prime}$

Lemma 2.3 implies that the dual H_{1}^{\prime} of G_{1}^{\prime} only has vertices of degree 2 or 4 . This means that G_{1}^{\prime} only has faces of size 2 or 4 . Since no multiple edges occur in G (by Claim 2),
all faces of G_{1}^{\prime} have size 4. By Lemma 5.2, G_{1}^{\prime} has a G_{1}-good decomposition $\left\{\mathbf{B}_{11}^{\prime}, \mathbf{B}_{12}^{\prime}\right\}$ where we may assume that $v_{1} v_{2} \in B_{11}^{\prime}$ and $v_{2} v_{3} \in B_{12}^{\prime}$. Let $\mathbf{B}_{1 j}^{\prime}=\left[\mathbf{P}_{1 j}^{\prime}, \mathbf{Q}_{1 j}^{\prime}\right], j=1,2$ where $v_{1} \in P_{11}^{\prime}$ (and $v_{2}, v_{3} \in Q_{11}^{\prime}$) and $v_{3} \in P_{12}^{\prime}$ (and $v_{1}, v_{2} \in Q_{12}^{\prime}$). Since the edges of G_{1}^{\prime} are partitioned by B_{11}^{\prime} and B_{12}^{\prime} we have that for $j=1,2 G_{1}^{\prime} / B_{1 j}^{\prime}$ is a multiple edge with endvertices $\left\langle v_{1}\right\rangle_{B_{l j}^{\prime}}$ and $\left\langle v_{3}\right\rangle_{B_{1 j}^{\prime}}$. We note also that since G_{1}^{\prime} is planar, Lemma 7.1 implies that each of the components $G\left(P_{1 j}^{\prime}\right)$ and $G\left(Q_{1 j}^{\prime}\right), j=1,2$ are trees.

The graph G_{2}^{\prime} has a good pair of bonds $\mathbf{B}_{21}^{\prime}=\left[\mathbf{P}_{21}^{\prime}, \mathbf{Q}_{21}^{\prime}\right]$ and $\mathbf{B}_{22}^{\prime}=\left[\mathbf{P}_{22}^{\prime}, \mathbf{Q}_{22}^{\prime}\right]$. For $i, j=1,2$ let

$$
\mathbf{P}_{i j}=\mathbf{P}_{i j}^{\prime} \cap \mathbf{V}\left(\mathbf{G}_{i}\right), \quad \mathbf{Q}_{i j}=\mathbf{Q}_{i j}^{\prime} \cap \mathbf{V}\left(\mathbf{G}_{i}\right), \quad \mathbf{B}_{i j}=\mathbf{B}_{i j}^{\prime} \cap \mathbf{E}\left(\mathbf{G}_{i}\right)
$$

7.2. Finding two good bonds

We shall show that G contains a good pair of bonds. If $P_{2 j}^{\prime} \subseteq V\left(G_{2}\right) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}, j=$ 1,2 , then B_{21} and B_{22} are seen to be a good pair of bonds in G. So we may assume without loss of generality that $P_{21}^{\prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\} \neq \emptyset$. We shall also assume that $P_{22}^{\prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\} \neq$ \emptyset. The case where the intersection is empty, B_{22}^{\prime} is a good bond of G, and this case is easier. We may assume that $v_{1} \in P_{21}^{\prime}$ (and $v_{2}, v_{3} \in Q_{21}^{\prime}$) and $v_{3} \in P_{22}^{\prime}\left(\right.$ and $\left.v_{1}, v_{2} \in Q_{22}^{\prime}\right)$. We note that since $\left\{B_{11}^{\prime}, B_{12}^{\prime}\right\}$ is a G_{1}-good decomposition, it holds that $P_{1 j} \backslash V(K) \neq \emptyset, j=1,2$.

By Lemma 7.1 we have that $G_{1}^{\prime}\left(Q_{1 j}^{\prime}\right)$ is a tree for $j=1,2$ (since G_{1}^{\prime} is planar). So for $j=1,2 ; G\left(Q_{1 j}\right) \backslash\left\{v_{2} v_{5-2 j}\right\}$ is a forest with 2 components. Let $Q_{l j}^{2}$ and $Q_{l j}^{5-2 j}$ be sets of vertices of these components where $v_{2} \in Q_{l j}^{2}$ and $v_{5-2 j} \in Q_{1 j}^{5-2 j}, j=1,2$. We define two cutsets

$$
\mathbf{C}_{21}=\left[\mathbf{P}_{21} \cup \mathbf{Q}_{12}^{1}, \overline{\mathbf{P}_{21} \cup \mathbf{Q}_{12}^{1}}\right]
$$

and

$$
\mathbf{C}_{22}=\left[\mathbf{P}_{22} \cup \mathbf{Q}_{11}^{3}, \overline{\mathbf{P}_{22} \cup \mathbf{Q}_{11}^{3}}\right] .
$$

Claim 13. If $P_{21} \neq\left\{v_{1}\right\}$, then the cutset C_{21} is a good bond in G.
Proof. Suppose $P_{21} \neq\left\{v_{1}\right\}$. We will first show that C_{21} is non-trivial. Clearly $P_{21} \cup Q_{12}^{\prime} \neq$ $\left\{v_{1}\right\}$, and $G\left(P_{21} \cup Q_{12}^{\prime}\right)$ is connected. To show that $G\left(\overline{P_{21} \cup Q_{12}^{\prime}}\right)$ is connected, we note that $Q_{12}^{2} \cup P_{12} \subseteq \overline{P_{21} \cup Q_{12}^{\prime}}$, and hence it suffices to show that $G\left(Q_{12}^{2} \cup P_{12}\right)$ is connected. Let $v_{2}^{\prime} \in N_{G_{1}}\left(v_{2}\right) \backslash\left\{v_{1}, v_{3}\right\}$. Then $v_{2}^{\prime} \in Q_{12}^{2} \cup P_{12}$. If $v_{12}^{\prime} \in Q_{12}^{2}$, then $\left\langle v_{2}^{\prime}\right\rangle_{B_{12}^{\prime}}=\left\langle v_{1}\right\rangle_{B_{12}^{\prime}}$, and consequently v_{2}^{\prime} is adjacent to at least one vertex of P_{12}, implying that $G\left(Q_{12}^{2} \cup P_{12}\right)$ is connected. If $v_{2}^{\prime} \in P_{12}$, then it is clear that $G\left(Q_{12}^{2} \cup P_{12}\right)$ is connected. This shows that $G\left(\overline{P_{21} \cup Q_{12}^{\prime}}\right)$ is connected, and C_{21} is a non-trivial bond. It is also a cross-bond since $C_{21} \subseteq B_{12}^{\prime} \cup B_{21}^{\prime}$. We will now show that C_{21} is good in G.

If $v_{1} v_{2} \in E(G)$, then $v_{1} v_{2} \in C_{21}$ and hence by Claim $11 C_{21}$ would be good. We may therefore assume that $v_{1} v_{2} \notin E(G)$. To show that C_{21} is good, Claim 12 implies that it
suffices to show that there is a path from $\left\langle v_{1}\right\rangle_{C_{21}}$ to $\left\langle v_{2}\right\rangle_{C_{21}}$ in $\left(G / C_{21}\right) \backslash\left\langle v_{3}\right\rangle_{C_{21}}$ and a path from $\left\langle v_{2}\right\rangle_{C_{21}}$ to $\left\langle v_{3}\right\rangle_{C_{21}}$ in $\left(G / C_{21}\right) \backslash\left\langle v_{1}\right\rangle_{C_{21}}$.

We shall first show that there is a path from $\left\langle v_{1}\right\rangle_{C_{21}}$ to $\left\langle v_{2}\right\rangle_{C_{21}}$ in $\left(G / C_{21}\right) \backslash\left\langle v_{3}\right\rangle_{C_{21}}$. Let $v_{2}^{\prime} \in N_{G_{1}}\left(v_{2}\right) \backslash\left\{v_{1}, v_{2}\right\}$. It holds that $v_{2}^{\prime} \in Q_{12}^{2} \cup P_{12}$. Suppose first that $v_{2}^{\prime} \in Q_{12}^{2}$. Then $\left\langle v_{2}^{\prime}\right\rangle_{B_{12}^{\prime}}=\left\langle v_{1}\right\rangle_{B_{12}^{\prime}}$, and hence there is a path from $\left\langle v_{2}^{\prime}\right\rangle_{C_{21}}$ to $\left\langle v_{1}\right\rangle_{C_{21}}$ in $\left(G / C_{21}\right) \backslash\left\langle v_{3}\right\rangle_{C_{21}}$. Suppose now that $v_{2}^{\prime} \in P_{21}$. Then $v_{2} v_{2}^{\prime} \in B_{12}$, and hence $v_{2}^{\prime} \in Q_{11}$. We have that $\left\langle v_{2}^{\prime}\right\rangle_{B_{11}^{\prime}}=$ $\left\langle v_{3}\right\rangle_{B_{11}^{\prime}}$, and consequently v_{2}^{\prime} is adjacent to at least one vertex of P_{11}, say $v_{2}^{\prime \prime}$. Then $\left\langle v_{2}^{\prime \prime}\right\rangle_{B_{12}^{\prime}}=$ $\left\langle v_{1}\right\rangle_{B_{12}^{\prime}}$, and thus $\left\langle v_{2}^{\prime \prime}\right\rangle_{B_{12}}=\left\langle v_{1}\right\rangle_{B_{12}}$. Consequently, there is a path from $\left\langle v_{2}^{\prime \prime}\right\rangle_{C_{21}}$ to $\left\langle v_{1}\right\rangle_{C_{21}}$ in $\left(G / C_{21}\right) \backslash\left\langle v_{3}\right\rangle_{C_{21}}$. Since no edges of $C_{2} 1$ are incident with v_{2}^{\prime}, it follows that $\left\langle v_{2}^{\prime}\right\rangle_{C_{21}} \neq$ $\left\langle v_{3}\right\rangle_{C_{21}}$. Thus we can find a path from $\left\langle v_{2}\right\rangle_{C_{21}}$ to $\left\langle v_{1}\right\rangle_{C_{21}}$ in $\left(G / C_{21}\right) \backslash\left\langle v_{3}\right\rangle_{C_{21}}$ via $\left\langle v_{2}^{\prime}\right\rangle_{C_{21}}$ and $\left\langle v_{2}^{\prime \prime}\right\rangle_{C_{21}}$. In both cases there is a path from $\left\langle v_{1}\right\rangle_{C_{21}}$ to $\left\langle v_{2}\right\rangle_{C_{21}}$ in $\left(G / C_{21}\right) \backslash\left\langle v_{3}\right\rangle_{C_{21}}$.

We shall now show that there is a path from $\left\langle v_{2}\right\rangle_{C_{21}}$ to $\left\langle v_{3}\right\rangle_{C_{21}}$ in $\left(G / C_{21}\right) \backslash\left\langle v_{1}\right\rangle_{C_{21}}$. Let $v_{2}^{\prime} \in N_{G_{2}}\left(v_{2}\right) \backslash\left\{v_{1}, v_{3}\right\}$. Then $v_{2}^{\prime} \in P_{21} \cup Q_{21}$. Suppose first that $v_{2}^{\prime} \in Q_{21}$. Then $\left\langle v_{2}^{\prime}\right\rangle_{B_{21}^{\prime}} \neq$ $\left\langle v_{1}\right\rangle_{B_{21}^{\prime}}$; for otherwise, the edge $v_{2} v_{2}^{\prime}$ would become a loop in $G_{2}^{\prime} / B_{21}^{\prime}$. If $\left\langle v_{2}^{\prime}\right\rangle_{B_{21}^{\prime}}=\left\langle v_{3}\right\rangle_{B_{21}^{\prime}}$, then there is a path from $\left\langle v_{2}\right\rangle_{C_{21}}$ to $\left\langle v_{3}\right\rangle_{C_{21}}$ in $\left(G / C_{21}\right) \backslash\left\langle v_{1}\right\rangle_{C_{21}}$. Otherwise, if $\left\langle v_{2}^{\prime}\right\rangle_{B_{21}^{\prime}} \neq$ $\left\langle v_{3}\right\rangle_{B_{21}^{\prime}}$, then since $G_{2}^{\prime} / B_{21}^{\prime}$ is 2-connected, there is a path from $\left\langle v_{2}^{\prime}\right\rangle_{B_{21}^{\prime}}$ to $\left\langle v_{3}\right\rangle_{B_{21}^{\prime}}$ in $\left(G_{2}^{\prime} / B_{21}^{\prime}\right) \backslash\left\langle v_{1}\right\rangle_{B_{21}^{\prime}}$. In this case there is a path from $\left\langle v_{2}\right\rangle_{C_{21}}$ to $\left\langle v_{3}\right\rangle_{C_{21}}$ in $\left(G / C_{21}\right) \backslash\left\langle v_{1}\right\rangle_{C_{21}}$. Suppose now that $v_{2}^{\prime} \in P_{21}$. If $\left\langle v_{2}^{\prime}\right\rangle_{B_{21}}=\left\langle v_{1}\right\rangle_{B_{21}}$, then $\left\langle v_{2}\right\rangle_{C_{21}}=\left\langle v_{2}^{\prime}\right\rangle_{C_{21}}=\left\langle v_{1}\right\rangle_{C_{21}}$. In this case, Claim 8 implies that C_{21} is good. We may therefore assume that $\left\langle v_{2}^{\prime}\right\rangle_{B_{21}} \neq\left\langle v_{1}\right\rangle_{B_{21}}$. Since $G_{2}\left(P_{21}\right)$ is connected, there is a vertex $v_{2}^{\prime \prime} \in N_{G_{2}}\left(v_{2}^{\prime}\right) \cap P_{21}$. Since G_{2}^{\prime} contains no triangles, it holds that $v_{2}^{\prime \prime} \neq v_{1}$. We also have that $\left\langle v_{2}^{\prime \prime}\right\rangle_{B_{21}^{\prime}} \neq\left\langle v_{2}^{\prime}\right\rangle_{B_{21}^{\prime}}$. Since $\left\langle v_{1}\right\rangle_{B_{21}^{\prime}}=\left\langle v_{2}\right\rangle_{B_{21}^{\prime}}=$ $\left\langle v_{2}^{\prime}\right\rangle_{B_{21}^{\prime}}$, we have that $\left\langle v_{2}^{\prime \prime}\right\rangle_{B_{21}^{\prime}} \neq\left\langle v_{1}\right\rangle_{B_{21}^{\prime}}$. If $\left\langle v_{2}^{\prime \prime}\right\rangle_{B_{21}^{\prime}}=\left\langle v_{3}\right\rangle_{B_{21}^{\prime}}$, then $\left\langle v_{2}^{\prime \prime}\right\rangle_{C_{21}}=\left\langle v_{3}\right\rangle_{C_{21}}$, and hence there is a path from $\left\langle v_{2}\right\rangle_{C_{21}}$ to $\left\langle v_{3}\right\rangle_{C_{21}}$ in $\left(G / C_{21}\right) \backslash\left\langle v_{1}\right\rangle_{C_{21}}$. If $\left\langle v_{2}^{\prime \prime}\right\rangle_{B_{21}^{\prime}} \neq\left\langle v_{3}\right\rangle_{B_{21}^{\prime}}$, then since $G_{2}^{\prime} / B_{21}^{\prime}$ is 2-connected, there is a path in $\left(G_{2}^{\prime} / B_{21}^{\prime}\right) \backslash\left\langle v_{1}\right\rangle_{B_{21}^{\prime}}$ from $\left\langle v_{2}^{\prime \prime}\right\rangle_{B_{21}^{\prime}}$ to $\left\langle v_{3}\right\rangle_{B_{21}^{\prime}}$. Thus there would be a path from $\left\langle v_{2}\right\rangle_{C_{21}}$ to $\left\langle v_{3}\right\rangle_{C_{21}}$ in $\left(G / C_{21}\right) \backslash\left\langle v_{1}\right\rangle_{C_{21}}$ (given that $\left\langle v_{2}\right\rangle_{C_{21}} \neq\left\langle v_{1}\right\rangle_{C_{21}}$. The proof of the claim now follows by Claim 12.

In the same way, one can show the following:
Claim 14. If $P_{22} \neq\left\{v_{3}\right\}$, then C_{22} is a good bond in G.

$$
\text { Let } \mathbf{B}_{1}=\left[\mathbf{P}_{11} \cup \mathbf{P}_{21}, \overline{\mathbf{P}_{11} \cup \mathbf{P}_{21}}\right] \text {, and } \mathbf{B}_{2}=\left[\mathbf{P}_{12} \cup \mathbf{P}_{22}, \overline{\mathbf{P}_{12} \cup \mathbf{P}_{22}}\right] \text {. }
$$

Claim 15. If B_{1} is a bond which is not good in G, then C_{21} and C_{22} are a good pair of bonds in G.

Proof. We suppose that B_{1} is a bond which is not good in G. The bond B_{1} is non-trivial since $P_{11} \backslash\left\{v_{1}\right\} \neq \emptyset$, and it is also a cross-bond. According to Claims 8 and $10, G / B_{1}$ consists of two blocks where one block contains $\left\langle v_{1}\right\rangle_{B_{1}}$ and $\left\langle v_{3}\right\rangle_{B_{1}}$. If $v_{1} v_{2} \in E(G)$, then $v_{1} v_{2} \in B_{1}$ and B_{1} would be contractible by Claim 11. So $v_{1} v_{2} \notin E(G)$. Since B_{1} is a bond, $G\left(Q_{11} \cup Q_{21}\right)$ is connected and consequently there is vertex $v_{2}^{\prime} \in N_{G}\left(v_{2}\right) \cap\left(Q_{11} \cup Q_{21}\right)$. Since $\left\langle v_{2}\right\rangle_{B_{i 1}^{\prime}}=\left\langle v_{1}\right\rangle_{B_{i 1}^{\prime}}, i=1,2$ we have that $\left\langle v_{2}^{\prime}\right\rangle_{B_{i 1}^{\prime}}=\left\langle v_{3}\right\rangle_{B_{i 1}^{\prime}}, i=1,2$ and consequently $\left\langle v_{2}^{\prime}\right\rangle_{B_{1}}=\left\langle v_{3}\right\rangle_{B_{1}}$. We deduce that there would be a path in $\left(G / B_{1}\right) \backslash\left\langle v_{1}\right\rangle_{B_{1}}$ from $\left\langle v_{2}^{\prime}\right\rangle_{B_{1}}$ to $\left\langle v_{3}\right\rangle_{B_{1}}$. Now Claim 8 implies that $\left\langle v_{2}\right\rangle_{B_{1}}$ and $\left\langle v_{3}\right\rangle_{B_{1}}$ belong to the same block of G / B_{1}.

Arguing in a similar way with v_{1} in place of v_{2}, we also deduce that $\left\langle v_{1}\right\rangle_{B_{1}}$ and $\left\langle v_{3}\right\rangle_{B_{1}}$ belong to the same block. Thus $\left\langle v_{3}\right\rangle_{B_{1}}$ is a cut-vertex of G / B_{1} which separates $\left\langle v_{1}\right\rangle_{B_{1}}$ and $\left\langle v_{2}\right\rangle_{B_{1}}$.

We wish to show that $P_{21} \neq\left\{v_{1}\right\}$. Since $\operatorname{hom}(G)$ is 3-connected, $\operatorname{hom}\left(G_{2}^{\prime}\right)$ is 3connected, and there is a path P from v_{2} to a vertex of $N_{G_{2}}\left(v_{1}\right)$ which avoids v_{1} and v_{3}. We have that $\left\langle v_{3}\right\rangle_{B_{1}} \in V\left(\langle P\rangle_{B_{1}}\right)$ as $\left\langle v_{3}\right\rangle_{B_{1}}$ is a cut-vertex in G / B_{1}. So for some vertex $z \in V(P)$ we have $\langle z\rangle_{B_{1}}=\left\langle v_{3}\right\rangle_{B_{1}}$. If $z \in P_{21}$, then $z \neq v_{1}$ and hence $P_{21} \neq\left\{v_{1}\right\}$. So we can assume that $z \notin P_{21}$. If $z \in N_{G_{2}}\left(v_{1}\right)$, then $z v_{1} \in B_{1}$ and hence $\left\langle v_{1}\right\rangle_{B_{1}}=\langle z\rangle_{B_{1}}=\left\langle v_{3}\right\rangle_{B_{1}}$. This gives a contradiction since $\left\langle v_{1}\right\rangle_{B_{1}} \neq\left\langle v_{3}\right\rangle_{B_{1}}$. On the other hand, if $z \notin N_{G_{2}}\left(v_{1}\right)$, then z is adjacent to some vertex in P_{21} since $\langle z\rangle_{B_{1}}=\left\langle v_{3}\right\rangle_{B_{1}}$. This means that $P_{21} \neq\left\{v_{1}\right\}$.

Since $P_{21} \neq\left\{v_{1}\right\}$, Claim 13 implies that C_{21} is a good bond. We now wish to show that $C_{22}=\left[P_{22} \cup Q_{11}^{3}, \overline{P_{22} \cup Q_{11}^{3}}\right]$ is a good bond. By Claim 14, it suffices to show that $P_{22} \neq\left\{v_{3}\right\}$. Since $\operatorname{hom}\left(G_{2}^{\prime}\right)$ is 3-connected, there is a path in $G_{2} \backslash\left\{v_{3}\right\}$ from v_{2} to v_{1}. Since $\left\langle v_{3}\right\rangle_{B_{1}}$ is a cut-vertex of G / B_{1} separating $\left\langle v_{1}\right\rangle_{B_{1}}$ and $\left\langle v_{2}\right\rangle_{B_{1}}$, it follows that $\left\langle v_{3}\right\rangle_{B_{1}} \in$ $V\left(\langle P\rangle_{B_{1}}\right)$. Thus there must be edges of B_{21} incident with v_{3}, and such edges belong to $G_{2}\left(P_{22}\right)$. We conclude that $P_{22} \neq\left\{v_{3}\right\}$ and thus C_{22} is good. This completes the proof of the claim.

We have a similar result for B_{2}, namely:
Claim 16. If B_{2} is a bond which is not good in G, then C_{21} and C_{22} are a good pair of bonds.

Claim 17. If B_{1} is not a bond, then C_{21} is good.
Proof. Suppose B_{1} is not a bond. Then $G\left(Q_{11} \cup Q_{21}\right)$ consists of two components; one containing v_{2} and the other v_{3}. Since $\operatorname{hom}\left(G_{2}^{\prime}\right)$ is 3-connected, there is a path in $G_{2} \backslash\left\{v_{1}\right\}$ from v_{2} to v_{3}. Such a path must contain vertices of $P_{21} \backslash\left\{v_{1}\right\}$ since $G_{2}\left(Q_{21}\right)$ is disconnected. This means that $P_{21} \neq\left\{v_{1}\right\}$, and consequently, C_{21} is a good bond by Claim 13.

In a similar fashion, one can show:
Claim 18. If B_{2} is not a bond, then C_{22} is good.
Claim 19. Given $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a minimal good separation which is of type $1, G$ has a pair of good bonds.

Proof. By Claims 15-18, if both B_{1} and B_{2} are bonds, then either B_{1} and B_{2} are a good pair of bonds, or C_{21} and C_{22} are a good pair of bonds. We can thus assume without loss of generality that B_{1} is not a bond and thus by Claim 17, C_{21} is a good bond. If B_{2} is not a bond, then Claim 18 implies that C_{22} is a good bond, in which case C_{21} and C_{22} are a good pair of bonds. We may thus assume that B_{2} is a bond, and B_{2} is good (otherwise, C_{12} and C_{22} are a good pair by Claims 16 and 17). Moreover, we may assume that $P_{22}=\left\{v_{3}\right\}$ for otherwise, C_{22} is good by Claim 14.

Since $B_{1}=\left[P_{11} \cup P_{21}, Q_{11} \cup Q_{21}\right]$ is not a bond, $G\left(Q_{11} \cup Q_{21}\right)$ consists of two components. We let Q^{2} and Q^{3} be the sets of vertices in the components containing v_{2}
and v_{3}, respectively. Since $P_{22}=\left\{v_{3}\right\}$ all edges incident with v_{3} in G_{2} belong to B_{22} and hence also to Q^{3}. It follows that $N_{G_{2}}\left(v_{3}\right) \subseteq Q^{3}$ and consequently $Q^{3} \backslash\left\{v_{3}\right\} \neq \emptyset$. Now $C=\left[Q^{3}, \overline{Q^{3}}\right]$ is clearly a non-trivial bond which is also a subset of B_{1} (and hence is also a cross-bond). To show that C is contractible, it suffices to show that there are paths from $\left\langle v_{2}\right\rangle_{C}$ to $\left\langle v_{1}\right\rangle_{C}$ in $(G / C) \backslash\left\langle v_{3}\right\rangle_{C}$ and from $\left\langle v_{2}\right\rangle_{C}$ to $\left\langle v_{3}\right\rangle_{C}$ in $(G / C) \backslash\left\langle v_{1}\right\rangle_{C}$. Let $v_{2}^{\prime} \in N_{G}\left(v_{2}\right) \backslash\left\{v_{1}, v_{3}\right\}$. If $v_{2}^{\prime} \in Q_{11}$, then $\left\langle v_{2}^{\prime}\right\rangle_{B_{11}}=\left\langle v_{3}\right\rangle_{B_{11}}$. In this case, we can find a path from $\left\langle v_{2}\right\rangle_{C}$ to $\left\langle v_{3}\right\rangle_{C}$ in $(G / C) \backslash\left\langle v_{1}\right\rangle_{C}$. If $v_{2}^{\prime} \in P_{11}$, then v_{2}^{\prime} is adjacent to a vertex $v_{2}^{\prime \prime} \in P_{11}$, where $v_{2}^{\prime \prime} \neq v_{1}$ (since $G_{1}\left(P_{11}\right)$ is connected and G_{1}^{\prime} contains no triangles). We have that $\left\langle v_{2}^{\prime}\right\rangle_{B_{11}}=\left\langle v_{2}\right\rangle_{B_{11}}$ and hence $\left\langle v_{2}^{\prime \prime}\right\rangle_{B_{11}}=\left\langle v_{3}\right\rangle_{B_{11}}$. In this case, we can also find a path from $\left\langle v_{2}^{\prime \prime}\right\rangle_{C}$ to $\left\langle v_{3}\right\rangle_{C}$ in $(G / C) \backslash\left\langle v_{1}\right\rangle_{C}$ and hence there is a path from $\left\langle v_{2}\right\rangle_{C}$ to $\left\langle v_{3}\right\rangle_{C}$ in $(G / C) \backslash\left\langle v_{1}\right\rangle_{C}$. To prove that there is a path from $\left\langle v_{2}\right\rangle_{C}$ to $\left\langle v_{1}\right\rangle_{C}$ in $(G / C) \backslash\left\langle v_{3}\right\rangle_{C}$, we first observe that $\operatorname{hom}\left(G_{2}^{\prime}\right)$ is 3 -connected, and thus there is a path P from v_{2} to v_{1} in $G_{2} \backslash\left\{v_{3},\right\}$. It follows that $\langle P\rangle_{C}$ does not contain $\left\langle v_{3}\right\rangle_{C}$, since no edges of B_{21} are incident with v_{3} (as $P_{22}=\left\{v_{3}\right\}$). Consequently, $\langle P\rangle_{C}$ contains a path from $\left\langle v_{2}\right\rangle_{C}$ to $\left\langle v_{1}\right\rangle_{C}$ in $(G / C) \backslash\left\langle v_{3}\right\rangle_{C}$. This shows that C is good, and we conclude that C and B_{2} are a good pair of bonds.

8. Good separations of type 3: part I

In this section, we shall assume that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a minimal good separation which has type 3. G_{1}^{\prime} has a plane representation where the cycle $K=v_{1} w_{12}^{1} v_{2} w_{23}^{1} v_{3} w_{13}^{1} v_{1}$ bounds the face F. By Lemma 5.2, the graph G_{1}^{\prime} has a $G_{1}-\operatorname{good}$ decomposition. There are two possibilities: either the decomposition consists of three G_{1}-good bonds, or it consists of three G_{1}-good bonds and a contractible semi-bond. We shall assume in this section that the former holds; that is, G_{1}^{\prime} has an G_{1}-good decomposition consisting of three G_{1}-good bonds $\mathbf{B}_{l j}^{\prime}=\left[P_{l j}^{\prime}, Q_{l j}^{\prime}\right], j=1,2,3$ where for $i=1,2,3$ we have $v_{i} \in P_{l j}^{\prime}$ if and only if $i=j$. For $j=1,2,3$ we let $\mathbf{P}_{1 j}=P_{l j}^{\prime} \cap V\left(G_{1}\right)$ and $\mathbf{Q}_{1 j}=\mathbf{Q}_{l j}^{\prime} \cap \mathbf{V}\left(\mathbf{G}_{1}\right)$. According to Lemma 2.5 , we may assume that every face of G_{1}^{\prime} is a 4 -face apart from the 6 -face bounded by K and possibly one other 6-face. The graph G_{2}^{\prime} has a good pair of bonds which we denote by $\mathbf{B}_{2 j}^{\prime}=\left[\mathbf{P}_{2 j}^{\prime}, \mathbf{Q}_{2 j}^{\prime}\right], j=1,2$. We let $\mathbf{P}_{2 j}=\mathbf{P}_{2 j}^{\prime} \cap \mathbf{V}\left(\mathbf{G}_{2}\right)$ and $\mathbf{Q}_{2 j}=\mathbf{Q}_{2 j}^{\prime} \cap \mathbf{V}\left(\mathbf{G}_{2}\right)$ for $j=1,2$. We can assume that $\left.\mid P_{2 j}^{\prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\}\right] \leqslant 1, j=1,2$. Since $\left\{B_{l j}: j=1,2,3\right\}$ is a G_{1}-good decomposition, we have $P_{1 i} \backslash V(K) \neq \emptyset, i=1,2,3$. We may assume that for at least one of the bonds $B_{2 j}^{\prime}=\left[P_{2 j}^{\prime}, Q_{2 j}^{\prime}\right], j=1,2$ that $P_{2 j}^{\prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\} \neq \emptyset$. For otherwise, $B_{2 j}=B_{2 j}^{\prime}, j=1,2$, would be a good pair of bonds of G. We may assume without loss of generality that $v_{1} \in P_{21}^{\prime}$ and $v_{2}, v_{3} \in Q_{21}^{\prime}$. Let $\mathbf{B}_{1}=\left[\mathbf{P}_{11} \cup \mathbf{P}_{21}, \mathbf{Q}_{11} \cup \mathbf{Q}_{21}\right]$.

The cutset B_{1} is a non-trivial bond; to see this, we have that $\operatorname{dist}_{G}\left(v_{2}, v_{3}\right)=2$, and as such there is a 2-path $v_{2} z v_{3}$ from v_{2} to v_{3}. If $z \in P_{11} \cup P_{21}$, then either $\left\langle v_{2}\right\rangle_{B_{11}^{\prime}}=\left\langle v_{3}\right\rangle_{B_{11}^{\prime}}$ or $\left\langle v_{2}\right\rangle_{B_{21}^{\prime}}=\left\langle v_{3}\right\rangle_{B_{21}^{\prime}}$, depending on whether $z \in P_{11}$ or $z \in P_{21}$. However, neither the former nor the latter can occur since B_{11}^{\prime} and B_{21}^{\prime} are good bonds in G_{1}^{\prime} and G_{2}^{\prime}, respectively. Thus $z \in Q_{11} \cup Q_{21}$, and this means that $G\left(Q_{11} \cup Q_{21}\right)$ is connected and B_{1} is a bond. The bond B_{1} is non-trivial since $P_{11} \backslash V(K) \neq \emptyset$. Let $\mathbf{G}_{2}^{\prime \prime}=\mathbf{G}_{2}^{\prime} \backslash\left\{\mathbf{w}_{23}^{2}\right\}$. We have that $G_{2}^{\prime \prime}$ is 2connected and therefore has a good pair of bonds $\mathbf{B}_{21}^{\prime \prime}=\left[\mathbf{P}_{21}^{\prime \prime}, \mathbf{Q}_{21}^{\prime \prime}\right]$ and $\mathbf{B}_{22}^{\prime \prime}=\left[\mathbf{P}_{22}^{\prime \prime}, \mathbf{Q}_{22}^{\prime \prime}\right]$.

Let

$$
\mathbf{V}_{i}=\left\{\mathbf{v} \in \mathbf{V}\left(\mathbf{G}_{1}\right):\langle\mathbf{v}\rangle_{\mathbf{B}_{11}}=\left\langle\mathbf{v}_{i}\right\rangle_{\mathbf{B}_{11}}\right\}, \quad i=1,2,3
$$

Claim 20. If B_{1} is not a good bond, then there is a good pair of bonds in G.
Proof. We suppose that B_{1} is not good. B_{1} is a cross-bond since $B_{1} \subseteq B_{11}^{\prime} \cup B_{21}^{\prime}$. Clearly $\left\langle v_{i}\right\rangle_{B_{1}} \neq\left\langle v_{j}\right\rangle_{B_{1}}, i \neq j$ since B_{11}^{\prime} is good in G_{1}^{\prime} and B_{21}^{\prime} is good in G_{2}^{\prime}. By Claim 8, B_{1} would be good. Therefore, we can assume that $\left\langle v_{1}\right\rangle_{B_{1}} \neq\left\langle v_{2}\right\rangle_{B_{1}},\left\langle v_{3}\right\rangle_{B_{1}}$. We have that $\operatorname{dist}_{G}\left(v_{1}, v_{j}\right)=2, j=1,2$ and in fact $d_{G_{1}}\left(v_{1}, v_{j}\right)=2, j=1,2$ since v_{1} and v_{j} belong to a 4 -face in G_{1}^{\prime}. Let $v_{1} x v_{2}$ be a path of length 2 from v_{1} to v_{2} in G_{1}. Then B_{11} and B_{12} each contain one of the edges $v_{1} x$ and $x v_{2}$, and consequently $\left\langle v_{1}\right\rangle_{B_{1}}$ and $\left\langle v_{2}\right\rangle_{B_{1}}$ are adjacent vertices in G / B_{1}. Similarly, $\left\langle v_{1}\right\rangle_{B_{1}}$ and $\left\langle v_{3}\right\rangle_{B_{1}}$ are adjacent vertices in G / B_{1}. Since B_{1} is not good, Claim 8 implies that G / B_{1} consists of two blocks; a block K_{1}^{\prime} containing $\left\langle v_{1}\right\rangle_{B_{1}}$ and $\left\langle v_{2}\right\rangle_{B_{1}}$ and a block K_{2}^{\prime} containing $\left\langle v_{1}\right\rangle_{B_{1}}$ and $\left\langle v_{3}\right\rangle_{B_{1}}$. The set of edges $\left\langle B_{12}^{\prime}\right\rangle_{B_{11}^{\prime}}$ is a bond in $G_{1}^{\prime} / B_{11}^{\prime}$. Thus $\left\langle B_{12}\right\rangle_{B_{1}} \subseteq E\left(K_{1}^{\prime}\right)$ or $\left\langle B_{12}\right\rangle_{B_{1}} \subseteq E\left(K_{2}^{\prime}\right)$. Since $\left\langle B_{12}\right\rangle_{B_{1}}$ contains an edge between $\left\langle v_{1}\right\rangle_{B_{1}}$ and $\left\langle v_{2}\right\rangle_{B_{1}}$, it must hold that $\left\langle B_{12}\right\rangle_{B_{1}} \subseteq E\left(K_{1}^{\prime}\right)$. Similarly, $\left\langle B_{13}\right\rangle_{B_{1}} \subseteq E\left(K_{2}^{\prime}\right)$. Since $E\left(G_{1}^{\prime}\right)=B_{11}^{\prime} \cup B_{12}^{\prime} \cup B_{13}^{\prime}$, it holds that $G_{1}^{\prime} /\left(B_{11}^{\prime} \cup B_{12}^{\prime}\right)$ and $G_{1}^{\prime} /\left(B_{13}^{\prime} \cup B_{12}^{\prime}\right)$ are multiple edges. Consequently, G / B_{11} consists of two multiple, one between $\left\langle v_{1}\right\rangle_{B_{11}}$ and $\left\langle v_{2}\right\rangle_{B_{11}}$, and the other between $\left\langle v_{1}\right\rangle_{B_{11}}$ and $\left\langle v_{3}\right\rangle_{B_{11}}$, each representing the portions of K_{1}^{\prime} and K_{2}^{\prime} in G_{1} / B_{11}, respectively. In particular, this means that there is no vertex $w_{23} \in V(G)$; that is, a vertex in G having exactly v_{2} and v_{3} as its neighbors. Consider $G_{2}^{\prime \prime}$. If $P_{2 i}^{\prime \prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\}=\emptyset, i=1,2$, then $B_{2 i}^{\prime \prime}, i=1,2$ is seen to be a good pair of bonds in G (since $w_{23} \notin V(G)$). We may therefore assume that $\left|P_{21}^{\prime \prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\}\right|=1$. We shall also assume that $\left|P_{22}^{\prime \prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\}\right|=1$, as the easier case when $P_{22}^{\prime \prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\}=\emptyset$ can be dealt with by similar arguments.

Since G_{1} / B_{11} consists of two multiple edges, it only has vertices $\left\langle v_{i}\right\rangle_{B_{11}}, i=1,2$, 3. If $v \in Q_{13}$, then $\langle v\rangle_{B_{11}} \neq\left\langle v_{3}\right\rangle_{B_{11}}$, since v and v_{3} are separated by the edges of B_{13} in G_{1}. Thus $v \notin V_{3}$ and hence $v \in V_{1} \cup V_{2}$. This means that $Q_{13} \subseteq V_{1} \cup V_{2}$. On the other hand, if $v \in P_{13}$, then $\langle v\rangle_{B_{11}} \neq\left\langle v_{1}\right\rangle_{B_{11}},\left\langle v_{2}\right\rangle_{B_{11}}$. Thus $v \notin V_{1} \cup V_{2}$, and hence $v \in V_{3}$. Since $P_{13} \cup Q_{13}=V_{1} \cup V_{2} \cup V_{3}$, it follows that $Q_{13}=V_{1} \cup V_{3}$ and $P_{13}=V_{3}$. By the same token, $Q_{12}=V_{1} \cup V_{3}$, and $P_{12}=V_{2}$.

Since the edges of $\left\langle B_{12}\right\rangle_{B_{11}}$ form a multiple edge between vertices $\left\langle v_{1}\right\rangle_{B_{11}}$ and $\left\langle v_{2}\right\rangle_{B_{11}}$, it follows that every edge of B_{12} has one endvertex in V_{1} and the other in V_{2}. Similarly, every edge of B_{13} has one endvertex in V_{1} and the other in V_{3} (Fig. 5).

Case 1: Suppose $v_{1} \in P_{21}^{\prime \prime} \cap P_{22}^{\prime \prime}$. Since $v_{1} \in P_{21}^{\prime \prime} \cap P_{22}^{\prime \prime}$, it must hold that for $i=1$ or $i=2$ that $w_{2} \in P_{2 i}^{\prime \prime}$ (recall from the definition of G_{2}^{\prime} that w_{2} is a vertex in G_{2}^{\prime} with neighbours v_{1}, v_{2}, and v_{3}). We may assume without loss of generality that $w_{2} \in P_{21}^{\prime \prime}$. Since $\left\langle v_{1}\right\rangle_{B_{1}}$ is a cut-vertex of G / B_{1}, it is clear that $V_{1} \neq\left\{v_{1}\right\}$. Let

$$
\mathbf{C}_{1}=\left[\left(\mathbf{P}_{11}^{\prime} \cup \mathbf{P}_{22}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}), \overline{\left(\mathbf{P}_{11}^{\prime} \cup \mathbf{P}_{22}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})}\right]
$$

and

$$
\mathbf{C}_{2}=\left[\left(\mathbf{V}_{1} \cup \mathbf{P}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}), \overline{\left(\mathbf{V}_{1} \cup \mathbf{P}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})}\right] .
$$

We shall consider two subcases:

Fig. 5.

Case 1.1: Suppose $G\left(Q_{11}\right)$ is connected. We wish to show that C_{1} and C_{2} is a good pair of bonds of G. Since $P_{11} \neq\left\{v_{1}\right\}$ and $G\left(Q_{11}\right)$ is connected (and hence $G\left(\overline{\left(P_{11}^{\prime} \cup P_{22}^{\prime \prime}\right) \cap V(G)}\right)$ is connected), we have that C_{1} is a non-trivial bond. Since $B_{21}^{\prime \prime}$ is a bond in $G_{2}^{\prime \prime}$, we have that $G_{2}^{\prime \prime}\left(Q_{21}^{\prime \prime}\right)$ is connected and hence $G_{2}\left(Q_{21}^{\prime \prime} \cap V(G)\right)$ is connected (because $\left.w_{2}, w_{23}^{2} \notin Q_{21}^{\prime \prime}\right)$. Thus C_{2} is a bond, and it is non-trivial since $V_{1} \neq\left\{v_{1}\right\}$.
(i) C_{1} is good. We will now show that C_{1} is good. If $\left\langle v_{2}\right\rangle_{C_{1}}=\left\langle v_{3}\right\rangle_{C_{1}}$, then C_{1} is clearly contractible since G_{1} / B_{11} consists of two multiple edges, one containing $\left\langle v_{1}\right\rangle_{B_{11}}$ and $\left\langle v_{2}\right\rangle_{B_{11}}$ and the other containing $\left\langle v_{1}\right\rangle_{B_{11}}$ and $\left\langle v_{3}\right\rangle_{B_{11}}$. We suppose therefore that $\left\langle v_{2}\right\rangle_{C_{1}} \neq$ $\left\langle v_{3}\right\rangle_{C_{1}}$. Since $B_{22}^{\prime \prime}$ is good in $G_{2}^{\prime \prime}$, it follows that $G_{2}^{\prime \prime} \backslash B_{2}^{\prime \prime}$ is connected and there is a path in $\left(G_{2}^{\prime \prime} / B_{22}^{\prime \prime}\right) \backslash\left\langle v_{1}\right\rangle_{B_{22}^{\prime \prime}}$ from $\left\langle v_{2}\right\rangle_{B_{22}^{\prime \prime}}$ to $\left\langle v_{3}\right\rangle_{B_{22}^{\prime \prime}}$. This means that there is a path in $\left(G / C_{1}\right) \backslash\left\langle v_{1}\right\rangle_{C_{1}}$ from $\left\langle v_{2}\right\rangle_{C_{1}}$ to $\left\langle v_{3}\right\rangle_{C_{1}}$. Thus C_{1} is good, since $\left\langle v_{i}\right\rangle_{C_{1}}, i=1,2,3$ are all seen to belong to the same block.
(ii) C_{2} is good. We will now show that C_{2} is good. Since all the edges of $B_{12} \cup B_{13}$ are incident with V_{1}, we have $C_{2} \cap E\left(G_{1}\right)=B_{12} \cup B_{13}$. Since $G\left(Q_{11}\right)$ is connected and contains only edges of $B_{12} \cup B_{13}$, it follows that $G_{1} /\left(B_{12} \cup B_{13}\right)$ is a multiple edge between $\left\langle v_{1}\right\rangle_{B_{12} \cup B_{13}}$ and $\left\langle v_{2}\right\rangle_{B_{12} \cup B_{13}}$. This together with the fact that $B_{21}^{\prime \prime}$ is contractible in G_{2} (where $\left.\left\langle v_{2}\right\rangle_{B_{21}^{\prime \prime}}=\left\langle v_{3}\right\rangle_{B_{21}^{\prime \prime}}\right)$ implies that C_{2} is contractible. This completes Case 1.1.

Case 1.2: Suppose that $G\left(Q_{11}\right)$ is not connected.
(i) C_{1} is good or there is a good pair of bonds. If $G\left(Q_{22}^{\prime \prime} \cap V(G)\right)$ is connected, then C_{1} is a non-trivial bond, and it can be shown to be contractible in the same way as in Case 1.1. If on the other hand $G\left(Q_{22}^{\prime \prime} \cap V(G)\right)$ is not connected, then it has two components, say $Q_{22}^{j}, \quad j=2,3$ where $v_{j} \in Q_{22}^{j}, j=2,3$. Then $C_{2}^{j}=\left[P_{1 j} \cup Q_{22}^{j}, \overline{P_{1 j} \cup Q_{22}^{j}}\right], j=2,3$ is seen to be a pair of bonds in G. Since $\operatorname{dist}_{G_{1}}\left(v_{1}, v_{3}\right)=2$, there is a path $v_{1} z v_{3}$ in G_{1}.

We have that $z \notin P_{12}$; for otherwise, $\left\langle v_{1}\right\rangle_{B_{12}^{\prime}}=\left\langle v_{2}\right\rangle_{B_{12}^{\prime}}$ and G / B_{12}^{\prime} would have a cut-vertex $\left\langle v_{1}\right\rangle_{B_{12}^{\prime}}$. If $z \in P_{11}$, then $\langle z\rangle_{C_{2}^{2}} \neq\left\langle v_{2}\right\rangle_{C_{2}^{2}}$, and hence there is a path from $\left\langle v_{1}\right\rangle_{C_{2}^{2}}$ to $\left\langle v_{3}\right\rangle_{C_{2}^{2}}$ in $\left(G / C_{2}^{2}\right) \backslash\left\langle v_{2}\right\rangle_{C_{2}^{2}}$.

Suppose $z \in Q_{11}$. If $\langle z\rangle_{C_{2}^{2}}=\left\langle v_{2}\right\rangle_{C_{2}^{2}}$, then there is a path P in $G\left(C_{2}^{2}\right)$ from z to v_{2}. Since P cannot cross B_{11}, we have that $P \subseteq G\left(Q_{11}\right)$. We see that $P \cup z v_{3}$ is a path in $G\left(Q_{11}\right)$ from v_{2} to v_{3}. However, $G\left(Q_{11}\right)$ is assumed to be disconnected, and therefore no such path exists. In this case, we conclude that if $z \in Q_{11}$, then $\langle z\rangle_{C_{2}^{2}} \neq\left\langle v_{2}\right\rangle_{C_{2}^{2}}$. Thus there is a path from $\left\langle v_{1}\right\rangle_{C_{2}^{2}}$ to $\left\langle v_{3}\right\rangle_{C_{2}^{2}}$ in $\left(G / C_{2}^{2}\right) \backslash\left\langle v_{2}\right\rangle_{C_{2}^{2}}$. One sees that C_{2}^{2} is contractible, and the same holds for C_{2}^{3}. In this case, we have a good pair of bonds. Thus we may assume that $G\left(Q_{22}^{\prime \prime} \cap V(G)\right)$ is connected and C_{1} is a good bond.
(ii) C_{2} is good. We have that C_{2} is a non-trivial bond of G (as in Case 1.1). If $\left\langle v_{2}\right\rangle_{C_{2}}=$ $\left\langle v_{3}\right\rangle_{C_{2}}$, then, as in Case 1.1, C_{2} is contractible. Suppose instead that $\left\langle v_{2}\right\rangle_{C_{2}} \neq\left\langle v_{3}\right\rangle_{C_{2}}$. Since $G\left(Q_{22}^{\prime \prime} \cap V(G)\right)$ is assumed to be connected, it contains a path P from v_{2} to v_{3}. Since the vertices of $Q_{22}^{\prime \prime} \cap V(G)$ are separated from v_{1} by the edges of $\left(B_{22}^{\prime \prime} \cup B_{11}^{\prime}\right) \cap E(G)$, any path from P to v_{1} must contain at least one edge from this set. Since C_{2} contains no such edges, we conclude that no path in $G\left(C_{2}\right)$ from P to v_{1} can exist. Consequently, $\left\langle v_{1}\right\rangle_{C_{2}} \notin\langle P\rangle_{C_{2}}$. This means that $\langle P\rangle_{C_{2}}$ contains a path from $\left\langle v_{2}\right\rangle_{C_{2}}$ to $\left\langle v_{3}\right\rangle_{C_{2}}$ in $\left(G / C_{2}\right) \backslash\left\langle v_{1}\right\rangle_{C_{2}}$. Thus C_{2} is good in G, and C_{1} and C_{2} is a good pair of bonds. This completes Case 1.2.

Case 2: Suppose $v_{1} \in P_{21}^{\prime \prime}$, and $v_{2} \in P_{22}^{\prime \prime}$. Let

$$
\mathbf{C}_{1}=\left[\left(\mathbf{P}_{11}^{\prime} \cup \mathbf{P}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}), \overline{\left(\mathbf{P}_{11}^{\prime} \cup \mathbf{P}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})}\right]
$$

and

$$
\mathbf{C}_{2}=\left[\left(\mathbf{P}_{12}^{\prime} \cup \mathbf{P}_{22}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}), \overline{\left(\mathbf{P}_{12}^{\prime} \cup \mathbf{P}_{22}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})}\right]
$$

We note first that $w_{2} \notin P_{21}^{\prime \prime}$ since $v_{2} \in P_{22}^{\prime \prime}$ (and likewise, $w_{2} \notin P_{22}^{\prime \prime}$. Similar to Case 1 , we can show that either C_{1} is a good bond, or we can find a good pair of bonds. We can therefore assume that C_{1} is a good bond, and it remains show that C_{2} is a good bond.

Since the edges of B_{13} are incident with V_{1} and V_{3}, and $P_{12}=V_{2}$, there is a path in $G_{1} \backslash P_{12}$ from v_{1} to v_{3}. We conclude that $G_{1} \backslash P_{12}$ is connected, and hence C_{2} is a bond. Moreover, C_{2} is non-trivial since $P_{12} \neq\left\{v_{2}\right\}$. We have that C_{2} is a cross-bond, and $\left\langle v_{i}\right\rangle_{C_{2}} \neq$ $\left\langle v_{j}\right\rangle_{C_{2}}, i \neq j$. Since $\operatorname{dist}_{G}\left(v_{1}, v_{2}\right)=\operatorname{dist}_{G}\left(v_{2}, v_{3}\right)=2$, we have that $\left\langle v_{1}\right\rangle_{C_{2}}\left\langle v_{2}\right\rangle_{C_{2}}$ and $\left\langle v_{2}\right\rangle_{C_{2}}\left\langle v_{3}\right\rangle_{C_{2}}$ are edges of G / C_{2}.

To show that C_{2} is good, it suffices(by Claim 9) to show that there is a path in $\left(G / C_{2}\right) \backslash$ $\left\langle v_{2}\right\rangle_{C_{2}}$ from $\left\langle v_{1}\right\rangle_{C_{2}}$ to $\left\langle v_{3}\right\rangle_{C_{2}}$ and since $P_{13} \backslash V(K) \neq \emptyset$. Since $G_{1}\left(P_{13}\right)$ is connected and contains only edges of B_{11}, (because $P_{13}=V_{3}$) there is an edge in $G_{1}\left(P_{13}\right)$ from v_{3} to a vertex $z \in P_{11}$. Since $G\left(P_{11}\right)$ is connected, it contains a path from z to v. Thus there is a path P from v_{1} to v_{3} in $G\left(P_{13} \cup P_{11}\right)$. Since any path from P to v in G_{1} must contain edges of $B_{11} \cup B_{13}$ there is no path in $G\left(C_{2}\right)$ from P to v_{2}. Thus $\left\langle v_{2}\right\rangle_{C_{2}} \notin\langle P\rangle_{C_{2}}$, we have that $\langle P\rangle_{C_{2}}$ contains the desired path from $\left\langle v_{1}\right\rangle_{C_{2}}$ to $\left\langle v_{3}\right\rangle_{C_{2}}$. This completes Case 2.

By similar arguments, one may deal with the case where $v_{1} \in P_{21}^{\prime \prime}$, and $v_{3} \in P_{22}^{\prime \prime}$. We have one remaining case:

Case 3: Suppose $v_{2} \in P_{21}^{\prime \prime}$, and $v_{3} \in P_{22}^{\prime \prime}$. Let

$$
\begin{aligned}
& \mathbf{C}_{2}=\left[\left(\mathbf{P}_{12}^{\prime} \cup \mathbf{P}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}), \overline{\left(\mathbf{P}_{12}^{\prime} \cup \mathbf{P}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})}\right] \\
& \mathbf{C}_{3}=\left[\left(\mathbf{P}_{13}^{\prime} \cup \mathbf{P}_{22}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}), \overline{\left(\mathbf{P}_{13}^{\prime} \cup \mathbf{P}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})}\right] .
\end{aligned}
$$

As in Case 2, we can show that C_{2} is a good bond, and in the same way, we can show that C_{3} is a good bond. Thus C_{2} and C_{3} is a good pair of bonds.

The proof of the claim follows from the consideration of Cases 1-3.
Remark. We observe that in the proof of the above claim, for each good bond C constructed, we have that $\left\langle v_{1}\right\rangle_{C} \neq\left\langle v_{2}\right\rangle_{C},\left\langle v_{3}\right\rangle_{C}$.

Claim 21. If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a minimal good separation which is of type 3 where G_{1}^{\prime} is the edge disjoint union of three good bonds, then G has a good pair of bonds.

Proof. From Claim 20, we may assume that B_{1} is a good bond. We may also assume that $P_{22}^{\prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\} \neq \emptyset$, for otherwise $B_{22}=B_{22}^{\prime}$ and B_{22} and B_{1} is a good pair of bonds. We may assume without loss of generality that $v_{2} \in P_{22}^{\prime}$ (and $v_{1}, v_{3} \in Q_{22}^{\prime}$). Let $\mathbf{B}_{2}=\left[\mathbf{P}_{12} \cup \mathbf{P}_{22}, \overline{\mathbf{P}_{12} \cup \mathbf{P}_{22}}\right]$. Similar to B_{1}, one can show that B_{2} is non-trivial, and if B_{2} is not good, then G has a good pair of bonds. So either B_{1} and B_{2} are a good pair of bonds, or we can find 2 other bonds which are a good pair.

9. Good separations of type 3: part II

In this section, we shall assume that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a minimal good separation which is of type 3 where G_{1}^{\prime} has a G_{1}-good decomposition consisting of three G_{1}-good bonds and a contractible semi-bond S. According to Lemma 2.5 , we can assume that G_{1}^{\prime} has only 4 -faces, with the exception of one 6 -face F (bounded by K) and two 5 -faces. Let

$$
\begin{array}{ll}
\mathbf{G}^{*}=\mathbf{G} / \mathbf{S}, & \mathbf{G}_{i}^{*}=\mathbf{G}_{i} / \mathbf{S}, \quad \mathbf{G}_{i}^{*}=\mathbf{G}_{i}^{\prime} / \mathbf{S}, \quad i=1,2, \\
\mathbf{v}_{i}^{*}=\left\langle\mathbf{v}_{i}\right\rangle_{S}, & i=1,2,3
\end{array}
$$

Claim 22. Suppose B^{*} is a contractible bond of G^{*}. Then $B=>B^{*}<S$ is seen to be a bond of G. If B is non-contractible, then for some $i \neq j,\left\langle v_{i}^{*}\right\rangle_{B^{*}}=\left\langle v_{j}^{*}\right\rangle_{B^{*}}$ and for $k=1,2$, the graph G_{k}^{*} contains a path $P_{k}^{*} \subset G^{*}\left(B^{*}\right)$ from v_{i}^{*} to v_{j}^{*}. In particular, $>P_{1}^{*}<S$ contains a path $P_{1} \subset K_{i j}$ of length three between v_{i} and v_{j}.

Proof. Suppose B^{*} is a contractible bond of G^{*}, and let $B=>B^{*}<s$. Then B is a bond, and we suppose that B is non-contractible. Since S is a contractible semi-bond, we have that $G \backslash S$ is connected and G / S is 2-connected. Thus Lemma 2.6 implies that G / B contains loops(and is 2-connected apart from these loops). Such loops belong to $\langle S\rangle_{B}$ since $G / B / S=G / S / B=G^{*} / B^{*}$ is 2-connected. Thus there is an edge $e=x y \in S$ and a
path $P \subseteq G(B)$ from x to y. We shall choose e and P such that $|P|$ is minimum. This means that $P \cup\{e\}$ is a cycle and $C^{*}=\langle P\rangle_{S}$ is a cycle containing $\langle X\rangle_{S}=\langle y\rangle_{S}$. Suppose $C^{*} \subset G_{1}^{*}$. If the regions inside and outside C^{*} contain vertices, then $\left\langle C^{*}\right\rangle_{B^{*}}$ is a cut-vertex of G^{*} / B^{*} which contradicts the contractibility of B^{*} in G^{*}. Thus C^{*} bounds a face of G_{1}^{*}. Lemma 2.7 implies that $\left|E\left(C^{*}\right) \cap B^{*}\right| \leqslant 2$. This means that $\left|E\left(C^{*}\right)\right|=2$, as $C^{*} \subseteq B^{*}$. Thus $|P|=2$ and $P \cup\{e\}$ is a triangle, contradicting the fact that G is triangle-free. We conclude that $C^{*} \not \subset G_{1}^{*}$. Thus for some $i \neq j, C^{*}$ contains a path $P_{1}^{*} \subset G_{1}^{*}$ from v_{i}^{*} to v_{j}^{*} and a path $P_{2}^{*} \subset G_{2}^{*}$ from v_{i}^{*} to v_{j}^{*}. Consider the cycle $P_{1}^{*} \cup\left\{w_{i j}^{1}, w_{i j}^{1} v_{i}^{*}, w_{i j}^{1} v_{j}^{*}\right\}$. Similar to the previous arguments, one deduces that the cycle bounds a face of G_{1}^{*} and $\left|P_{1}^{*}\right| \leqslant 2$. Thus $>P_{1}^{*}<S$ contains a path P_{1} of length at most 3 from v_{i} to v_{j} and $P_{1} \subset K_{i j}$. This path contains exactly one edge of S, namely e. Thus $K_{i j}$ contains exactly one edge of S (which is $e)$ and this means that $\left|K_{i j}\right|=5$, since S corresponds to a removable path P in H_{1}^{\prime} between two vertices of degree 5 . Consequently, $\left|P_{1}\right|=3$, and $\left|P_{1}^{*}\right|=2$.

Claim 23. Let B be a cross-bond of G not containing edges of S. If $B^{*}=\langle B\rangle_{S}$ is a contractible bond of G^{*}, then B is contractible in G.

Proof. Let B be a cross-bond of G not containing edges of S and let $B^{*}=\langle B\rangle_{S}$. Then B^{*} is a bond of G^{*}. Suppose that B^{*} is a contractible bond of G^{*}. If B is non-contractible in G, then Claim 22 implies that G_{2}^{*} contains a path with edges in B^{*} from v_{i}^{*} to v_{j}^{*} for some $i \neq j$. Since G_{2}^{*} contains no edges of S, such a path has only edges in B. Thus $\left\langle v_{i}\right\rangle_{B}=\left\langle v_{j}\right\rangle_{B}$ for some $i \neq j$. By Claim 8 and consequently, B is contractible in G.

The graph G_{1}^{\prime} has a G_{1}-good decomposition consisting of three good bonds, denoted by $\mathbf{B}_{l j}^{\prime}=\left[\mathbf{P}_{1 j}^{\prime}, \mathbf{Q}_{1 j}^{\prime}\right], j=1,2,3$, and a contractible semi-bond \mathbf{S}. The graph G_{2}^{\prime} has a good pair of bonds $\mathbf{B}_{2 j}^{\prime}=\left[\mathbf{P}_{2 j}^{\prime}, \mathbf{Q}_{2 j}^{\prime}\right], j=1,2$. For all $i \neq j$ let

$$
\begin{aligned}
& \mathbf{B}_{i j}=\mathbf{B}_{i j}^{\prime} \cap \mathbf{E}(\mathbf{G}), \quad \mathbf{P}_{i j}=\mathbf{P}_{i j}^{\prime} \cap \mathbf{V}(\mathbf{G}), \quad \mathbf{Q}_{i j}=\mathbf{Q}_{i j}^{\prime} \cap \mathbf{V}(\mathbf{G}), \\
& \mathbf{B}_{i j}^{* *}=\left\langle\mathbf{B}_{i j}^{\prime}\right\rangle_{S}, \quad \mathbf{P}_{i j}^{* *}=\left\langle\mathbf{P}_{i j}^{\prime}\right\rangle_{S}, \quad \mathbf{Q}_{i j}^{* *}=\left\langle\mathbf{Q}_{i j}^{\prime}\right\rangle_{S}, \\
& \mathbf{B}_{i j}^{*}=\left\langle\mathbf{B}_{i j}\right\rangle_{S}, \quad \mathbf{P}_{i j}^{*}=\left\langle\mathbf{P}_{i j}\right\rangle_{S}, \quad \mathbf{Q}_{i j}^{*}=\left\langle\mathbf{Q}_{i j}\right\rangle_{S}
\end{aligned}
$$

Since the decomposition $B_{i j}^{\prime}, j=1,2,3$ and S is G_{1}-good, we have that $P_{l j} \backslash V(K) \neq$ $\emptyset, j=1,2,3$. We may assume that for some $j \in\{1,2\}$ it holds that $\left|P_{2 j}^{\prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\}\right| \leqslant 1$. If $P_{2 j} \cap\left\{v_{1}, v_{2}, v_{3}\right\}=\emptyset, j=1,2$, then $B_{2 j}^{\prime}=B_{2 j}, j=1,2$ and these are a good pair of bonds of G. Consequently, we can assume that $P_{21} \cap\left\{v_{1}, v_{2}, v_{3}\right\} \neq \emptyset$, and $v_{1} \in P_{21}$. We shall also assume that $P_{22} \cap\left\{v_{1}, v_{2}, v_{3}\right\} \neq \emptyset$ as the case where $P_{22} \cap\left\{v_{1}, v_{2}, v_{3}\right\}=\emptyset$ is easier and can be dealt with using the same arguments. We may assume without loss of generality that $P_{22} \cap\left\{v_{1}, v_{2}, v_{3}\right\}=\left\{v_{3}\right\}$.

Let

$$
\mathbf{V}_{i}^{*}=\left\{\mathbf{v}^{*} \in \mathbf{V}\left(\mathbf{G}_{1}^{*}\right):\left\langle\mathbf{v}^{*}\right\rangle_{B_{11}^{*}}=\left\langle v_{i}^{*}\right\rangle_{B_{11}^{*}}\right\}, \quad \mathbf{V}_{i}=>\mathbf{V}_{i}^{*}<S, \quad i=1,2,3 .
$$

For $i=1,2,3$ let $\mathbf{Y}_{i}\left(\right.$ resp. $\left.\mathbf{Y}_{i}^{\prime}\right)$ be the vertices of the component in $G_{1}\left(B_{12} \cup B_{13}\right)$ (resp. $\left.G_{1}^{\prime}\left(B_{12}^{\prime} \cup B_{13}^{\prime}\right)\right)$ containing v_{i}. Let

$$
\mathbf{B}_{1}=\left[\mathbf{P}_{11} \cup \mathbf{P}_{21}, \mathbf{Q}_{11} \cup \mathbf{Q}_{21}\right] \quad \text { and } \quad \mathbf{B}_{2}=\left[\mathbf{P}_{13} \cup \mathbf{P}_{22}, \mathbf{Q}_{13} \cup \mathbf{Q}_{22}\right] .
$$

We shall first show that the bonds $B_{i}, i=1,2$ are cross-bonds of G. We have that $\left|K_{23}\right|=4$, or 5 . If $\left|K_{23}\right|=4$, then $E\left(K_{23}\right) \subset B_{12} \cup B_{13}$. Otherwise, if $\left|K_{23}\right|=5$, then $E\left(K_{23}\right) \subset B_{12} \cup B_{13} \cup S$. This means that K_{23} contains no edges of B_{11}^{\prime} and hence $V\left(K_{23}\right) \subset Q_{11}^{\prime}$. This implies that $G\left(Q_{11} \cup Q_{21}\right)$ is connected and B_{1} is a bond. Furthermore, B_{1} is non-trivial since $P_{11} \backslash V(K) \neq \emptyset$. Hence B_{1} is a cross-bond, and the same applies to B_{2}.

Claim 24. If $\left|K_{12}\right|=\left|K_{23}\right|=5$, then G has a good pair of bonds.
Proof. Suppose that $\left|K_{12}\right|=\left|K_{23}\right|=5$. Let $\mathbf{G}_{1}^{\prime \prime}$ be the graph obtained from G_{1}^{\prime} by deleting w_{12}^{1} and w_{23}^{1} and adding edges $v_{1} v_{2}$ and $v_{2} v_{3}$. Note that there is no 2-path $v_{1} w v_{2}$ in $G_{1}^{\prime \prime}$, for then $\left\{v_{1}, w, v_{2}\right\}$ would be a good separation, contradicting the minimality of $\left\{v_{1}, v_{2}, v_{3}\right\}$. Similarly, there is no 2-path between v_{2} and v_{3} in $G_{1}^{\prime \prime}$. Thus $G_{1}^{\prime \prime}$ is triangle-free.

As in Section 7, $G_{1}^{\prime \prime}$ has a good pair of bonds $\mathbf{B}_{1 j}^{\prime \prime}=\left[\mathbf{P}_{1 j}^{\prime \prime}, \mathbf{Q}_{1 j}^{\prime \prime}\right], j=1,2$ where $E\left(G_{1}^{\prime \prime}\right)=$ $B_{11} \cup B_{12}^{\prime \prime}$ and $v_{1} \in P_{11}^{\prime \prime}, v_{3} \in P_{12}^{\prime \prime}$. Let $\mathbf{D}_{j}=\left[\left(\mathbf{P}_{1 j}^{\prime \prime} \cup \mathbf{P}_{2 j}\right) \cap \mathbf{V}(\mathbf{G}), \overline{\left(\mathbf{P}_{1 j}^{\prime \prime} \cup \mathbf{P}_{2 j}\right) \cap \mathbf{V}(\mathbf{G})}\right], j=$ 1,2 . Since $\operatorname{dist}_{G}\left(v_{2}, v_{3}\right)=2$, there is a 2-path $v_{2} w v_{3}$ in G_{2}. Since B_{21}^{\prime} is good in G_{2}^{\prime}, we have $w \notin P_{21}^{\prime}$. Thus $w \in Q_{21}^{\prime}$, and D_{1} is seen to be a non-trivial bond, in fact a cross-bond. If D_{1} is not good, then as was shown in the proof of Claim 15, G / D_{1} would consist of two blocks; one containing $\left\langle v_{1}\right\rangle_{D_{1}}$ and $\left\langle v_{2}\right\rangle_{D_{1}}$ and the other containing $\left\langle v_{2}\right\rangle_{D_{1}}$ and $\left\langle v_{3}\right\rangle_{D_{1}}$. However, since $\operatorname{dist}_{G}\left(v_{1}, v_{2}\right)=2$, there is an edge between $\left\langle v_{1}\right\rangle_{D_{1}}$ and $\left\langle v_{2}\right\rangle_{D_{1}}$ in G / D_{1}. This would imply that $\left\langle v_{1}\right\rangle_{D_{1}},\left\langle v_{2}\right\rangle_{D_{1}},\left\langle v_{3}\right\rangle_{D_{1}}$ all belong to the same block in G / D_{1}-a contradiction. Thus D_{1} is good in G, and following similar reasoning, D_{2} is also good.

9.1. The case where B_{1} is non-contractible

If $\left|K_{23}\right|=5$, then we may assume that $\left|K_{12}\right|=4$ (by Claim 24). In this case, we shall assume (as guaranteed by Lemma 5.3) that the bonds $B_{1 i}^{\prime}, i=1,2,3$ and semi-bond S are chosen so that $y v_{3} \notin S$, given $K_{23}=v_{2} x y v_{3} w_{23}^{1} v_{2}$. On the other hand, if $\left|K_{12}\right|=5$, and $\left|K_{23}\right|=4$, then we shall choose the bonds $B_{1 i}^{\prime}, i=1,2,3$ and semi-bond S so that $y v_{1} \notin S$ where $K_{12}=v_{2} x y v_{1} w_{12}^{1} v_{2}$.

Suppose that B_{1} is non-contractible. As in Part I, Claim 8 implies that G / B_{1} consists of two blocks, one containing $\left\langle v_{1}\right\rangle_{B_{1}}$ and $\left\langle v_{2}\right\rangle_{B_{1}}$ and the other containing $\left\langle v_{1}\right\rangle_{B_{1}}$ and $\left\langle v_{3}\right\rangle_{B_{1}}$. This means that $\left\langle v_{1}\right\rangle_{B_{1}}$ is a cut-vertex of G / B_{1} and hence $w_{23} \notin V(G)$. Since B_{1} is not contractible and is a cross-bond, Claim 23 implies that $B_{1}^{*}=\left\langle B_{1}\right\rangle_{S}$ is a non-contractible bond of G^{*}. This in turn implies that G_{1}^{*} / B_{11}^{*} consists of two multiple edges; one between $\left\langle v_{1}^{*}\right\rangle_{B_{11}^{*}}$ and $\left\langle v_{2}^{*}\right\rangle_{B_{11}^{*}}$, and another between $\left\langle v_{1}^{*}\right\rangle_{B_{11}^{*}}$ and $\left\langle v_{3}^{*}\right\rangle_{B_{11}^{*}}$. Thus G_{1}^{*} / B_{11}^{*} has exactly 3 vertices $\left\langle v_{i}^{*}\right\rangle_{B_{11}^{*}}, i=1,2,3$. As in Part I , we have that $V_{1}^{*} \cup V_{2}^{*}=Q_{13}^{*}, V_{2}^{*}=P_{12}^{*}$, and $B_{12}^{*} \cup B_{13}^{*}=\left[V_{1}^{*}, V\left(G_{1}^{*}\right) \backslash V_{1}^{*}\right]$. Clearly $V_{1} \neq\left\{v_{1}\right\}$, as $\left\langle v_{1}\right\rangle_{B_{1}}$ is a cut-vertex of G / B_{1}.

As was done in the proof of Claim 20, we define the graph $\mathbf{G}_{2}^{\prime \prime}=\mathbf{G}_{2}^{\prime} \backslash \mathbf{w}_{23}^{2}$. The graph $G_{2}^{\prime \prime}$ has a good pair of bonds $\mathbf{B}_{21}^{\prime \prime}=\left[\mathbf{P}_{2 j}^{\prime \prime}, \mathbf{Q}_{2 j}^{\prime \prime}\right], j=1,2$, where $\left|P_{2 j}^{\prime \prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\}\right| \leqslant 1$. We may assume that for some $j=1,2$ it holds that $\left|P_{2 j}^{\prime \prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\}\right|=1$, for otherwise $B_{2 j}^{\prime \prime}, j=1,2$ would be a good pair of bonds of $G\left(\right.$ since $\left.w_{23} \notin V(G)\right)$. We shall assume that $\left|P_{2 j}^{\prime \prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\}\right|=1$, for both $j=1,2$; the case where it holds for only one of $j=1$ or $j=2$ is easily handled by the same arguments.

Claim 25. If B_{1} is non-contractible and $\left|K_{23}\right|=5$, then G contains a good pair of bonds.
Proof. Suppose B_{1} is non-contractible and $\left|K_{23}\right|=5$. Then there is no path from v_{2} to v_{3} in Q_{11}. Let $K_{23}=v_{2} x y v_{3} w_{23}^{1} v_{2}$ and $P_{1}=K_{23} \backslash w_{23}^{1}$. By assumption, the bonds $B_{1 i}^{\prime}, i=1,2,3$ and the semi-bond S are chosen so that $y v_{3} \notin S$.

Recall the definition of $Y_{i}, i=1,2,3$. We shall first show that $Y_{2} \neq Y_{3}$. Suppose on the contrary that $Y_{2}=Y_{3}$. Then there is a path Q in $G\left(B_{12} \cup B_{13}\right)$ connecting v_{2} and v_{3}. We may assume that v_{1} lies outside the region R bounded by the cycle $Q \cup v_{2} w_{23}^{1} v_{3}$. For any vertex v lying in the interior of R, it holds that any path from v to v_{1} must intersect Q, and hence it must intersect vertices of Q_{11}. Thus $v \notin P_{11}$, for otherwise there would be a path in $G_{1}\left(P_{11}\right)$ from v to v_{1} which does not intersect Q_{11}. Consequently, R contains no vertices of P_{11} and hence no edges of B_{1}.

Since the cycle $Q \cup v_{2} w_{23}^{1} v_{3}$ contains no edges of S, R must contain the other 5-face which is bounded by a 5 -cycle, say $x_{1} x_{2} x_{3} x_{4} x_{5} x_{1}$ where $x_{1} x_{2} \in S$. For $i=1, \ldots, 5$ we have that $\left\langle x_{i}\right\rangle_{B_{1} \cup S}$ is one of the vertices $\left\langle v_{i}\right\rangle_{B_{1} \cup S}, i=1,2,3$. The cycle $x_{1} x_{2} x_{3} x_{4} x_{5} x_{1}$ contains no edges of B_{1} since R contains no edges of B_{1}. We have that two of the vertices $x_{1}, x_{3}, x_{4}, x_{5}$ contract to the same vertex in $G_{1} / B_{1} \cup S$. Suppose $\left\langle x_{1}\right\rangle_{B_{1} \cup S}=\left\langle x_{4}\right\rangle_{B_{1} \cup S}$. Then there is a path Q_{1} in $G\left(B_{11} \cup S\right)$ from x_{1} to x_{4}. Now any path in $G\left(B_{1} \cup S\right)$ from x_{3} to v_{1}, v_{2}, or v_{3} must intersect Q_{1}, in which case $\left\langle x_{3}\right\rangle_{B_{1} \cup S}=\left\langle x_{1}\right\rangle_{B_{1} \cup S}=\left\langle x_{4}\right\rangle_{B_{1} \cup S}$, yielding a contradiction. Thus $\left\langle x_{1}\right\rangle_{B_{1} \cup S} \neq\left\langle x_{4}\right\rangle_{B_{1} \cup S}$, and by similar reasoning $\left\langle x_{3}\right\rangle_{B_{1} \cup S} \neq\left\langle x_{5}\right\rangle_{B_{1} \cup S}$. Thus the vertices $\left\langle x_{1}\right\rangle_{B_{1} \cup S},\left\langle x_{3}\right\rangle_{B_{1} \cup S},\left\langle x_{4}\right\rangle_{B_{1} \cup S},\left\langle x_{5}\right\rangle_{B_{1} \cup S}$ are all different, yielding a contradiction. Thus no such path Q exists, and $Y_{2} \neq Y_{3}$.

We define C_{1} and C_{2} as follows (see Fig. 6): let

$$
\mathbf{C}_{1}=\left[\left(\mathbf{V}_{1} \cup \mathbf{P}_{21}\right), \overline{\mathbf{V}_{1} \cup \mathbf{P}_{21}}\right]
$$

and

$$
\mathbf{C}_{2}=\left[\mathbf{Y}_{3} \cup \mathbf{P}_{22}, \overline{\mathbf{Y}_{3} \cup \mathbf{P}_{22}}\right] .
$$

9.1.1. C_{1} is good

We will first show that C_{1} is a bond by showing that $G\left(\overline{V_{1} \cup P_{21}}\right)$ is connected. Since $\operatorname{dist}_{G}\left(v_{2}, v_{3}\right)=2$, there is a 2-path $v_{2} w v_{3}$ in G. This 2-path does not belong to G_{1}, for otherwise $\left\{v_{2}, w, v_{3}\right\}$ would be a good separation of G, contradicting the minimality of $\left\{v_{1}, v_{2}, v_{3}\right\}$. Thus the 2-path belongs to G_{2}. We have that $w \notin P_{21}$, for otherwise $\left\langle v_{2}\right\rangle_{B_{21}^{\prime}}=$ $\left\langle v_{3}\right\rangle_{B_{21}^{\prime}}$, contradicting the fact that B_{21}^{\prime} is good. So $w \in Q_{21}$ and consequently, $G\left(Q_{21}\right)$ is connected and C_{1} is a non-trivial bond.

Fig. 6.

Let $C_{1}^{*}=\left\langle C_{1}\right\rangle_{S}$. We have that $C_{1}^{*} \cap E\left(G_{1}^{*}\right)=B_{12}^{*} \cup B_{13}^{*}$, and seeing as $G_{1}^{*} /\left(B_{12}^{*} \cup B_{13}^{*}\right)$ is a multiple edge with vertices $\left\langle v_{1}^{*}\right\rangle_{B_{12}^{*}} \cup B_{13}^{*}$ and $\left\langle v_{2}^{*}\right\rangle_{B_{12}^{*} \cup B_{13}^{*}}$, it follows that C_{1}^{*} is a contractible bond of G^{*}. Since $C_{1}^{*} \cap G_{2}^{*}=B_{21}^{*}$, and $\left\langle v_{i}^{*}\right\rangle_{B_{21}^{*}} \neq\left\langle v_{j}^{*}\right\rangle_{B_{21}^{*}}, \forall i \neq j$, it follows that for $i \neq j, G_{2}^{*}$ contains no path in $G^{*}\left(C_{1}^{*}\right)$ from v_{i}^{*} to v_{j}^{*}. Thus Claim 22 implies that C_{1} must be contractible in G and hence is a good bond.

9.1.2. C_{2} is good

We shall now show that C_{2} is a good bond. To show that C_{2} is a non-trivial bond, we note first that $\operatorname{dist}_{G}\left(v_{1}, v_{2}\right)=2$, and there is a path $v_{1} z v_{2}$ between v_{1} and v_{2}. We have that $Y_{3} \cap P_{11}=\emptyset$ since every path from v_{3} to P_{11} in G_{1} contains an edge of B_{11}. Suppose $z \in Y_{3}$. Then $z \notin P_{11}$ and thus $z v_{2} \in B_{12} \cup B_{13} \cup S$. Clearly $z v_{2} \notin S$, for otherwise $v_{1}^{*} v_{2}^{*}$ would be an edge of G_{1}^{*}. Thus $z v_{2} \in B_{12} \cup B_{13}$ and this implies $v_{2} \in Y_{2}$, which is impossible since $Y_{2} \cap Y_{3}=\emptyset$. We conclude that $z \notin Y_{3}$. If $z \in P_{22}$, then $\left\langle v_{1}\right\rangle_{B_{22}}=\left\langle v_{2}\right\rangle_{B_{22}}$, which is impossible since $\left\langle v_{i}\right\rangle_{B_{22}^{\prime}} \neq\left\langle v_{j}\right\rangle_{B_{22}^{\prime}}, \forall i \neq j$. From this and the above, we conclude that $z \in \overline{Y_{3} \cup P_{22}}$ and thus $G\left(\overline{Y_{2} \cup P_{22}}\right)$ is connected, and C_{2} is a bond of G. Furthermore, since S was chosen so that $v_{3} y \notin S$, it holds that $v_{3} y \in B_{12} \cup B_{13}$. Thus $y \in Y_{3}$, and C_{2} is non-trivial.

To show that C_{2} is contractible, we will first show that it is a cross-bond. Let

$$
\mathbf{C}_{12}^{\prime}=\left[\mathbf{Y}_{3}^{\prime}, \mathbf{V}\left(\mathbf{G}_{1}^{\prime}\right) \backslash \mathbf{Y}_{2}^{\prime}\right], \quad \mathbf{C}_{22}^{\prime}=\mathbf{B}_{22}^{\prime}, \quad \mathbf{C}_{2}^{*}=\left\langle\mathbf{C}_{2}\right\rangle_{S}
$$

For $i=1,2$ let

$$
\mathbf{C}_{i 2}=\mathbf{C}_{2} \cap \mathbf{E}\left(\mathbf{G}_{i}\right), \quad \mathbf{C}_{i 2}^{\prime *}=\left\langle\mathbf{C}_{i 2}^{\prime}\right\rangle_{S}, \quad \mathbf{C}_{i 2}^{*}=\left\langle\mathbf{C}_{i 2}\right\rangle_{S} .
$$

To show C_{2} is a cross-bond, it suffices to show that $C_{i 2}^{\prime}, i=1,2$ is contractible in G_{i}^{\prime}. We have that $C_{22}^{\prime}=B_{22}^{\prime}$ is a contractible bond of G_{2}^{\prime}. It remains to show that C_{12}^{\prime} is contractible
in G_{1}^{\prime}. Since $C_{12}^{*} \subseteq B_{11}^{*}$, and $B_{11}^{* *}$ is contractible in $G_{1}^{* *}$, it follows that C_{12}^{*} is contractible in $G_{1}^{* *}$. Let $T=S \backslash C_{12}$. Let $H=>G_{1}^{*}<_{T}$ and let $C=>C_{12}^{*}<_{T}$. We have that $H \backslash T$ is connected and $(H / C) / T=(H / T) / C=G_{1}^{*} / C_{12}^{*}$. Thus $(H / C) / T$ is 2-connected, and according to Lemma 2.6, either H / C is 2 -connected or it contains loops. If H / C is 2-connected, then $G_{1}^{\prime} / C_{12}^{\prime}$ is 2-connected since $H / C=G_{1}^{\prime} / C_{12}^{\prime}$. We suppose therefore that H / C contains loops. Then there is an edge $f \in T, f=w z$, and a path Q in H from w to z with $E(Q) \subseteq C$. Choose f and Q such that the region bounded by $Q \cup f$ is minimal. Then $Q \cup f$ is a cycle. Since H / C is 2-connected apart from loops, it follows that $Q \cup f$ bounds a face of H. By Lemma 2.7, Q has at most two edges. If $|Q|=2$, then $Q \cup\{f\}$ is a triangle. Since G_{1}^{\prime} is triangle-free, the edges of $>E(Q) \cup\{f\}<_{(S \backslash T)}$ belong to a cycle D in G_{1}^{\prime} where $|D| \geqslant 4$ and C_{12}^{\prime} contains all the edges of D except $\{f\}$. By Lemma 2.7, D cannot bound a face of G_{1}^{\prime} since it contains at least three edges of a bond of G (i.e. C_{2}). Thus D contains vertices in both its interior and exterior. Since the vertices of $D^{*}=\langle D\rangle_{S}$ are contracted together in $G_{1}^{*} / C_{12}^{* *}$, it follows that $G_{1}^{*} / C_{12}^{* *}$ would have a cut-vertex. This contradicts the fact that C_{12}^{*} is contractible in $G_{1}^{* *}$. We conclude that such a path Q cannot exist, and consequently H / C has no loops. This in turn implies that C_{12}^{\prime} is contractible in G_{1}^{\prime} and C_{2} is a cross-bond of G.

To show that C_{2} is contractible in G_{1}, it suffices to show (by Claim 9) that for all $i \neq j$, there is a path from $\left\langle v_{i}\right\rangle_{C_{2}}$ to $\left\langle v_{j}\right\rangle_{C_{2}}$ in $\left(G / C_{2}\right) \backslash\left\langle v_{k}\right\rangle_{C_{2}}$ where $k \neq i, j$. Given that $C_{12} \subset B_{11} \cup S$, there are paths from $\left\langle v_{1}\right\rangle_{C_{2}}$ to $\left\langle v_{2}\right\rangle_{C_{2}}$ in $\left(G / C_{2}\right) \backslash\left\langle v_{3}\right\rangle_{C_{2}}$ and from $\left\langle v_{1}\right\rangle_{C_{2}}$ to $\left\langle v_{3}\right\rangle_{C_{2}}$ in $\left(G / C_{2}\right) \backslash\left\langle v_{2}\right\rangle_{C_{2}}$. It remains to show that there is a path from $\left\langle v_{2}\right\rangle_{C_{2}}$ to $\left\langle v_{3}\right\rangle_{C_{2}}$ in $\left(G / C_{2}\right) \backslash\left\langle v_{1}\right\rangle C_{2}$. Recall that C_{1} is assumed to be a non-trivial (contractible) bond. This means that $G_{2}\left(Q_{21}\right)$ is connected and there is a path Q in $G_{2}\left(Q_{21}\right)$ from v_{2} to v_{3}. No vertex of Q contracts to v_{1} in G_{2} / B_{22} as every path from Q to v_{1} must contain an edge from B_{21}. Thus $\langle Q\rangle_{C_{2}}$ contains a path from $\left\langle v_{2}\right\rangle_{C_{2}}$ to $\left\langle v_{3}\right\rangle_{C_{2}}$ in $\left(G / C_{2}\right) \backslash\left\langle v_{1}\right\rangle_{C_{2}}$. This shows that C_{2} is contractible in G.

From the above, we have that C_{1} and C_{2} are good pair of bonds. This completes the proof of the claim.

Claim 26. If B_{1} is not contractible, then G contains a good pair of bonds.
Proof. Suppose that B_{1} is non-contractible. By the previous claim, we may assume that $\left|K_{23}\right|=4$. As was done in Section 7, define $G_{2}^{\prime \prime}=G_{2}^{\prime} \backslash\left\{w_{23}^{2}\right\}$, and let $B_{21}^{\prime \prime}=\left[P_{21}^{\prime \prime}, Q_{21}^{\prime \prime}\right]$ and $B_{22}^{\prime \prime}=\left[P_{22}^{\prime \prime}, Q_{22}^{\prime \prime}\right]$ be a good pair of bonds for $G_{2}^{\prime \prime}$. We may assume that $\left|P_{21}^{\prime \prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\}\right|=$ 1 and $\left|P_{22}^{\prime \prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\}\right|=1$ (the easier case where $P_{21}^{\prime \prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\}=\emptyset$ can be dealt with by similar arguments). We shall examine a few cases.

Case 1: Suppose $v_{1} \in P_{21}^{\prime \prime}$ and $v_{1} \in P_{22}^{\prime \prime}$. By definition, G_{2}^{\prime} has a vertex w_{2} whose neighbours are v_{1}, v_{2}, and v_{3}. Thus $w_{2} \in V\left(G_{2}^{\prime \prime}\right)$ and we may assume that $w_{2} \in P_{21}^{\prime \prime}$. Let

$$
\mathbf{C}_{1}=\left[\left(\mathbf{P}_{11}^{\prime} \cup \mathbf{P}_{22}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}), \overline{\left(\mathbf{P}_{11}^{\prime} \cup \mathbf{P}_{22}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})}\right]
$$

and

$$
\mathbf{C}_{2}=\left[\left(\mathbf{V}_{1} \cup \mathbf{P}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}), \overline{\left(\mathbf{V}_{1} \cup \mathbf{P}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})}\right]
$$

Let $\mathbf{C}_{i}^{*}=\left\langle\mathbf{C}_{i}\right\rangle_{S}, i=1,2$. Using the same arguments in the proof of Claim 20 (Case 1), one can show that $C_{i}^{*}, i=1,2$ are contractible in G^{*}. We have that $B_{11}^{* *}$ is a contractible bond in $G_{1}^{\prime *}$ and thus $\left\langle v_{i}\right\rangle_{B_{11}^{* *}} \neq\left\langle v_{j}\right\rangle_{B_{11}^{\prime *}}, \forall i \neq j$. Consequently, $\left\langle v_{i}^{*}\right\rangle_{B_{11}^{*}} \neq\left\langle v_{j}^{*}\right\rangle_{B_{11}^{*}}, \forall i \neq j$. Since $C_{1}^{*} \cap E\left(G_{1}^{*}\right)=B_{11}^{*}$, we have that for all $i \neq j$ there is no path in $G_{1}^{*}\left(C_{1}^{*}\right)$ from v_{i}^{*} to v_{j}^{*}. It follows by Claim 22, that C_{1} is contractible in G. We may therefore assume that C_{2} is not contractible in G.

Now Claim 22 implies that for some $i \neq j$ it holds that $\left\langle v_{i}^{*}\right\rangle_{C_{2}^{*}}=\left\langle v_{j}^{*}\right\rangle_{C_{2}^{*}}$. Since $\left\langle v_{1}^{*}\right\rangle_{C_{2}^{*}} \neq$ $\left\langle v_{2}^{*}\right\rangle_{C_{2}^{*}},\left\langle v_{3}^{*}\right\rangle_{C_{2}^{*}}$, it follows that $\left\langle v_{2}^{*}\right\rangle_{C_{2}^{*}}=\left\langle v_{3}^{*}\right\rangle_{C_{2}^{*}}$, and there is a path $P_{1}^{*}=v_{2}^{*} u^{*} v_{3}^{*}$ in $G_{1}^{*}\left(C_{2}^{*}\right)$. According to Claim 22, there is a path $P_{1} \subset>P_{1}^{*}<S$ having length 3 where $P_{1} \subset K_{23}$ and thus $\left|K_{23}\right|=5$. However, we are assuming that $\left|K_{23}\right|=4$, and we have a contradiction. Thus C_{2} is contractible and C_{1} and C_{2} are a good pair of bonds. This completes the proof of Case 1 .

Case 2: Suppose $v_{1} \in P_{21}^{\prime \prime}$ and $v_{2} \in P_{22}^{\prime \prime}$. Let

$$
\mathbf{C}_{i}=\left[\left(\mathbf{P}_{1 i}^{\prime} \cup \mathbf{P}_{2 i}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}), \overline{\left(\mathbf{P}_{1 i}^{\prime} \cup \mathbf{P}_{2 i}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})}\right], \quad \mathbf{C}_{i}^{*}=\left\langle\mathbf{C}_{i}\right\rangle_{S}, \quad i=1,2
$$

(i) C_{1} is good. One can show that $G_{1}^{*}\left(Q_{11}^{*}\right)$ is connected, and hence C_{1}^{*} is a bond. Using the same arguments as given in the proof of Claim 20 (Case 1.1), one can show that C_{1}^{*} is a contractible bond of G^{*}. Since $C_{1}^{*} \cap E\left(G_{1}^{*}\right)=B_{11}^{*}$ and $\left\langle v_{i}^{*}\right\rangle_{B_{11}^{*}} \neq\left\langle v_{j}^{*}\right\rangle_{B_{11}^{*}}, \forall i \neq j$, it follows by Claim 22 that C_{1} is contractible in G.
(ii) C_{2} is good. The bond C_{2} is seen to be a cross-bond of G. We shall now show that C_{2} is contractible in G. If $P_{13}^{*} \backslash\langle V(K)\rangle_{S} \neq \emptyset$, then it follows from the arguments in the proof of Claim 20 (Case 2) that C_{2}^{*} is contractible in G^{*}. In this case, Claim 23 implies that C_{2} is contractible.

We may therefore assume that $P_{13}^{*} \backslash\langle V(K)\rangle_{S}=\emptyset$. This means that all edges incident with v_{3} in $G_{1} \backslash E(K)$ belong to $S \cup B_{13}$. We have for $j=1,3$ that $\operatorname{dist}_{G_{1}^{*}}\left(v_{2}^{*}, v_{j}^{*}\right)=2$ and $\left\langle v_{2}^{*}\right\rangle_{C_{2}^{*}}\left\langle v_{j}^{*}\right\rangle_{C_{2}^{*}}$ is an edge of G^{*} / C_{2}^{*} for $j=1,3$. Thus there are paths from $\left\langle v_{2}\right\rangle_{C_{2}}$ to $\left\langle v_{1}\right\rangle_{C_{2}}$ in $\left(G / C_{2}\right) \backslash\left\langle v_{3}\right\rangle_{C_{2}}$ and from $\left\langle v_{2}\right\rangle_{C_{2}}$ to $\left\langle v_{3}\right\rangle_{C_{2}}$ in $\left(G / C_{2}\right) \backslash\left\langle v_{1}\right\rangle_{C_{2}}$. Since C_{2} is a cross-bond, to show that C_{2} is contractible it suffices to show that there is a path from $\left\langle v_{1}\right\rangle_{C_{2}}$ to $\left\langle v_{3}\right\rangle_{C_{2}}$ in $\left(G / C_{2}\right) \backslash\left\langle v_{2}\right\rangle_{C_{2}}$. We suppose that no such path exists. This means that G_{1} / B_{12} consists of two blocks between $\left\langle v_{2}\right\rangle_{B_{12}}$ and $\left\langle v_{j}\right\rangle_{B_{12}}$, for $j=1,3$, the corresponding blocks in G_{1}^{*} / B_{12}^{*} being multiple edges. This means that for each vertex $v^{*} \in Q_{13}^{*}$ either $\left\langle v^{*}\right\rangle_{B_{12}^{*}}=\left\langle v_{1}^{*}\right\rangle_{B_{12}^{*}}$ or $\left\langle v^{*}\right\rangle_{B_{12}^{*}}=\left\langle v_{2}^{*}\right\rangle_{B_{12}^{*}}$. We shall show that this cannot happen. Since $\left|K_{23}\right|=4$, there is a path $P_{1} \stackrel{12}{=} v_{2} z_{1} v_{3} \subset K_{23}$. Since all edges incident with v_{3} in $G \backslash E(K)$ belong to $S \cup B_{13}$, we have that $v_{3} z_{1} \in B_{13}$, and hence $v_{2} z_{1} \in B_{12}$. Thus $\left\langle z_{1}\right\rangle_{B_{11}}=\left\langle v_{1}\right\rangle_{B_{11}}$ (since B_{1} is not contractible).

Suppose $\left|K_{13}\right|=4$, then there is a path $P_{2}=v_{1} z_{2} v_{3} \subset K_{13}$ where $z_{2} v_{3} \notin B_{11}$ (since $\left.P_{13}^{*} \backslash\langle V(K)\rangle_{S}=\emptyset\right)$. Then $v_{1} z_{2} \in B_{11}, v_{3} z_{2} \in B_{13}$, and $\left\langle z_{2}\right\rangle_{B_{11}}=\left\langle v_{1}\right\rangle_{B_{11}}$. We have that $\left\langle z_{2}\right\rangle_{B_{12}}=\left\langle v_{2}\right\rangle_{B_{12}}$; otherwise there would be a path from $\left\langle v_{1}\right\rangle_{B_{2}}$ to $\left\langle v_{3}\right\rangle_{B_{2}}$ in $\left(G / B_{2}\right) \backslash\left\langle v_{2}\right\rangle_{B_{2}}$ in which case we are done. Since $\left\langle z_{i}\right\rangle_{B_{11}}=\left\langle v_{1}\right\rangle_{B_{11}}$ for $i=1,2$ there is a path $L_{1} \subset G_{1}\left(B_{11}\right)$ from z_{1} to z_{2}. Let R_{1} be the region of G_{1}^{\prime} bounded by $L_{1} \cup\left\{v_{3}, z_{1} v_{3}, z_{2} v_{3}\right\}$ which does not contain v_{2}. Similarly, since $\left\langle z_{i}\right\rangle_{B_{12}}=\left\langle v_{2}\right\rangle_{B_{12}}, i=1,2$, there is a path $L_{2} \subset G_{1}\left(B_{12}\right)$ from z_{1} to z_{2}. Since for each vertex $v^{*} \in Q_{13}^{*}$ we have that $v^{*} \in V_{1}^{*} \cup V_{2}^{*}$, it follows that for each $v \in V\left(L_{2}\right)$ which lies inside R_{1} or on $L_{1},\langle v\rangle_{S} \in V_{1}^{*}$. This holds since any path from v to v_{2} must contain vertices of L_{1} (and $V\left(L_{1}\right) \subset V_{1}$) and consequently $\langle v\rangle_{S} \notin V_{2}^{*}$

Fig. 7.
(see Fig. 7). The above implies that R_{1} contains no edges of L_{2}, for both endvertices of such edges would contract to $\left\langle v_{1}^{*}\right\rangle_{B_{11}^{*}}$ in G_{1}^{*} / B_{11}^{*}, producing a loop. We now define R_{2} to be the region bounded by $L_{2} \cup\left\{v_{3}, z_{1} v_{3}, z_{2} v_{3}\right\}$ which does not contain v_{1}. Similar to R_{1}, the region R_{2} contains no edges of L_{1}. However, since G_{1}^{\prime} is planar, we cannot meet both of the requirements that R_{1} contains no edges of L_{2}, and R_{2} contains no edges of L_{1}. So in this case, C_{2} must be contractible.

Suppose $\left|K_{13}\right|=5$. Let $K_{13}=v_{1} w z_{2} v_{3} w_{13}^{1} v_{1}$. We have that either $\langle w\rangle_{B_{12}}=\left\langle v_{2}\right\rangle_{B_{12}}$ or $\left\langle z_{2}\right\rangle_{B_{12}}=\left\langle v_{2}\right\rangle_{B_{12}}$. We have that $v_{1} w \in B_{11} \cup S$ (since $P_{13}^{*} \backslash\langle V(K)\rangle_{S}=\emptyset$). Suppose $v_{1} w \in$ S. Then $\langle w\rangle_{B_{12}} \neq\left\langle v_{2}\right\rangle_{B_{12}}$ (otherwise $\left\langle v_{1}^{*}\right\rangle_{B_{12}^{*}}=\left\langle v_{2}^{*}\right\rangle_{B_{12}^{*}}$). Thus we have that $\left\langle z_{2}\right\rangle_{B_{12}}=$ $\left\langle v_{2}\right\rangle_{B_{12}}, z_{2} v_{3} \in B_{13}$, and hence $z_{2} w \in B_{11}$. Then there is a path $L_{1} \subset G_{1}\left(B_{11} \cup S\right)$ from z_{1} to z_{2}. Let R_{1} be the region bounded by $L_{1} \cup\left\{v_{3}, z_{1} v_{3}, z_{2} v_{3}\right\}$ which does not contain v_{2}. Since $\left\langle z_{1}\right\rangle_{B_{12}}=\left\langle z_{2}\right\rangle_{B_{12}}=\left\langle v_{2}\right\rangle_{B_{12}}$, there is a path $L_{2} \subset G_{1}\left(B_{12}\right)$ from z_{1} to z_{2}. Let R_{2} be the region bounded by $L_{2} \cup\left\{v_{3}, z_{1} v_{3}, z_{2} v_{3}\right\}$ which does not contain v_{1}. As before, R_{1} cannot contains edges of L_{2}, and R_{2} cannot contain edges of $L_{1} \cup B_{11}$. However, since G_{1}^{\prime} is planar, both of these requirements cannot be met simultaneously. In this case, C_{2} must be contractible.

If $v_{1} w \in B_{11}$, then one can argue in a similar fashion as in the above. Having considered all cases, we conclude that C_{2} must be contractible, and hence good. This completes Case 2.

If $v_{1} \in P_{21}^{\prime \prime}$ and $v_{3} \in P_{22}^{\prime \prime}$, then we can find two contractible bonds via similar arguments as used in Case 2. There is one remaining case:

Case 3: Suppose $v_{2} \in P_{21}^{\prime \prime}$ and $v_{3} \in P_{22}^{\prime \prime}$. Let

$$
\mathbf{C}_{1}=\left[\left(\mathbf{P}_{12}^{\prime} \cup \mathbf{P}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}), \overline{\left(\mathbf{P}_{12}^{\prime} \cup \mathbf{P}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})}\right]
$$

and

$$
\mathbf{C}_{2}=\left[\left(\mathbf{P}_{13}^{\prime} \cup \mathbf{P}_{22}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}), \overline{\left(\mathbf{P}_{13}^{\prime} \cup \mathbf{P}_{22}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})}\right]
$$

The sets C_{1} and C_{2} are seen to be cross-bonds of G. One can show that C_{1} and C_{2} are contractible bonds of G using the same arguments as given in Case 2. Consequently, C_{1} and C_{2} is a good pair of bonds. This completes Case 3.

The proof of the claim now follows from Cases 1-3.
Similar to the above we have:
Claim 27. If B_{2} is non-contractible, then G contains a good pair of bonds.
To conclude this section, we have
Claim 28. If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a minimal good separation which is of type 3 where G_{1}^{\prime} is the edge-disjoint union of three good bonds and a contractible semi-bond, then G has a good pair of bonds.

Proof. By Claims 26 and 27, either B_{1} and B_{2} are a good pair of bonds, or we can find another good pair of bonds.

10. Separating sets of type 2

In this section, we shall assume that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a minimal good separation which has type 2 . We shall assume that $\operatorname{dist}_{G}\left(v_{1}, v_{j}\right)=2, j=2,3$ and $\operatorname{dist}_{G}\left(v_{2}, v_{3}\right) \neq 2$.

10.1. The case $v_{2} v_{3} \in E(G)$

Claim 29. If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a minimal good separation which is of type 2 , and $v_{2} v_{3} \in E(G)$, then G has a good pair of bonds.

Proof. We suppose that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a separating set of type 2 where $v_{2} v_{3} \in E(G)$. The graph G_{2}^{\prime} has a good pair of bonds $B_{2 j}^{\prime}=\left[P_{2 j}^{\prime}, Q_{2 j}^{\prime}\right], j=1,2$. If $P_{2 j}^{\prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\}=$ $\emptyset, j=1,2$, then $B_{2 j}=B_{2 j}^{\prime}, j=1,2$ is a good pair bonds of G. We may therefore assume that $P_{21}^{\prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\} \neq \emptyset$. We shall also assume that $P_{22}^{\prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\} \neq \emptyset$, as the case where the intersection is empty is easier and follows from the same arguments. By Lemma 5.2, $E\left(G_{1}^{\prime}\right)$ is the edge-disjoint union of two G_{1}-good bonds $B_{l j}^{\prime}=\left[P_{l j}^{\prime}, Q_{1 j}^{\prime}\right], j=1,2$ and a contractible semi-bond S.

We consider two cases:
Case 1: Suppose for $j=1,2$ that $v_{1} \in P_{2 j}^{\prime}$, and $v_{2}, v_{3} \in Q_{2 j}^{\prime}$. We have that the dual H_{1}^{\prime} contains no good cycle which avoids u (corresponding to the face F in G_{1}^{\prime}). Lemma 2.4 implies that H_{1}^{\prime} has a decomposition consisting of two good cycles C_{1}^{\prime} and C_{2}^{\prime}, and a removable path P^{\prime}. The vertex u is incident with two digons and an edge e, where e corresponds to the edge $v_{2} v_{3}$. By Lemma 2.4, P^{\prime} can be chosen so that it contains e, and consequently, $e \notin E\left(C_{i}^{\prime}\right), i=1,2$. The cycles $C_{i}^{\prime}, i=1,2$ correspond to good bonds $B_{i}^{\prime}=\left[P_{1 i}^{\prime}, Q_{1 i}^{\prime}\right]$ in $G_{1}^{\prime}, i=1,2$. Since $e \notin E\left(C_{i}^{\prime}\right), i=1,2$ we have that $v_{2} v_{3} \notin B_{i}^{\prime}, i=$ 1, 2. Thus we may assume that $v_{1} \in P_{1 i}^{\prime}$, (and $v_{2}, v_{3} \in Q_{1 i}^{\prime}$, for $i=1,2$, and $P_{1 i} \neq$
$\left\{v_{1}\right\}, i=1$, 2. Let $B_{1}=\left[P_{11} \cup P_{22}, Q_{11} \cup Q_{22}\right]$ and $B_{2}=\left[P_{12} \cup P_{21}, Q_{12} \cup Q_{21}\right]$. Since $v_{2} v_{3} \in E(G)$, one sees that $G\left(Q_{11} \cup Q_{22}\right)$ and $G\left(Q_{12} \cup Q_{21}\right)$ are connected. Thus B_{1} and B_{2} are non-trivial bonds, which are also cross-bonds. Since $\operatorname{dist}_{G}\left(v_{1}, v_{2}\right)=\operatorname{dist}_{G}\left(v_{1}, v_{3}\right)=2$, and $v_{2} v_{3} \in E(G)$, one sees that $\left\langle v_{i}\right\rangle_{B_{1}}\left\langle v_{j}\right\rangle_{B_{1}} \in E\left(G / B_{1}\right), \forall i \neq j$, and the same holds for B_{2} as well. It now follows by Claim 9 , that $B_{i}, i=1,2$ is a good pair of bonds in G.

Case 2: Suppose $v_{1} \in P_{21}^{\prime}$, (and $v_{2}, v_{3} \in Q_{21}^{\prime}$), and $v_{2} \notin P_{21}^{\prime}$. We can assume without loss of generality that $v_{2} \in P_{22}^{\prime}$ and $v_{1}, v_{3} \in Q_{22}^{\prime}$. We can, according to Lemma 2.4, choose a decomposition of H_{1}^{\prime} consisting of two good cycles C_{1}^{\prime} and C_{2}^{\prime}, and a removable path P^{\prime} such that the corresponding good bonds and contractible semi-bond, which we can assume are $B_{1 i}^{\prime}, i=1,2$, and S, are such that $v_{1} \in P_{11}^{\prime}$ (and $v_{2}, v_{3} \in Q_{11}^{\prime}$) and $v_{2} \in P_{12}^{\prime}$ (and $v_{1}, v_{3} \in Q_{12}^{\prime}$). We may assume that the decomposition $\left\{C_{1}^{\prime}, C_{2}^{\prime}, P^{\prime}\right\}$ is H_{1}-good, since if it is not, then we can swap pairs of members to achieve one which is. This means that we can assume that $\left\{B_{1}^{\prime}, B_{2}^{\prime}, S\right\}$ is a G_{1}-good decomposition, and hence $P_{1 i} \backslash V(K) \neq \emptyset, i=1,2$. Let $B_{1}=\left[P_{11} \cup P_{21}, Q_{11} \cup Q_{21}\right]$ and $B_{2}=\left[P_{21} \cup P_{12}, Q_{12} \cup Q_{22}\right]$. One sees that B_{1} is a cross-bond of G (since $v_{2} v_{3} \in E(G)$). To show that B_{2} is a cross-bond, we note that $\operatorname{dist}_{G_{1}}\left(v_{1}, v_{3}\right)=2$, and hence there is a path $v_{1} z v_{3}$ in G_{1}. If $z \in P_{12}$, then $z v_{1}, z v_{3} \in B_{12}^{\prime}$. However, B_{12}^{\prime} is contractible in G_{1}^{\prime}, and hence this is impossible. Thus $z \in Q_{12}$, and $G\left(Q_{12} \cup Q_{22}\right)$ is connected. This shows that B_{2} is a non-trivial bond of G, which is also seen to be a cross-bond.

As in the previous case, one can show that B_{1} is contractible. To show that B_{2} is contractible, we note that $v_{2} v_{3} \in B_{2}$. Thus $\left\langle v_{2}\right\rangle_{B_{2}}=\left\langle v_{3}\right\rangle_{B_{2}}$, and by Claim $8, B_{2}$ is contractible. We conclude that B_{1} and B_{2} are a good pair of bonds. This completes Case 2.

The proof of the claim now follows from Cases 1 and 2.

10.2. The case $v_{2} v_{3} \notin E(G)$

In the rest of this section, we may assume that $v_{2} v_{3} \notin E(G)$. We define the triangle-free graphs

$$
\begin{aligned}
& \mathbf{G}_{1}^{\prime \prime}=\left(\mathbf{G}_{1}^{\prime} \backslash\left\{\mathbf{v}_{2} \mathbf{v}_{3}\right\}\right) \cup\left\{\mathbf{w}_{23}^{1}, \mathbf{w}_{23}^{1} \mathbf{v}_{2}, \mathbf{w}_{23}^{1} \mathbf{v}_{3}\right\}, \\
& \mathbf{G}_{2}^{\prime \prime}=\left(\mathbf{G}_{2}^{\prime} \backslash\left\{\mathbf{v}_{2} \mathbf{v}_{3}\right\}\right) \cup\left\{\mathbf{w}_{2}, \mathbf{w}_{23}^{2}, \mathbf{w}_{2} \mathbf{v}_{1}, \mathbf{w}_{2} \mathbf{v}_{2}, \mathbf{w}_{2} \mathbf{v}_{3}, \mathbf{w}_{23}^{2} \mathbf{v}_{2}, \mathbf{w}_{23}^{2} \mathbf{v}_{3}\right\} .
\end{aligned}
$$

The graph G has no good bond contained in $E\left(G_{1}^{\prime \prime}\right)$ for such bonds are good in $E\left(G_{1}\right)$, violating the fact that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a good separation. The graph $G_{2}^{\prime \prime}$ has a good pair of bonds $B_{2 j}^{\prime \prime}=\left[P_{2 j}^{\prime \prime}, Q_{2 j}^{\prime \prime}\right], j=1,2$. We shall assume that $\left|P_{2 j}^{\prime \prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\}\right|=1, j=1,2$; the other cases where $P_{2 j}^{\prime \prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\}=\emptyset$ for some $j \in\{1,2\}$ are easier and can be dealt with using similar arguments.

Claim 30. If $\left|K_{23}\right|=5$, in G_{1}^{\prime}, then G has a good pair of bonds.
Proof. We assume that $\left|K_{23}\right|=5$ where $K_{23}=v_{2} x y z v_{3} v_{2}$. Thus all faces of $G_{1}^{\prime \prime}$ are 4-faces apart from the faces $v_{2} x y z v_{3} w_{23}^{1} v_{2}$ and $v_{1} w_{12}^{1} v_{2} w_{23}^{1} v_{3} w_{13}^{1} v_{1}$. Thus $G_{1}^{\prime \prime}$ has a $G_{1^{-}}$ good decomposition consisting of three G_{1}-good bonds $B_{1 j}^{\prime \prime}=\left[P_{1 j}^{\prime \prime}, Q_{1 j}^{\prime \prime}\right], j=1,2,3$ where we may assume that $v_{i} \in P_{l j}^{\prime \prime}$ iff $i=j$. For $i, j=1$, 2 we shall write $\left\langle G_{i}\right\rangle_{i j}$ to mean

Fig. 8.
$G_{i} /\left(B_{i j}^{\prime \prime} \cap E\left(G_{i}\right)\right)$. Similarly, for $k=1,2,3$ and $i, j=1,2$ we shall write $\left\langle v_{k}\right\rangle_{i j}$ to mean the vertex $\left\langle v_{k}\right\rangle_{B_{i j}^{\prime \prime} \cap E\left(G_{i}\right)}$ in $\left\langle G_{i}\right\rangle_{i j}$. We shall consider two cases:

Case 1: Suppose there is a path from $\left\langle v_{2}\right\rangle_{11}$ to $\left\langle v_{3}\right\rangle_{11}$ in $\left\langle G_{1}\right\rangle_{11} \backslash\left\langle v_{1}\right\rangle_{11}$.
We shall consider two subcases:
Case 1.1: Suppose $v_{1} \in P_{21}^{\prime \prime}$ and $v_{2} \in P_{22}^{\prime \prime}$. Let $\mathbf{B}_{1}=\left[\left(\mathbf{P}_{11}^{\prime \prime} \cup \mathbf{P}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}),\left(\mathbf{Q}_{11}^{\prime \prime} \cup \mathbf{Q}_{21}^{\prime \prime}\right) \cap\right.$ $\mathbf{V}(\mathbf{G})]$.
(i) Suppose that B_{1} is not a bond. Then $\left(Q_{11}^{\prime \prime} \cup Q_{21}^{\prime \prime}\right) \cap V(G)$ induces a subgraph with two components. Let $Q^{j}, j=2,3$ be the vertices in the component containing v_{j}. Let $C_{2}=\left[Q^{2}, V(G) \backslash Q^{2}\right]$. Suppose $Q^{2} \backslash\left\{v_{2}\right\} \neq \emptyset$. Then C_{2} is a non-trivial bond. Since $\operatorname{dist}_{G}\left(v_{1}, v_{i}\right)=2, i=2,3$ we have that $\left\langle v_{1}\right\rangle_{B_{1}}\left\langle v_{i}\right\rangle_{B_{1}}$ is an edge of G / B_{1} for $i=2,3$. Thus there is a path from $\left\langle v_{1}\right\rangle_{C_{2}}$ to $\left\langle v_{2}\right\rangle_{C_{2}}$ in $\left(G / C_{2}\right) \backslash\left\langle v_{3}\right\rangle_{C_{2}}$ and from $\left\langle v_{1}\right\rangle_{C_{2}}$ to $\left\langle v_{3}\right\rangle_{C_{2}}$ in $\left(G / C_{2}\right) \backslash\left\langle v_{2}\right\rangle_{C_{2}}$. By assumption, we have $\left\langle G_{1}\right\rangle_{11}$ contains a path from $\left\langle v_{2}\right\rangle_{11}$ to $\left\langle v_{3}\right\rangle_{11}$ in $\left\langle G_{1}\right\rangle_{11} \backslash\left\langle v_{1}\right\rangle_{11}$. Thus there is a path from $\left\langle v_{2}\right\rangle_{C_{2}}$ to $\left\langle v_{3}\right\rangle_{C_{2}}$ in $\left(G / C_{2}\right) \backslash\left\langle v_{1}\right\rangle_{C_{2}}$. One sees that C_{2} is a good bond of G.

Suppose that $Q^{2} \backslash\left\{v_{2}\right\}=\emptyset$. We redefine C_{2} as $C_{2}=\left[P_{12}^{\prime \prime} \cap V(G), \overline{P_{12}^{\prime \prime} \cap V(G)}\right]$. One sees that C_{2} is a non-trivial bond. We shall show that C_{2} is good. If C_{2} is non-contractible, then G / C_{2} consists of 2 blocks, one containing $\left\langle v_{1}\right\rangle_{C_{2}},\left\langle v_{2}\right\rangle_{C_{2}}$ and another containing $\left\langle v_{2}\right\rangle_{C_{2}},\left\langle v_{3}\right\rangle_{C_{2}}$. Note that the blocks restricted to $\left\langle G_{1}\right\rangle_{12}$ are both multiple edges. We have that C_{2} contains exactly one edge of the path $v_{2} x y z v_{3} \subset K_{23}$ since it contains exactly two edges of the cycle $v_{2} x y z v_{3} w_{23}^{1}$, one of which is one of the edges $v_{2} w_{23}^{1}$ or $v_{3} w_{23}^{1}$. Suppose $v_{3} z \notin C_{2}$. Then $\langle z\rangle_{C_{2}}=\left\langle v_{2}\right\rangle_{C_{2}}$ and there is a path P in $G_{1}\left(C_{2} \cap E\left(G_{1}\right)\right)$ from z to v_{2}. Since $Q^{2} \backslash\left\{v_{2}\right\}=\emptyset$, it follows that $x v_{2} \in B_{11}^{\prime \prime}$ and thus $\langle X\rangle_{C_{2}}=\left\langle v_{1}\right\rangle_{C_{2}}$. However, considering the planarity of $G_{1}^{\prime \prime}$, any path from x to v_{1} or v_{3} must intersect a vertex of P (see Fig. 8). This implies that $\langle X\rangle_{C_{2}}=\left\langle v_{2}\right\rangle_{C_{2}}$, yielding a contradiction. Suppose instead that $v_{3} z \in C_{2}$. Then $\langle y\rangle_{C_{2}}=\left\langle v_{2}\right\rangle_{C_{2}}$. There is a path P in $G_{1}\left(C_{2} \cap E\left(G_{1}\right)\right)$ from y to v_{2}. By planarity, any path from x to v_{1} must intersect a vertex of P. This means that $\langle X\rangle_{C_{2}}=\left\langle v_{2}\right\rangle_{C_{2}}$, yielding a contradiction. We conclude that C_{2} is contractible and hence good.

In the same way, we can define a bond C_{3} where $C_{3}=\left[Q^{3}, V(G) \backslash Q^{3}\right]$ if $Q^{3} \backslash\left\{v_{3}\right\} \neq \emptyset$, and $C_{3}=\left[P_{13}^{\prime \prime} \cap V(G), \overline{P_{13}^{\prime \prime} \cap V(G)}\right]$, otherwise. One can show that C_{3} is good in the same way as was done for C_{2}, and it follows that C_{2} and C_{3} are a good pair of bonds. Thus we may assume that B_{1} is a bond, and B_{1} is seen to be good.
(ii) Suppose B_{1} is a bond. Let $\mathbf{B}_{2}=\left[\left(\mathbf{P}_{12}^{\prime \prime} \cup \mathbf{P}_{22}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}),\left(\mathbf{Q}_{12}^{\prime \prime} \cup \mathbf{Q}_{22}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})\right]$. Then B_{2} is a non-trivial bond (since $\operatorname{dist}_{G}\left(v_{1}, v_{3}\right)=2$). We may assume that B_{2} is non-contractible. Then G / B_{2} consists of two blocks, one of which contains $\left\langle v_{1}\right\rangle_{B_{2}}$ and $\left\langle v_{2}\right\rangle_{B_{2}}$. Since B_{1} is assumed to be a good bond, there is a path P in $\left.G\left(Q_{11}^{\prime \prime} \cup Q_{21}^{\prime \prime}\right) \cap V(G)\right)$ between v_{2} and v_{3}. Since any path from P to v_{1} must contain edges of $B_{11}^{\prime \prime}$, it follows that $\left\langle v_{1}\right\rangle_{B_{2}} \notin\langle P\rangle_{B_{2}}$ and consequently there is a path from $\left\langle v_{2}\right\rangle_{B_{2}}$ to $\left\langle v_{3}\right\rangle_{B_{2}}$ in $\left(G / B_{2}\right) \backslash\left\langle v_{1}\right\rangle_{B_{2}}$. Thus the second block of G / B_{2} contains $\left\langle v_{2}\right\rangle_{B_{2}}$ and $\left\langle v_{3}\right\rangle_{B_{2}}$.

Applying the same reasoning as was used for C_{2} in the previous paragraph, we deduce that G / B_{2} cannot consist of two blocks, one containing $\left\langle v_{1}\right\rangle_{B_{2}},\left\langle v_{2}\right\rangle_{B_{2}}$, and another block containing $\left\langle v_{2}\right\rangle_{B_{2}},\left\langle v_{3}\right\rangle_{B_{2}}$. So it must be the case that B_{2} is contractible, and hence B_{1} and B_{2} are a good pair of bonds. This completes Case 1.1.

If $v_{1} \in P_{21}^{\prime \prime}$ and $v_{3} \in P_{22}^{\prime \prime}$, then we can find a good pair of bonds in the same way as in the previous case. So essentially there is just one remaining subcase:

Case 1.2: Suppose $v_{2} \in P_{21}^{\prime \prime}$ and $v_{3} \in P_{22}^{\prime \prime}$. Let

$$
\begin{aligned}
& \mathbf{B}_{1}=\left[\left(\mathbf{P}_{12}^{\prime \prime} \cup \mathbf{P}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}),\left(\mathbf{Q}_{12}^{\prime \prime} \cup \mathbf{Q}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})\right], \\
& \mathbf{B}_{2}=\left[\left(\mathbf{P}_{13}^{\prime \prime} \cup \mathbf{P}_{22}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}),\left(\mathbf{Q}_{13}^{\prime \prime} \cup \mathbf{Q}_{22}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})\right] .
\end{aligned}
$$

Using the fact that $\operatorname{dist}_{G_{1}}\left(v_{1}, v_{j}\right)=2, j=2,3$, one can show that B_{1} and B_{2} are (nontrivial) bonds. Suppose B_{1} is non-contractible. Then G / B_{1} consists of two blocks; if these blocks contain $\left\langle v_{1}\right\rangle_{B_{1}},\left\langle v_{2}\right\rangle_{B_{1}}$ and $\left\langle v_{2}\right\rangle_{B_{1}},\left\langle v_{3}\right\rangle_{B_{1}}$, respectively, then by arguing in a manner similar to the above, we reach a contradiction. Thus we may assume that G / B_{1} consists of two blocks, one containing $\left\langle v_{1}\right\rangle_{B_{1}},\left\langle v_{2}\right\rangle_{B_{1}}$, and another containing $\left\langle v_{1}\right\rangle_{B_{1}},\left\langle v_{3}\right\rangle_{B_{1}}$. It follows that $G_{1}\left(Q_{11}^{\prime \prime} \cap V(G)\right)$ is disconnected and has two components. Let $Q_{1}^{j}, j=$ 2,3 be the vertices in the component containing v_{j}. If $Q_{1}^{j} \cup P_{2(j-1)}^{\prime \prime} \backslash\left\{v_{j}\right\} \neq \varnothing$, then let $C_{j}=\left[\left(Q_{1}^{j} \cup P_{2(j-1)}^{\prime \prime}\right) \cap V(G), \overline{\left(Q_{1}^{j} \cup P_{2(j-1)}^{\prime \prime}\right) \cap V(G)}\right]$; otherwise, for $j=1,2$ let $C_{j}=\left[P_{l j}^{\prime \prime} \cap V(G), \overline{P_{l j}^{\prime \prime} \cap V(G)}\right]$. One sees that $C_{j}, j=2,3$ are good bonds and hence form a good pair.

The same reasoning holds if B_{2} is not good. Thus either B_{1} and B_{2} are a good pair of bonds, or we can find another good pair of bonds. This completes the proof of Case 1.2.

The proof of Case 1 follows from Cases 1.1 and 1.2.
Case 2: Suppose there is no path from $\left\langle v_{2}\right\rangle_{11}$ to $\left\langle v_{3}\right\rangle_{11}$ in $\left\langle G_{1}\right\rangle_{11} \backslash\left\langle v_{1}\right\rangle_{11}$. The graph $\left\langle G_{1}\right\rangle_{11}$ consists of two blocks, which are multiple edges, one containing $\left\langle v_{1}\right\rangle_{11},\left\langle v_{2}\right\rangle_{11}$ and another containing $\left\langle v_{1}\right\rangle_{11},\left\langle v_{3}\right\rangle_{11}$. For $i=1,2,3$ let $\mathbf{V}_{i}=\left\{\mathbf{v} \in \mathbf{V}\left(\mathbf{G}_{1}\right):\langle\mathbf{v}\rangle_{11}=\left\langle\mathbf{v}_{i}\right\rangle_{11}\right\}$. Since $\left\langle G_{1}\right\rangle_{11}$ consists of just three vertices $\left\langle v_{i}\right\rangle_{11}, i=1,2,3$, it follows that $V\left(G_{1}\right)=$ $V_{1} \cup V_{2} \cup V_{3}, V_{2}=P_{12}^{\prime \prime} \cap V(G)$, and $V_{3}=P_{13}^{\prime \prime} \cap V(G)$. There are no edges from V_{2} to V_{3}, for otherwise $\left\langle G_{1}\right\rangle_{11}$ would contain a path from $\left\langle v_{2}\right\rangle_{11}$ to $\left\langle v_{3}\right\rangle_{11}$ which avoids $\left\langle v_{1}\right\rangle_{11}$, contradicting our assumption. Thus $\left[V_{1}, V\left(G_{1}\right) \backslash V_{1}\right]=\left(B_{12}^{\prime \prime} \cup B_{13}^{\prime \prime}\right) \cap E\left(G_{1}\right)$. We also have that $Q_{13}^{\prime \prime} \cap V\left(G_{1}\right)=V_{1} \cup V_{2}$ and $Q_{12}^{\prime \prime} \cap V\left(G_{1}\right)=V_{1} \cup V_{3}$.

Let $\mathbf{G}_{2}^{\prime \prime \prime}=\mathbf{G}_{2}^{\prime \prime} \backslash\left\{\mathbf{w}_{23}^{2}\right\}$. The graph $G_{2}^{\prime \prime \prime}$ has a good pair of bonds $\mathbf{B}_{2 j}^{\prime \prime \prime}=\left[\mathbf{P}_{2 j}^{\prime \prime \prime}, \mathbf{Q}_{2 j}^{\prime \prime \prime}\right], j=$ 1,2. We shall assume that $\left|P_{2 j}^{\prime \prime \prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\}\right|=1, j=1,2$; the other cases, where $P_{2 j}^{\prime \prime \prime} \cap\left\{v_{1}, v_{2}, v_{3}\right\}=\emptyset$ for some $j \in\{1,2\}$, can be handled in the same way. We shall examine a few subcases:

Case 2.1: Suppose $v_{1} \in P_{21}^{\prime \prime \prime}$, and $v_{1} \in P_{22}^{\prime \prime \prime}$. We have that w_{2} belongs to exactly one of $P_{21}^{\prime \prime \prime}$ or $P_{22}^{\prime \prime \prime}$. We may assume that $w_{2} \in P_{21}^{\prime \prime \prime}$. Let

$$
\begin{aligned}
& \mathbf{B}_{1}=\left[\left(\mathbf{P}_{11}^{\prime \prime} \cup \mathbf{P}_{22}^{\prime \prime \prime}\right) \cap \mathbf{V}(\mathbf{G}),\left(\mathbf{Q}_{11}^{\prime \prime} \cup \mathbf{Q}_{22}^{\prime \prime \prime}\right) \cap \mathbf{V}(\mathbf{G})\right], \\
& \mathbf{B}_{2}=\left[\left(\mathbf{V}_{1} \cup \mathbf{P}_{21}^{\prime \prime \prime}\right) \cap \mathbf{V}(\mathbf{G}),\left(\mathbf{V}_{2} \cup \mathbf{V}_{3} \cup \mathbf{Q}_{21}^{\prime \prime \prime}\right) \cap \mathbf{V}(\mathbf{G})\right] .
\end{aligned}
$$

We have that $V_{1} \backslash\left\{v_{1}\right\} \neq \emptyset$ as $\left\langle v_{1}\right\rangle_{11}$ is a cut-vertex of $\left\langle G_{1}\right\rangle_{11}$. Since $w_{2} \in P_{21}^{\prime \prime \prime}$, it follows that $G\left(Q_{21}^{\prime \prime \prime} \cap V(G)\right)$ is connected (since $B_{21}^{\prime \prime \prime}$ is a bond). Thus B_{2} is a non-trivial bond. Given that $G\left(Q_{21}^{\prime \prime \prime} \cap V(G)\right)$ is connected, it contains a path P from v_{2} to v_{3}. Since any path from P to v_{1} must contain edges of B_{2}, this implies that $\langle P\rangle_{B_{1}}$ contains a path in $\left(G / B_{1}\right) \backslash\left\langle v_{1}\right\rangle_{B_{1}}$ from $\left\langle v_{2}\right\rangle_{B_{1}}$ to $\left\langle v_{3}\right\rangle_{B_{1}}$. We conclude that B_{1} is contractible, and if it is a bond, then it is good.

If B_{1} is not a bond, then $G_{2}\left(Q_{22}^{\prime \prime \prime} \cap V(G)\right)$ has 2 components. For $j=2,3$ let Q_{2}^{j} be the vertices in the component containing v_{j}. For $j=2,3$, let

$$
C_{j}=\left[\left(P_{1 j}^{\prime \prime} \cup Q_{2}^{j}\right) \cap V(G), \overline{\left(P_{l j}^{\prime \prime} \cup Q_{2}^{j}\right) \cap V(G)}\right]
$$

Consider C_{2}. Suppose that C_{2} is non-contractible. Then G / C_{2} consists of two blocks where one block contains $\left\langle v_{1}\right\rangle_{C_{2}}$ and $\left\langle v_{2}\right\rangle_{C_{2}}$. Since $B_{22}^{\prime \prime \prime}$ is good, $G_{2}^{\prime \prime \prime} / B_{22}^{\prime \prime \prime}$ is 2-connected and there is a path in $\left(G_{2} / B_{22}^{\prime \prime \prime}\right) \backslash\left\langle v_{1}\right\rangle_{B_{22}^{\prime \prime \prime}}$ from $\left\langle v_{2}\right\rangle_{B_{22}^{\prime \prime \prime}}$ to $\left\langle v_{3}\right\rangle_{B_{22}^{\prime \prime \prime}}$. Thus there is a path in $\left(G / C_{2}\right) \backslash\left\langle v_{1}\right\rangle_{C_{2}}$ from $\left\langle v_{2}\right\rangle_{C_{2}}$ to $\left\langle v_{3}\right\rangle_{C_{2}}$, and consequently the other block of G / C_{2} contains $\left\langle v_{2}\right\rangle_{C_{2}}$ and $\left\langle v_{3}\right\rangle_{C_{2}}$. Now following the same arguments as in Case 1, one can show that this is impossible. Thus C_{2} is contractible and hence good. In the same way, it can be shown that C_{3} is also good and hence C_{2} and C_{3} are a good pair. We may therefore assume that B_{1} is a good bond.

Consider B_{2}. Since B_{1} is assumed to be a bond, it holds that $G\left(\left(Q_{11}^{\prime \prime} \cup Q_{22}^{\prime \prime \prime}\right) \cap V(G)\right)$ is connected and hence contains a path P from v_{2} to v_{3}. Then $\left\langle v_{1}\right\rangle_{B_{2}} \notin\langle P\rangle_{B_{2}}$ and consequently there is a path in $\left(G / B_{2}\right) \backslash\left\langle v_{1}\right\rangle_{B_{2}}$ between $\left\langle v_{2}\right\rangle_{B_{2}}$ and $\left\langle v_{3}\right\rangle_{B_{2}}$. We deduce that B_{2} is contractible and hence also good. In this case, B_{1} and B_{2} are a good pair of bonds. This completes Case 1.2.

Case 2.2: Suppose $v_{1} \in P_{21}^{\prime \prime \prime}$ and $v_{2} \in P_{22}^{\prime \prime \prime}$. Let

$$
\begin{aligned}
& \mathbf{B}_{1}=\left[\left(\mathbf{P}_{11}^{\prime \prime} \cup \mathbf{P}_{21}^{\prime \prime \prime}\right) \cap \mathbf{V}(\mathbf{G}),\left(\mathbf{Q}_{11}^{\prime \prime} \cup \mathbf{Q}_{21}^{\prime \prime \prime}\right) \cap \mathbf{V}(\mathbf{G})\right], \\
& \mathbf{B}_{2}=\left[\left(\mathbf{P}_{12}^{\prime \prime} \cup \mathbf{P}_{22}^{\prime \prime \prime}\right) \cap \mathbf{V}(\mathbf{G}),\left(\mathbf{Q}_{12}^{\prime \prime} \cup \mathbf{Q}_{22}^{\prime \prime \prime}\right) \cap \mathbf{V}(\mathbf{G})\right] .
\end{aligned}
$$

We first note that $w_{2} \notin P_{21}^{\prime \prime \prime}$ as $v_{2} \in P_{22}^{\prime \prime \prime}$. Suppose that B_{1} is not a bond. As in Case 2.1, we define C_{2} and C_{3}. Since C_{2} is a bond and $G_{2}^{\prime \prime \prime} / B_{21}^{\prime \prime \prime}$ is 2-connected, we can find a path from $\left\langle v_{2}\right\rangle_{C_{2}}$ to $\left\langle v_{3}\right\rangle_{C_{3}}$ in $\left(G_{2}^{\prime \prime \prime} / C_{2}\right) \backslash\left\langle v_{1}\right\rangle_{C_{2}}$ (via the same arguments in the previous case) and this implies that C_{2} is good. We can argue the same for C_{3}, and hence C_{2} and C_{3} are a good pair of bonds. We may thus assume that B_{1} is a bond, and it is seen to be good.

We suppose therefore that B_{2} is non-contractible (noting that B_{2} is a non-trivial bond). Similar to Case 1, one can show that G / B_{2} consists of 2 blocks, one containing $\left\langle v_{1}\right\rangle_{B_{2}},\left\langle v_{2}\right\rangle_{B_{2}}$
and another containing $\left\langle v_{1}\right\rangle_{B_{2}},\left\langle v_{3}\right\rangle_{B_{2}}$. Since B_{1} is assumed to be a bond, we have that $G\left(\left(Q_{11}^{\prime \prime} \cup Q_{21}^{\prime \prime \prime}\right) \cap V(G)\right)$ is connected and contains a path P from v_{2} to v_{3}. We have that $\left\langle v_{1}\right\rangle_{B_{2}} \notin\langle P\rangle_{B_{2}}$. Thus there is a path in $\left(G / B_{2}\right) \backslash\left\langle v_{1}\right\rangle_{B_{2}}$ from $\left\langle v_{2}\right\rangle_{B_{2}}$ to $\left\langle v_{3}\right\rangle_{B_{2}}$. This contradicts the fact that $\left\langle v_{1}\right\rangle_{B_{2}}$ is a cut-vertex of G / B_{2}. Thus B_{2} is contractible, and B_{1} and B_{2} are a good pair of bonds. This completes Case 2.2.
If $v_{1} \in P_{21}^{\prime \prime \prime}$ and $v_{3} \in P_{22}^{\prime \prime \prime}$, then one can find a good pair of bonds in exactly the same way as in Case 2.2. There is just one case remaining:

Case 2.3: Suppose $v_{2} \in P_{21}^{\prime \prime \prime}$ and $v_{3} \in P_{22}^{\prime \prime \prime}$. Let

$$
\begin{aligned}
& \mathbf{B}_{1}=\left[\left(\mathbf{P}_{12}^{\prime \prime} \cup \mathbf{P}_{21}^{\prime \prime \prime}\right) \cap \mathbf{V}(\mathbf{G}),\left(\mathbf{Q}_{12}^{\prime \prime} \cup \mathbf{Q}_{21}^{\prime \prime \prime}\right) \cap \mathbf{V}(\mathbf{G})\right], \\
& \mathbf{B}_{2}=\left[\left(\mathbf{P}_{13}^{\prime \prime} \cup \mathbf{P}_{22}^{\prime \prime \prime}\right) \cap \mathbf{V}(\mathbf{G}),\left(\mathbf{Q}_{13}^{\prime \prime} \cup \mathbf{Q}_{22}^{\prime \prime \prime}\right) \cap \mathbf{V}(\mathbf{G})\right] .
\end{aligned}
$$

Both B_{1} and B_{2} are non-trivial bonds. Suppose B_{1} is non-contractible.
Then G / B_{1} consists of two blocks, one containing $\left\langle v_{1}\right\rangle_{B_{1}},\left\langle v_{2}\right\rangle_{B_{1}}$. Following the reasoning as in Case 1.1, one can show that the other block does not contain $\left\langle v_{2}\right\rangle_{B_{1}}$ and $\left\langle v_{3}\right\rangle_{B_{1}}$. Thus we have that the other block contains $\left\langle v_{1}\right\rangle_{B_{1}}$ and $\left\langle v_{3}\right\rangle_{B_{1}}$. Moreover, the block containing $\left\langle v_{1}\right\rangle_{B_{1}},\left\langle v_{2}\right\rangle_{B_{1}}$ is a multiple edge. Since there is no path from $\left\langle v_{2}\right\rangle_{11}$ to $\left\langle v_{3}\right\rangle_{11}$ in $\left\langle G_{1}\right\rangle_{11} \backslash\left\langle v_{1}\right\rangle_{11}$ it follows that $G_{1}\left(Q_{11}^{\prime \prime} \cap V(G)\right)$ is disconnected and has two components. Let $Q_{1}^{j}, j=2,3$ be the vertices of the component containing v_{j}. Let $C_{2}=$ $\left[\left(Q_{1}^{2} \cup P_{21}^{\prime \prime \prime}\right) \cap V(G), \overline{\left(Q_{1}^{2} \cup P_{21}^{\prime \prime \prime}\right) \cap V(G)}\right]$. If $P_{21}^{\prime \prime \prime} \cap V(G)=\left\{v_{2}\right\}$, then there would be a path in $\left(G / B_{1}\right) \backslash\left\langle v_{2}\right\rangle_{B_{1}}$ from $\left\langle v_{2}\right\rangle_{B_{1}}$ to $\left\langle v_{3}\right\rangle_{B_{1}}$. This contradicts the fact that $\left\langle v_{1}\right\rangle_{B_{1}}$ is a cut-vertex in G / B_{1}. Thus $P_{21}^{\prime \prime \prime} \cap V(G) \neq\left\{v_{2}\right\}$, and C_{2} is a non-trivial bond.

We shall show that C_{2} is contractible.
(i) Suppose that $x v_{2} \in B_{12}^{\prime \prime}$. Then $x y \in B_{11}^{\prime \prime}$. We have $\langle X\rangle_{B_{11}^{\prime \prime}}=\left\langle v_{1}\right\rangle_{B_{11}^{\prime \prime}}$, and there is a path L in $G_{1}\left(B_{11}^{\prime \prime} \cap E\left(G_{1}\right)\right)$ from x to v_{1}. We can assume that L is chosen such that it contains no vertices of Q_{1}^{3}; for if no such path existed, then $\langle X\rangle_{C_{2}} \neq\left\langle v_{1}\right\rangle_{C_{2}}$, and C_{2} would be contractible. Suppose $y \notin V(L)$. Let R be the region bounded by $L \cup\left\{x v_{2} w_{12}^{1} v_{1}\right\}$ where y does not lie in R. We have that the vertices of $V_{2} \backslash\left\{v_{2}\right\}$ lie in the interior of R. We have that $\langle y\rangle_{B_{1}}=\left\langle v_{1}\right\rangle_{B_{1}}$. Thus there is a path in $G_{1}\left(B_{12}^{\prime \prime} \cap E\left(G_{1}\right)\right)$ from y to v_{1}, and y is adjacent to a vertex in $P_{12}^{\prime \prime} \cap V(G)=V_{2}$. However, this is impossible since y lies outside R.

Suppose $y \in V(L)$. Then y is adjacent to a vertex $y^{\prime} \in V(L) \backslash\{x\}$. We have that $y^{\prime} \in Q_{1}^{2}$. Again let R be the region bounded by $L \cup\left\{x v_{2} w_{12}^{1} v_{1}\right\}$, where z lies outside R. Since $x, y^{\prime} \in Q_{1}^{2}$, there is a path P_{1} from x to y^{\prime} in $G_{1}\left(Q_{1}^{2}\right)$. Since $\langle y\rangle_{B_{1}}=\left\langle v_{1}\right\rangle_{B_{1}}$, there is a path P_{2} from y to v_{1} in $G_{1}\left(B_{12}^{\prime \prime} \cap E\left(G_{1}\right)\right)$. Such a path lies in R since the vertices of $V_{2} \backslash\left\{v_{2}\right\}$ lie in R (see Fig. 9). We conclude that by planarity, the paths P_{1} and P_{2} must cross. However, this is impossible since $V\left(P_{1}\right) \subset V\left(Q_{11}^{\prime \prime}\right)$ and $V\left(P_{2}\right) \subset V\left(P_{11}^{\prime \prime}\right)$. In this case, C_{2} must be contractible.
(ii) Suppose $x v_{2} \notin B_{12}^{\prime \prime}$. Then $x v_{2} \in B_{11}^{\prime \prime}$. If $x y \in B_{11}^{\prime \prime}$, then $y \in Q_{1}^{3}$ and C_{2} is seen to be good since there would be a path between $\left\langle v_{2}\right\rangle_{C_{2}}$ and $\left\langle v_{3}\right\rangle_{C_{2}}$ in $\left(G / C_{2}\right) \backslash\left\langle v_{1}\right\rangle_{C_{2}}$. We may thus assume that $x y \notin B_{11}^{\prime \prime}$ and hence $x y \in B_{12}^{\prime \prime}$. Thus there is a path $L_{1} \subset G\left(P_{11}^{\prime \prime}\right)$ from y to v_{1}. We also have that y is adjacent to a vertex $y^{\prime} \in Q_{1}^{2}$ and there is a path $L_{2} \subset G\left(Q_{1}^{2}\right)$ from y^{\prime} to v_{2}. Due to planarity considerations, the paths L_{1} and L_{2} must cross, which is impossible since $L_{2} \subseteq P_{11}^{\prime \prime}$. We reach a contradiction, and we conclude that C_{2} must be contractible in this case.

Fig. 9.

We have thus shown that if B_{1} is non-contractible, then C_{2} is good. If B_{2} is good, then either B_{1}, B_{2} or C_{2}, B_{2} is a good pair of bonds. We suppose therefore that B_{2} is noncontractible. Let $C_{3}=\left[\left(Q_{1}^{3} \cup P_{22}^{\prime \prime}\right) \cap V(G),\left(Q_{1}^{3} \cup P_{22}^{\prime \prime}\right) \cap V(G)\right]$. As with C_{2}, we have that C_{3} is a good bond. Thus either B_{1}, C_{3} or C_{2}, C_{3} is a good pair of bonds. This completes the proof of Case 2.3. Case 2 now follows from Cases 2.1-2.3. This completes the proof of the claim.

Claim 31. Suppose $\left|K_{23}\right|=4$ in G_{1}^{\prime}. Then G has a good pair of bonds.
Proof. $G_{1}^{\prime \prime}$ contains exactly two 5 -faces and has a G_{1}-good decomposition consisting of three G_{1}-good bonds $\mathbf{B}_{l j}=\left[\mathbf{P}_{1 j}^{\prime \prime}, \mathbf{Q}_{1 j}^{\prime \prime}\right], j=1,2,3$ and a contractible semi-bond \mathbf{S}. We may assume for $i, j=1,2,3$ that $v_{i} \in P_{1 j}^{\prime \prime}$ iff $i=j$.

Case 1. Suppose $v_{1} \in P_{21}^{\prime \prime}$. Let

$$
\mathbf{B}_{1}=\left[\left(\mathbf{P}_{11}^{\prime \prime} \cup \mathbf{P}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}),\left(\mathbf{Q}_{11}^{\prime \prime} \cup \mathbf{Q}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})\right]
$$

B_{1} is seen to be a non-trivial bond. In the same way as was done in the proof of Claim 25, one can show that if B_{1} is non-contractible, then it is possible to construct a good pair of bonds. Given this, we may assume that B_{1} is a good bond.

Suppose $v_{2} \in P_{22}^{\prime \prime}$. If $\left|K_{13}\right|=5$, then let $\mathbf{G}_{1}^{\prime \prime \prime}=\left(\mathbf{G}_{1}^{\prime} \backslash\left\{\mathbf{w}_{13}^{1}\right\}\right) \cup\left\{\mathbf{v}_{1} \mathbf{v}_{3}\right\}$. We have that $G_{1}^{\prime \prime \prime}$ is triangle-free and has a G_{1}-good decomposition consisting of two G_{1}-good bonds $\mathbf{B}_{l j}^{\prime \prime \prime}=\left[\mathbf{P}_{l j}^{\prime \prime \prime}, \mathbf{Q}_{l j}^{\prime \prime \prime}\right], j=1,2$ where $v_{j} \in P_{l j}^{\prime \prime \prime}, j=1,2$. We can now proceed in the same manner as in section 7 to show that G has a good pair of bonds. Consequently, we may assume that $\left|K_{13}\right|=4$ and $\operatorname{dist}_{G_{1}}\left(v_{1}, v_{3}\right)=2$. Let

$$
\mathbf{B}_{2}=\left[\left(\mathbf{P}_{12}^{\prime \prime} \cup \mathbf{P}_{22}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}),\left(\mathbf{Q}_{12}^{\prime \prime} \cup \mathbf{Q}_{22}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})\right] .
$$

We see that B_{2} is a non-trivial bond. Given that B_{1} is assumed to be good, we may assume that B_{2} is non-contractible. Since $\operatorname{dist}_{G}\left(v_{1}, v_{2}\right)=2$, we have that $\left\langle v_{1}\right\rangle_{B_{2}}\left\langle v_{2}\right\rangle_{B_{2}}$ is an edge of G / B_{2}. We have that $\left|K_{23}\right|=4$, and consequently there is a path $P \subset K_{23} \backslash w_{23}^{1}$ from v_{2} to v_{3}. We have that $V(P) \subset Q_{11}^{\prime \prime}$ and this implies that $\left\langle v_{1}\right\rangle_{B_{2}} \notin\langle P\rangle_{B_{2}}$, and there is a path in $\langle P\rangle_{B_{2}}$ from $\left\langle v_{2}\right\rangle_{B_{2}}$ to $\left\langle v_{3}\right\rangle_{B_{2}}$ which avoids $\left\langle v_{1}\right\rangle_{B_{2}}$. Thus G / B_{2} consists of two blocks; one containing $\left\langle v_{1}\right\rangle_{B_{2}},\left\langle v_{2}\right\rangle_{B_{2}}$ and another containing $\left\langle v_{2}\right\rangle_{B_{2}},\left\langle v_{3}\right\rangle_{B_{2}}$.

Let $G^{*}=\langle G\rangle_{S}, B_{2}^{*}=\left\langle B_{2}\right\rangle_{S}, v_{i}^{*}, i=1,2,3$. We have that G^{*} / B_{2}^{*} consists of two blocks; one containing $\left\langle v_{1}^{*}\right\rangle_{B_{2}^{*}},\left\langle v_{2}^{*}\right\rangle_{B_{2}^{*}}$ and another containing $\left\langle v_{2}^{*}\right\rangle_{B_{2}^{*}},\left\langle v_{3}^{*}\right\rangle_{B_{2}^{*}}$. Using the same methods as in the proof of Claim 20 (where B_{2}^{*} plays the role of B_{1} and G^{*} plays the role of G) we can construct a good pair of bonds, say $C_{i}^{*}, i=1,2$ such that $C_{i}=>C_{i}^{*}<s, i=1,2$, are non-trivial bonds. Suppose C_{1} is non-contractible in G. Then Claim 22 implies that $\left\langle v_{i}^{*}\right\rangle_{C_{1}^{*}}=\left\langle v_{j}^{*}\right\rangle_{C_{1}^{*}}$ for some $i \neq j$ and there is a path of length 3 between v_{i} and v_{j} in $K_{i j}$. Since no such path exists other than for $i=2$ and $j=3$, we deduce that $\left\langle v_{2}^{*}\right\rangle_{C_{1}^{*}}=\left\langle v_{3}^{*}\right\rangle_{C_{1}^{*}}$ if C_{1} is non-contractible. However, for the bonds $C_{i}^{*}, i=1,2$ constructed it holds that $\left\langle v_{2}^{*}\right\rangle_{C_{1}^{*}} \neq\left\langle v_{3}^{*}\right\rangle_{C_{1}^{*}}$ (see the remark following the proof of Claim 22). We conclude that C_{1} is contractible, and the same applies to C_{2}. Thus C_{1} and C_{2} are a good pair of bonds.

If instead $v_{3} \in P_{22}^{\prime \prime}$, then we let $B_{2}=\left[\left(P_{13}^{\prime \prime} \cup P_{22}^{\prime \prime}\right) \cap V(G),\left(Q_{13}^{\prime \prime} \cup Q_{22}^{\prime \prime}\right) \cap V(G)\right]$. One can show in a similar manner as to the above that either B_{2} is good (in which case B_{1} and B_{2} is a good pair), or one can construct another good pair of bonds. This completes the proof for Case 1.

Case 2: Suppose $v_{2} \in P_{21}^{\prime \prime}$ and $v_{3} \in P_{22}^{\prime \prime}$. Let

$$
\begin{aligned}
& \mathbf{B}_{1}=\left[\left(\mathbf{P}_{12}^{\prime \prime} \cup \mathbf{P}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}),\left(\mathbf{Q}_{11}^{\prime \prime} \cup \mathbf{Q}_{21}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})\right], \\
& \mathbf{B}_{2}=\left[\left(\mathbf{P}_{12}^{\prime \prime} \cup \mathbf{P}_{22}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G}),\left(\mathbf{Q}_{12}^{\prime \prime} \cup \mathbf{Q}_{22}^{\prime \prime}\right) \cap \mathbf{V}(\mathbf{G})\right] .
\end{aligned}
$$

If $\left|K_{13}\right|=4$, then using the same reasoning as in Case 1 with G^{*} etc., one can show that either B_{1} and B_{2} are a good pair of bonds or one can construct another such pair. We may therefore assume that $\left|K_{13}\right|=5$. Again, using the same arguments as in Case 1 with G^{*} etc., one can show that either B_{2} is good, or one can construct a good pair of bonds of G. We may therefore assume that B_{2} is good and B_{1} is not contractible. We have that $\left\langle v_{1}\right\rangle_{B_{1}}\left\langle v_{2}\right\rangle_{B_{1}}$ is an edge of G / B_{1} and there is a path from $\left\langle v_{2}\right\rangle_{B_{1}}$ to $\left\langle v_{3}\right\rangle_{B_{1}}$ in $\left(G / B_{1}\right) \backslash\left\langle v_{1}\right\rangle_{B_{1}}$. Thus G / B_{1} consists of two blocks; one containing $\left\langle v_{1}\right\rangle_{B_{1}},\left\langle v_{2}\right\rangle_{B_{1}}$ and another containing $\left\langle v_{2}\right\rangle_{B_{1}},\left\langle v_{3}\right\rangle_{B_{1}}$. Using the same technique as in the proof of Claim 25, we can construct a good pair of bonds. This completes Case 2.

The proof of the claim now follows from Cases 1 and 2 above.

Claim 32. If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a minimal good separation which is of type 2 , then G has a good pair of bonds.

Proof. The proof of the claim follows from Claims 29-31.

11. Conclusion

In consideration of the results given in the previous sections, notably Claims 19, 21, 28, and 32 , one deduces that no minimal counterexample H can exist, thereby concluding the proof of main theorem (Theorem 1.4). We venture the following conjecture for matroids:

Conjecture 11.1. Let M be a connected binary matroid having cogirth at least 4 . If M is not a circuit, and has no minor isomorphic to $P_{10}, M^{*}\left(K_{5}\right), F_{7}^{*}$, or R_{10}, then M contains two disjoint circuits C_{1} and C_{2} such that $M \backslash C_{i}, i=1,2$ are connected, but $M / C_{i}, i=1,2$ are disconnected.

Acknowledgements

The author thanks Luis Goddyn and Jan Van Den Heuvel for the numerous discussions on contractible bonds.

References

[1] L. Goddyn, B. Jackson, Removable Circuits in Binary Matroids, Preprint, 1998.
[2] L. Goddyn, J. Van den Heuvel, S. McGuinness, removable circuits in multigraphs, J. Combin. Theory, Ser. B 71 (1997) 130-143.
[3] B. Jackson, Removable cycles in 2-connected graphs of minimum degree at least four, J. London Math. Soc. (2) 21 (1980) 385-392.
[4] M. Lemos, J.G. Oxley, On removable circuits in graphs and matroids, J. Graph Theory 31 (1999) 51-66.
[5] W. Mader, Kreuzungsfreie a,b-Wege in endlichen Graphen, Abh. Math. Sem. Univ. Hamburg 42 (1974) 187-204.
[6] S. McGuinness, On decomposing a graph into non-trivial bonds, J. Graph Theory 35 (2000) 109-127.
[7] J.G. Oxley, Matroid Theory, Oxford University Press, Oxford, 1992.
[8] C. Thomassen, B. Toft, Non-separating induced cycles in graphs, J. Combin. Theory Ser. B 31 (1981) 199-224.
[9] K. Truemper, Matroid Decomposition, Academic Press, Boston, 1992.

[^0]: E-mail address: tokigcanuck@aol.com

