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Abstract

This paper addresses a problem posed by Oxley (Matroid Theory, Cambridge University Press,
Cambridge, 1992) for matroids. We shall show th& i§ a 2-connected graph which is not a multiple
edge, and which has nkis-minor, thenG has two edge-disjoint non-trivial bon@sfor which G/ B
is 2-connected.
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1. Introduction

For a graphG we shall lete(G) andv(G) denote the number of edges and vertices in
G, respectively. For a set of edges or vertigest V (G), we letG(A) denote the subgraph
induced byA. For sets of verticeX C V(G) andY C V(G) we denote the set of edges
having one endpoint iX and the other ity by [X, Y]. A cutsetis a set of edgegX, X] for
someX. A cutset which is minimal is called bhondor cocycle that is,B = [X, X] is a
bond if and only if bothG (X) andG (X) are connected subgraphs. A bdBds said to be
trivial if B = [{v}, V(G)\{v}] for some vertex. A collection of edge-disjoint bonds of a
graph which partitions its edges is called@d decompositiorif in addition all its bonds
are non-trivial, then the decomposition is said tabe-trivial.
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ForA c E(G) we letG/A denote the graph obtained by contracting the edgds Bbr
v € V(G/A) we denote by> v <p the vertices in the component 6f = G(A) U V(G)
corresponding ta. For an edgee € E(G/A) we let > e <a denote the corresponding
edge inG. Similarly, for a subset of vertices (resp. edg€sif G/A we let> X < denote
the subset of vertices (resp. edgks$)_y > x <4 . For a subgraptd of G/H induced
by V(H) we let> H <a denote the subgraph & induced by> V(H) <4 . For each
vertexv € V(G) we associate the vertexe V(G/A) wherev € > u <4 . We denoteau
by (v)a. Similarly, for an edger € E(G)\A we associate the edgé € E(G/A) where
e => ¢ <4 .We denote’ by (e)a. For a subset of vertice¥§ C V(G) we let(X)a =
{{v)a : v e X} and for a subset of edg&sc E(G) welet(Y)a = {{e)a : e € Y\A}.

J. Oxley proposed the following problem|if:

1.1 Problem. Let M be a simple connected binary matroid having cogirth at |daBoes
M have a circuit C such tha¥/\C is connected

Here, bycogirth of a matroidM we mean the minimum cardinality of a cocircuit M.
For graphic matroids, this problem has been answered in the affirmative by a number of
authors including JacksdB], Mader[5], and Thomassen and Td&]. Recently, Goddyn
and Jacksofil] proved that for any connected, binary matrbichaving cogirth at least 5
which does not have either/g-minor or aF7-minor, there is a cycl€ for which M\C
is connected. For cographic matroids, the above problem translates as follows. ATircuit
in M*(G) corresponds to a bond i@. The matroidM*(G)\T is connected if and only if
either|E(G/T)| = 1 orG/T is loopless and 2-connected. Oxley’s problem for cographic
matroids can be restated as:

1.2 Problem. Given G is &-connected3-edge connected graph with girth at ledstloes
G contain a bond B such that/B is 2-connecte@

We say that a collection of edgésin a 2-connected grapB is contractibleif G/A is
2-connected. We say that a bondjizodif it is both non-trivial and contractible. We call
two edge-disjoint good bondsgmod pairof bonds.

In [4], an example is given which shows that the answer to this problem is in gen-
eral negative. The main result of this paper addresses Oxley’s problem in the case of
non-simple cographic matroids. Here there is a small example of a graph badégl on
which has no contractible bonds: IBtbe a bond of cardinality 6 iKs, and letG be
the graph obtained fronks by duplicating each edge if(K5)\ B and then subdividing
both edges of each resulting digon exactly once (seelfig.henG is 2-connected with
girth at least 4, but contracting any bond®fleaves a graph which is not 2-connected.
We say that a digon issolatedif it is a multiple 2-edge consisting of two non-loop
edges{e, f} where no other edge has the same end verticeg asd f. In [2],
the following theorem was proved which confirmed a conjecture of
Jacksor3]:

1.3 Theorem. Let G be a2-connected graph having € {0, 1} vertices of degre8 and
which has no Petersen graph minor and which is not a cycle. Then @-hasdgedisjoint
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Fig. 1.

cycles C which are notisolated digons for wh@R E (C) is 2-connectedapart for possibly
some isolated vertices

In this paper, the main result is the analog of the above result in the case of cographic
matroids:

1.4 Theorem. Let G be a2-connected graph which is not a multiple edge and which has
no triangles. If G has nd&’s-minor, then it has a good pair of bonds

The proof strategy of the main theorem is to use the minimum counterexample approach,
reducing as much as possible such a graph so that its structure is more apparent. The first
step is to show that it is non-planar. Then we use a Wagner-type result for graphs without a
Ks-minor to decompose the graph. In the initial stages of the proof, the problem of finding
contractible bonds in planar graphs is examined. Certain lemmas are given here which play
a central role in the main proof. Thereafter, we examine the case of non-planar graphs where
we show that our grap@® can be decomposed into a planar gra@phand another graph
G, whereG; andG, meet along a 3-vertex ciit1, v2, v3}. The bulk of the paper involves
showing that certain contractible bonds 16§ and G, can be ‘spliced’ together to form
contractible bonds i&. The splicing is easier or harder depending on the mutual distances
betweenv1, v2, andvz. We are able to succeed in our splicing operation for two main
reasons; firstly, we have a great deal of flexibility in how we choose our contractible bonds
in G1, and secondly, by attaching “gadgets” to the vertices, vz, in G1 andG», we are
able to coerce the constructed contractible bondsimnd G, to have certain favourable
properties.
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2. Contractible bonds in planar graphs

AcycleCina2-connected graphis said to baemovabléf it is not an isolated digon and
G\E(C) is 2-connected apart from possibly some isolated vertices. A cycle which bounds
a face of a plane graph is said toflaeial. We say that a cycle in a 2-connected plane graph
is goodif it is both non-facial and removable. We call two edge-disjoint good cycigsoa
pair of cycles. The following theorems were showr]@j:

2.1 Theorem. Let G be a2-connected plane graph which is not a cycle. Given G has
k € {0, 1} vertices of degre8, there exist® — k good cycles in G

2.2 Theorem. Let G be a2-connected plane graph having at mést {0, 1} faces which
are triangles. Assuming G is not a multiple eddpere exist2 — k edge-disjoint good bonds

The following lemmas play a central role in the proof of the main theorem.

2.3 Lemma. Let G be &-connected plane graph with no vertices of de@deetv € V(G)
be a vertex of degre4 where one or two isolated digons are incident withf G has no
good cycle not containing, then G is the union of a good pair of cyclesd each vertex
has degree or 4.

Proof. Supposés has no good cycle not containingBy Theorem 2.1G has a good pair

of cycles, sayC; andC» containingv and hence also edges of a digon incident tsay

D, having edge® andf and verticeas andv. We may assume thate E(C1). Suppose
that C; contains no vertices of degree 5. L&t = G\E(C1). ThenG’ is 2-connected
(apart from possibly some isolated vertices) and has no vertices of degree 3. It follows by
Theorem 2.1 that it5’ is not a cycle, then it has a good pair of cycles, one of which does
not containv. The cycle not containing, sayC, is seen to be good i&. This is because
G'\E(C)) is 2-connected except for possibly isolated vertices, GRé (C?) is obtained
from G’\ E(C7) by replacing the edges @f;. Sincef ande are the edges o\ E(C?)

and E(Cy), respectively, and have the same endpoi6t$,E (C}) is 2-connected except
for possibly isolated vertices. Since by assumption no such cy&eeixists,G’ must be a
cycle, and in this cas&; is the union of a good pair of cycles. We may therefore assume
that C1 contains at least one vertex of degree 5. Wdite the first vertex of degree 5 we
encounter while travelling from alongC; where edge of digonD is traversed first. Let

P be the path representing the portion@ftraversed from tow, and letG’ = G\ E(P).
ThenG’ is 2-connected and has exactly one vertex of degree 3, namBiyTheorem 2.1,
there is a good cycle i6”, and this cycle cannot contain Furthermore, this cycle is seen
to be good irnG, and this is contrary to our assumption. Thus no such veriean exist and
this completes the proof of the lemmall

A path P in a 2-connected grapB is said to baemovablef G\ E(P) is 2-connected
aside possibly for some isolated vertices.

2.4 Lemma. Let G be a2-connected plane graph having no vertices of de@eket
v € V(G) be a vertex of degre® which is incident with two isolated digons. If G has no
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good cycle not containing, then G is the union of a good pair of cycles and a removable
path fromu to a vertex of degreb. Moreover all vertices of G have degreor 4, except

for v and another vertex of degrée and the removable path may chosen to contain any
edge incident with.

Proof. We suppose thab has no good cycles not containingBy Theorem 2.1G has a
good pair of cycles. Lef1 andC2 be two such cycles. Since there are two digons incident
with v, the cyclesC; andCz contain edges of one such digon. Suppose ¢hatontains

no vertices of degree at least 5, apart fronThenG’ = G\ E(C1) is 2-connected (apart
from possibly some isolated vertices) and has exactly one vertex of degree 3, naBely
Theorem 2.1, there exists a good cy€len G’. Such a cycle does not containand is also
seen to be good itv. To see this, one can use the same argument as was used in the proof
of Lemma 2.3. Since this is contrary to our assumpt©nmust contain a vertex of degree
at least 5, apart from. Letw be the first vertex of degree at least 5 that we encounter while
travelling alongC1 from v. Let P be the path representing the portion@ftraversed from
vtow, and letG’ = G\E(P). Thendg (v) = 4 and there are 1 or 2 digons incident with
v. If G’ has a good cycle not containing then such a cycle is clearly good @. Thus

no such cycle exists i7" and hence Lemma 2.3 implies th@t is the union of a good
pair of cycles. These cycles are also a good pa@ itObserving that each (non-isolated)
vertex inG’ has degree 2 or 4, and each internal verteP tias degree 2 or 4 i, we
conclude that each vertex Gfhas degree 2 or 4, except foandw which have degree 5.
The above arguments also demonstrate that for any edge incident \itére is a good
cycle containing it, and such a cycle must contairnrhus for any edge incident withwe

can choose the removable p&tiso that it contains this edge.

2.5 Lemma. Let G be a2-connected plane graph having no vertices of de@eket
v € V(G) be a vertex of degre@wherev is incident with three isolated digons. If G has
no good cycle not containing, then we have two possibilities for. G

(i) G is the edge-disjoint union of three good cychasd all vertices of G have degr@er
4, except forv and at most one other vertex of degfee

(i) G is the edge-disjoint union of three good cycles and a removable path between two
vertices of degre&. Moreover all vertices of G have degregor 4, apart fromv and
two vertices of degres.

Proof. We suppose tha® has no good cycle which does not containBy Theorem

2.1,G has a good pair cycles, s&} and C, which containv and hence also edges of a
digon incident taw. Suppose&”; contains no vertices of degree at least 5, apart foobret

G’ = G\E(Cj1). ThenG’ is 2-connected (apart from possibly some isolated vertices), and
has no vertices of degree 3. Moreovkf;(v) = 4, andv is incident with exactly one digon

in G'. If G’ contains a good cycle which avoids then such a cycle is also good (h

To see this, one can use the similar arguments as were used in the proof of Lemma 2.3.
Thus no such cycles exist i@, and hence by Lemma 2.3 the edgesofare partitioned

by a good pair cycles. These cycles together wittdecompose the edges@finto good

cycles. Consequently, each vertex@®has degree 2, 4, or 6. Suppdsdas two vertices of
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degree 6 apart from, sayw andz. Let P be the path fromvtozin C1 which containg. Let
G” = G\E(P). ThenG" is 2-connected (apart from possibly some isolated vertices), has
no vertices of degree 3, adg' (w) = dg/(z) = 5, anddg (v) = 4. The vertexv is incident
with one isolated digon i, andG” contains no good cycles which avaidin this case,
Lemma 2.3 implies tha&” is the union of a good pair of cycles. This is impossible since
bothw andz have odd degree (equal to 5)dH’. We conclude that two such verticesand
z cannot exist inG, and consequently; has at most one other vertex of degree 6, apart
from v. Then (i) holds.

Suppose now thaf; contains at least one vertex of degree at leasipart fromo. Let
P be a path traversed by moving alo@ig from v until one first reaches a vertex of degree
atleast 5, say. Let G’ = G\ E(P). ThenG’ is 2-connectedis' (v) = 5, andv is incident
with two isolated digons. We have th@t contains no good cycles which avaidas such
cycles are seen to be goodGh By Lemma 2.4G" is the union of a good pair of cycles
andCj, and a removable path’ from v to a vertex of degree 5 i6’, sayw. Furthermore,
each (non-isolated) vertex 6f' has degree 2 or 4, apart framandw which have degree
5. If u = w, thendg (1) = 6, andG has no vertices of odd degree. Then we can show,
as in the previous paragraph, that (i) holds. We suppose therefone $hat. This means
that G has exactly 2 odd degree vertices which arandw and every other vertex has
degree 2 or 4 apart from which has degree 6. Thefy; (u) = 4, anddg (w) = 5, and
one of the cycle€’; or C; contains bothu andw. We may assume th&t; containsu and
w. Let P” be the path fronutowin C{\{v}, and letG” = G\ E(P"). We have thatG” is
2-connected (apart from possibly some isolated vertiaeis)jncident with three isolated
digonsinG”, andG” has no odd degree vertices. Repeating previous arguments, we deduce
thatG” is the edge-disjoint union of three good cycles, 6dy i = 1, 2, 3. Moreover, all
(non-isolated) vertices have degree 2 or 4, apart froamd at most one other vertex of
degree 6. Ifv is the only vertex of degree 6 i@”, then all the vertices d& have degree
2 or 4, apart fromu, w, andv which have degrees 5, 5, and 6, respectively. Then (ii) is
seen to hold. IfG” has another vertex of degree 6, apart fronthen this vertex must be
w. Thusdg(w) = 7, dg(u) = 5, dg(v) = 6, and all other vertices o have degree 2
or 4. Sincedg (u) = 5, one of the cycle€, i = 1, 2, 3 (which are good irG), sayC7,
does not contain (but containg). Now C/ contains no vertices of degree 5, and thus by
the first part of the proofG is the edge-disjoint union of three good cycles. This yields a
contradiction. We conclude that in this caGehas exactly one vertex of degree 6, namely
v, and hence all the vertices &f have degree 2 or 4, with the exceptionuofw, andv
which have degrees 5, 5, and 6, respectively. In this case, (ii) holdsGfith = 1,2,3
andP”. 0O

2.6 Lemma. Let G be a2-connected graph and suppose S is a proper subset of edges such
that G\ S is connected and:* = G/S is 2-connected. Suppose that is a contractible
subset of edges iG*. Let B = > B* <y . If B is not contractible in GthenG/B contains

loops

Proof. Let S, B, and B* be as in the statement of the lemma. We supposeBhignot
contractible inG, andG’ = G/B contains no loops. Lef’ = (S)p. If G’ contains 2 or



S. McGuinness / Journal of Combinatorial Theory, Series B 93 (2005) 207 -249 213

SAINN

GID AGZ

Fig. 2. A-sum of G1 andG.

more blocksK’ whereE (K') ¢ §’, thenG’/S’ has 2 or more blocks. However,
G'/S'=G/B/S = (G/S)/B* = G*/B*

which is 2-connected. So at most one such block exists. Thikisids more than one block,
then we can find a block’ of G’ whereE(K’) € §’. If K’ is not a loop, then the edges
of > K’ <p form a cutset irG, which means that the edges®Mmust also be a cutset in
G. However, this is impossible sin@&\ S is connected. Thuk’ is a loop. So ifB is not
contractible inG thenG /B must contains loops, and moreovér, B minus its loops is a
2-connected graph. [J

2.1. TheA-sum of two graphs

Following the definition given ifi9], we define aA—sumof two graphsG1 andG; with
e(G;j)=7, i = 1,2 to be the graph obtained by ‘glueing’ togetlter and G, along the
edges of a given triangle in botty andG, and then deleting the edges of this triangle (see
Fig. 2). We denote such a graph B3 © Go.
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2.7 Lemma. Let G Ee aA-sum of planar graph&s = G1 & G2 whereG1 is a plane
graph. LetB = [X, X] be a bond of G and let C be a cycle which bounds a facé 1of
Then|BN E(C)|<2.

Proof. Let G = G1 ®&a G2 where theA-sum occurs along a trianglE = uvw. Let
C be a cycle which bounds a face 6 and letB = [X, X] be a bond ofG. Suppose
|[BN E(C)|>3, ande; = x1y1, e2 = x2y2, andes = x3y3 are three edges iB N E(C).
We may assume that € X, i = 1,2, 3, and we meet the edges, ¢, e3 in this order
as we move alond’. So while traversingC we meet the vertices1, y1, y2, x2, X3, y3
in this order (noting that it is possible that = y, or x = x3). SinceB is a bond,
both G(X) and G(X) are connected. So there exists a pRtfrom x1 to x» in G(X)
and a pathQ from y1 to y3 in G(X). Either P ¢ G1 or E(P) N E(G1) is a vertex
disjoint union of two paths’; and P, whereP; = ujujo--- uin;s j =12, andui; =
X1, uz,, = x. If the latter occurs, themy,,, up1 € {u, v, w}. SinceT = wvw is a
triangle of G, it follows thatuy,,uz1 € E(G1), and P’ = Py U P2 U {u1y,u21} is a
path in Gy from x1 to x». SinceQ does not intersed? it does not intersecP’ either.
However, since5 is plane, any path froms to y3 in G1 must crossP’ and this yields a
contradiction. IfP C G1, the same conclusion holds. We conclude that no such &/ cén
exist. O

3. Reductions on a minimum counterexample

We suppose that Theorem 1.4 is false and supposéstisaa minimal counterexample
wheree (G) is minimum subject to(G) being minimum. By Theorem 2.2 we may assume
thatG is non-planar.

We call a pathP between two vertices of degree at leasttBraadif it is an edge, or if all
its internal vertices have degree 2. We definelémgthof P to be the number of its edges
and we denote it byP|.

Claim 1. G has no thread of lengtB or greater.

Proof. Supposel’ = ugeous - - - ex_1uy is a thread wheré >3. Let G’ = (G\{uz, ...,
ur_1}) U{uour}. Supposes’ contains no triangles. Then by the minimality®fthe graph
G’ has a good pair of bonds, s& and B>. We may assume thabu; ¢ B1. ThenB1 and
C = [{us, ..., ug—1}, {u1, ..., ux—1}] are a good pair of bonds i.

We suppose instead that contains a triangle (which must contaiguy). Let G” be
the graph obtained fro&’ by deletinguou; and adding a vertex together with the edges
uug anduuy. The graphG” has no triangles sind8 has no edge betweey anduy; for
otherwise it would have a triangle (sin€® has a triangle). Thus by assumpti@i, has a
good pair of bonds, saB; andBz. If B;, i € {1, 2} do not contain the edges:o or uuy,
then they are a good pair @. If for somei € {1, 2} B; contains one of the edges incident
to u, for exampleuou, then B = (B;\{uuo}) U {eo} is a contractible bond . So the
bondsB;, B> give rise to a good pair of bonds @. [
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Claim 2. Between any two vertices of G there is at most one thread.

Proof. SupposeP; and P, are threads between two vertiaeandv. By Claim 1, a thread

of G has at most one internal vertex. Thus, given @& triangle-free, bothP; and P, have

the same length. LeF’ be the graph obtained frof@ by deleting all the internal vertices

of P,. ThenG’ is 2-connected, triangle-free, and therefore has a good pair of bonds. Such
bonds are easily seen to be extendable to a good pair of boids ir

For positive integersnandn we letK,, , denote the complete bipartite graph with parts
of sizemandn. We letGg denote th&Vagner graphwhich is the graph obtained from an
8-cyclevyvz - - - vguy by adding the chords;v; 14, i =1, 2, 3, 4.

Claim 3. G is not a subdivision ok3 3 or Gs.

Proof. Using Claiml, this is a straightforward exercise which is left to the reader]

3.1. The grapthom(G)

For a graphG none of whose components are cycles, we define a draptiG) to be
the graph obtained froi® by suppressing all its vertices of degree 2. For a subgrhph
G we definehom (G|H) to be the subgraph dfom (G) induced byV (hom(G)) NV (H).

Claim 4. hom(G) is 3-connected

Proof. Itsufficesto show thak has no 2-separating setapart from the neighbours of a vertex
of degree 2. Suppose the assertion is false, and there exists a 2-separatig $ef,af}
which separates 2 subgrapfis andGo; that is,G = G1 U G2 andV (G1) N V(G2) =

{v1, v2}, whereG;, i = 1,2 is not a single vertex joined to andv,. We haveE(G) =
E(G1) U E(G2). We shall consider two cases.

Casel: Suppose = viv2 € E(G) (and thus € E(G1) N E(G2)). Then bothG1 and
G, are 2-connected and triangle-free, and moreav€r;) < ¢(G), i =1,2. Fori = 1,2
the graphG; has a good pair of bonds;; and B;>. We may assume that¢ Bi11 U Boj.
One sees thak11 and B21 is a good pair of bonds itr.

Case2: Supposeiv2 ¢ E(G).If G;U{viv2} does notcontainatriangle, foe 1, 2, then
we can repeat more or less the same arguments as in Case 1. So we suppose it has a triangle.
Thenvyvzisan edge ofthistriangle. L& = G;U{u;, u;v1, u;jv2}, i = 1, 2, wherey;, i =
1, 2 are new vertices added@ having neighbours; andv. The graplG; is triangle-free
fori = 1, 2and has agood pair of bonds, sy andB/,,. If B{j , j € {1, 2} contain no edges
incident tou;, then they are seen to be a good pair of bonds.ilve may assume tha; ;
andB;, contain edges incident iq . We suppose without loss of generality that, € B11
andujvy € Bj,. Let Bi’j = [Pl’j, Q’lj], i, j =1, 2. We can assume that at least oneBgf
or B;, contains an edge incident#g. Suppose without loss of generality th&;, contains
upv1. We may assume thai € P, (andus, v € Q},), v2 € P{, (anduz, v1 € Q7,), and
V1 € P2/1 (@anduz, vz € Q/21) The setA; = [(Q/lzu Pz/l)\{l/tl, uz}, (Piz U Q/21)\{”l» uz}]
is seen to be a good bondéh Similarly, if B, contains:ovy, then, assuming, € P2, the
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setAp = [(P];U Q%) \{u1, uz}, (Q71,U Pyy)\{u1, u2}]is a good bond of;. We conclude
that regardless of whethd,, containsuzv, or not,G will have a good pair of bonds. This
concludes Case 2.

The proof of the claim follows from Cases 1 and 2.

4. Good separations

A separation(or separating sgtof a graphG is a set of vertice§ ¢ V(G) such that
G\ S has more components théh A separation withk vertices is called &-separation. We
say that two subgraphs; andG are separated by a separat®if £(G1) N E(G2) = 0,
V(G1)NV(G2) C S, V(G)H\S # 0, i =1, 2,and any path from a vertex 6f; to a vertex
of G» must contain a vertex &f. Extending this, we say thatsubgraphss, ..., G, are
separated by a separating Sétany pair of subgraph&;, G;, i # j is separated by.

We call a separating s¢b1, v2, v} which separates two subgrapis and G, a good
separationf G = G1 U G2, V(G1) N V(G2) = {v1, v2, v3}, and it satisfies an additional
three properties:

() G1 U {v1v2, vov3, v1v3} is planar and has a plane representation where the triangle
v1vov3 bounds a 3-face.
(i) |V(hom(G|G1)\{v1, v2, v3}| > 2.
(iii) There is no good bond o& contained inG1.

Our principle aim in this section is to show th@thas good separations. We shall use a
variation of Wagners theorem which can be foun{®ij

4.1 Theorem. Let G be a3-connected non-planar graph withoutk&-minor and which is
not isomorphic taK3 3 or Gg. Assume G to have a designated triangle T or edgéen G
is a A-sumG1 & G2 whereGo contains T ore, whichever appliesand G is planar.

Our aim is to show thaB has a good separation. To this end, we shall need the following
lemma:

4.2 Lemma. Let G be a3-connected non-planar graph withoutks-minor, and which is
notisomorphic tasg. Then there exists3separating sefv1, vz, va} which separates three
subgraphsGi, G2, GawhereG = G1UG2UG3, V(G1)NV(G2)NV(G3) = {v1, v2, v3},
andG; U {v1v2, vous, v1vz} is planar fori = 1, 2.

Proof. By induction on|E(G)|. Suppose thdb is a 3-connected, non-planar graph which
is not isomorphic taGg and which has n&s-minor. If G is isomorphic toK3 3, then the
lemmais is seen to be true. We shall therefore assumétiganot isomorphic tK3 3. In
addition, we assume that the lemma holds for any graph having fewer edgés wizinoh
satisfies the requirements of the lemma. By Theorem®@dan be expressed as\asum

G1 ®a G2 whereG1 is planar. IfG» is planar, therG would be planar since A-sum of
two planar graphs is also planar. Thiis is non-planar, and moreover it is 3-connected and
contains n&s-minor. Also,G2 is notisomorphic t&K 3 3 or Gg since it contains the triangle
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v1v2v3. The graphGo has less edges th@hsince by the definition of\-sum,|E(G1)| > 7,
and hence

|E(G2)| = [E(G)| — |[E(G1)| +6 < |[E(G)].

Consequently, by the inductive assumption, the lemma hold&#pand it contains a 3-
separating sefi«1, u2, uz} which separates three subgraghs, G2, andGoz3whereG,1U
G22UG23 = G2, V(G21)NV (G22)NV (G23) = {u1, uz, uz}, andGo;U{uguz, upuz, uiusz}

is planar forj = 1, 2. We have thafvy, vz, v3} C V(G2;), for some;. If this holds for
j=1lorj =2, thenGy ®x Gy; is planar. The sefus, uz, u3} is seen to be the desired
3-separation of;. The proof of the lemma now follows by induction.[]

Claim 5. G has a good separatiofv1, vz, vs}.

Proof. By Lemma 4.2, there exists a 3-separating sgtvy, v3} which separates three sub-
graphsG1, G2, Gz whereV(G1) N V(G2) N V(G3) = {v1, v2, v3}, andG; U {vivz, vov3,
vivz}is planar fori = 1, 2. We suppose th&V (hom(G|G;))\{v1, v2, v3}| = 1fori = 1,2
and letV (hom(G|G;))\{v1, v2, v3} = {u;}, i =1, 2. Sincehom(G) is 3-connected, there
exists three threadg1, T;2, T;3 from u; to v, v2, vs, respectively, which meet only at.
SupposdTi1| + |T12| + |T13| > T21| + [T22| + |T23|. Let G = G\(V(G2)\{v1, v2, v3}).
The graphG’ is 2-connected and contains a good pair of bonds which can easily be ex-
tended to a good pair of bonds &f. We conclude that for some € {1, 2} we have
|V (hom(G|G;))\{v1, v2, v3}| > 2. We may assume that this holds foe 1. Suppose there
is a good bond of G contained inG1. Then neitheiG, nor G3 contains a good bond «f.

If |V (hom(G|G2)\{v1, v2, v3}| =2, thenG, can play the role of;1 as in the definition of a
good separation and we are done. We suppose therefot& thain (G|G2)\{v1, v2, v3}| =

1. Then, using the same arguments as before, we Hagem (G|G3))\{v1, v2, v3}| > 2.

If G3is planar, therGz can play the role of51 as in the definition of a good separation
and we are done. We suppose therefore @hats non-planar. Then it has a 3-separating
set{w1, wo, w3} similar to{v1, vp, v3} which separates 3 subgrapHs, H,, H3 where Hy
and H» are planar, andV (hom (G| Hy))\{w1, w2, w3}| > 2. If there is a good bon@& of G
whereC is contained in, thenB andC would be a good pair of bonds. Thig contains
no good bonds, anfv, wo, w3} would be the desired separating set.]

4.1. The type of a good separation

Suppos€vs, v2, v3} is a good separation @. Suppose that it;1 for eachi # j we
havedists, (v;, v;) = 1 ordistg, (v;, v;) >3. LetG| = G1 U {v1v2, vov3, v1v3}. ThenG)
is a 2-connected planar graph with one triangle namelyvz. By Theorem 2.2 has a
good bondB’ which contains no edges of this triangle. THRISs also good irG, and this
contradicts the choice af1. Hence in a good separatigni, v, v3} it holds for at least
one pair of vertices;, v; thatdistg, (v;, vj) = 2.



218 S. McGuinness / Journal of Combinatorial Theory, Series B 93 (2005) 207 -249

We say that a good separation, vp, v3} is of typek, k € {1, 2, 3} if there are exactly
k pairs of verticesv;, v;, i # j wheredistg(v;, v;) = 2. SinceG contains no trian-
gles, ifdistg, (v, v;) = 2, thendists,(v;, v;) =2 (similarly, if distg, (v;, v;) = 2, then
diStGl(v,', v])>2)

4.2. The graph&’] and G/,

We shall define a grapB/ obtained fromG in the following way: For every pair of
verticesv;, v; i # j if distg, (v;, v;) = 2, then provided there is no vertex of degree 2 in
G1 with neighboursy; andv;, we shall add such a vertex & and label itwijl. If such a
vertex already exists i1, then we give it the same Iabwﬁ. If distg, (vi, vj) # 2, then
provided there is no edge betwegrandv; in G1, we shall add such an edge@.

We define a grapl@), from G in a corresponding way(with analogous verti(w%)
with one additional requirement. {1, v2, v3} is a separation of type 3, then providéd
does not have a vertex of degree 3 with v2, v3 as its neighbours, we shall add such a
vertex and label itv,. If such a vertex already exists @, then we shall give it the same
labelws;.

By Claim 2, G; andG> cannot both have vertices of degree 2 with common neighbours
v;, vj. If such a vertex exists ity or G2, then we label it bywj; in G. The three different
possibilities forG andG?, are depicted in Figg.

Given{vy, v2, v3} is a good separation, we may assume throughouthdtas a plane
representation wheng, v2, v3 belong to a face which we denote ByWe have thatF'| =
4,5, or 6 depending on whether the separation has ty@edr 3. We letK denote the cycle
which boundsF. For alli # j, let Fj denote the face of; containingv; andv; (where
Fj # F), and letKj; denote the cycle which boundg . We denote the dual a} by Hj
and we leu be the vertex of{; corresponding to the fadein G/ . The vertexu has exactly
three neighbours which we denote by, u2, andus. For each vertex € V(G)) we let
®(v) denote the face i#; corresponding te. Fori = 1, 2, 3 we let®; = ®(v;).

4.3. Wishbones and minimal good separations

A wishboneis a graph consisting of a vertex joined to three other vertices by disjoint
threads, where at least one of the threads has length 2.

Claim 6. Let {v1, v2, v3} be a good separation. Thefi; does not contain an induced
subgraph which is a wishbone

Proof. Suppose thati; contains a wishborEas aninduced subgraph. We shall assume that
T consists of a vertea joined to verticesi1, az, az by threadsly, T>, and T3, respectively.

If for somei # j we havgT;| >2 and|T;| > 2, thenlettingS = V(T)\{ax, a2, az} one sees
that B = [S, S] is a good bond of;. This gives a contradiction, g$1, v2, v3} is a good
separation and hengg, contains no good bonds 6f. Thus|T;| > 2 for at most one value of

i, and we can assume without loss of generality ffigt>2 and|7>| = |73] = 1. By Claim

1, we have tha6 has no threads of length 3 orlonger, and as $tigh= 2. LetTy = abaj. If

ap andag are not joined by a thread of length 2, thenr= [{a, b}, {a, b}] is agood bond o&
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Fig. 3. The graphs} andG, as defined fofs of type 1 2, or 3.

which is contained i 1. Again, this yields a contradiction. Thus there is a thread of length
2 betweeniy andas. Let G’ = G\{a, b}. We have thatG’ is 2-connected and therefore has
a good pair of bonds, sa§; andB,. Let B = [X!, V(G")\X!], i =1,2. Fori =1,2we
can assume thak! N {a1, a2, az}| <1. We have tha’(a2>3if # (as)p, i = 1,2asaz and

az are joined by a thread. Thusdt, a2, a3 ¢ X/, thenB! is a good bond of;. Suppose for

i =1,2,3itholds thatz; ¢ X} N X5. Then the bond®/, i = 1, 2 can easily be modified
to yield a good pair of bonds @. We therefore suppose that for soine {1, 2, 3} that

a; € XyN X5 If a1 € X{N X5, then[X], V(G)\X]and[X,U{b}, V(G)\(X;U{b})] are a
good pair of bonds. Suppose thate X} N X} oraz € X1 N X5. Then[X}, V(G)\X}]and
[X5 U {b}, V(G)\(X, U {b})] are a good pair of bonds ¢f. We conclude tha6; contains
no induced subgraph which is a wishbonell

We say that a good separatifin, vz, vz} is minimalif there is no other good separation
contained inV (G1).
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Claim 7. Let {v1, v2, v3} be a minimal good separation @f. Then fori = 1, 2, 3 the
vertexv; has at leas® neighbours inV (hom(G|G1))\{v1, v2, v3}.

Proof. Suppose the claim is false and assume without loss of generality{hatly
has one neighbour i (hom(G|G1))\{v1, v2, v3}. We may assume thaf is joined by a
threadT to a vertexa wheredg, (a) > 3. Since{vy, v2, v3} is a good separation, we have
|V (hom(G|G1)\{v1, v2, va}| = 2. If |V (hom(G|G1))\{v1, v2, v3}| > 2, then{a, vz, v3}
would be a good separation 6f, contradicting the fact thdtv1, vo, v3} is minimal. Thus
hom(G|G1) has exactly five verticas , v, vz, a, and an additional vertéx Sincelom (G)

is 3-connectedy is joined by three disjoint threads, 7>, 73 t0o a, v2, andvz respectively.
By Claim 6, G1 has no induced subgraph which is a wishbone. Tiiys=1, i =1,2,3
andba, bvy, bvz € E(G). Sincedg,(a) >3, we have thah is joined to at least one of
vp Or vz by a threadr. If |T| = 1, thenG1 contains a triangle. Consequently,| = 2.

If ais not joined to bothy; andvs by threads, theitr; would have an induced subgraph
containingT which is a wishbone. Thugis joined to bothw, andvz by threads of length
2. LetS = V(G1)\{v1, v2, v3, b}. Then[S, S]is seen to be a good bond containedsin
This contradicts the fact thétq, v, v3, } is a good separation. We conclude thahas at
least 2 neighbours i (G7\K), and the same applies tg andvz. [

5. G1-good bonds andH;-good cycles

Suppos{us, v2, v3} is a good separation. The& contains no good bonds 6f. This
means thaG has no good bon@ = [X, V(G’)\X] such thatX ¢ V(G))\V(K). Inthe
dual H, this means thal/; has no good cycle which does not contaiiVe say that a good
bondB’ = [X, Y]in G is Gi-goodif X\V(K) # ¥, andY\V(K) # #. A cycle in H]
corresponding to &1-good bond is called B 1-goodcycle. That is, a good cycl€’ in H;
is Hi-good if both its interior and exterior contain facéév) wherev € V(G7)\V (K).
According to Lemmas 2.3-2.5, we can find a decompositidiiahto two or more good
cycles and at most one removable path (between vertices of degree 5). We have exactly four
possibilities:

(a) A decomposition into two good cycleﬁf(i(u) =4).

(b) A decomposition into two good cycles and a removable pé,l)@((:) =05).
(c) A decomposition into three good cyclefg,g(u) = 6).

(d) A decomposition into three good cycles and a removable p’@,tlm() =6).

If all the cycles in the decomposition af&-good, then we say that the decomposition is
Hi-good.

5.1. Swapping cycles

Suppos&] andC} are two edge-disjoint cycles ifi; which contain:. Supposev, w’ €
V(C) N V(C,) wherew, w’ # u. Fori =1, 2 we letC;[ww’] denote the path i@\ {u}
betweerwandw’, and letC;[wuw’] denote the path i@ betweerw andw’ which contains
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u. If C/[ww'], i = 1, 2 contain no vertices of (C7) N V(C5) other tharw andw’, we can
define two new cycles

C] = Cilwuw'1U Chlww'],  C5 = Chlwuw'] U Cilww'].

We callC?, i = 1, 2 the cycles obtained bswappingC; andC’, betweernw andw’.

We can also define a swap between a cycle and a patit hefa cycle off/; containing
u and letP be a path inH; with terminal verticesvp andw; which is edge-disjoint from
C. Supposev, w’ € V(C)NV(P)andClww'] and P[ww’] contain no vertices d? apart
fromw andw’. We can define a new cyct&’ and pathP’. Assumingw occurs first while
travelling fromwg to w; alongP, we let

C' = Clwuw'lU Plww'], P’ = Plwow]VU Clww']U P[w w;].

5.1 Lemma. If {v1, vo, v3} is @ minimal good separatiqrthen there exists a@f;-good
decomposition off;.

Proof. We suppose thdt1, v2, v3} is a minimal good separation. Then there is a decom-
positionD of H; as specified by one of (a)—(d). We may assumeZhat maximal in the
sense that one cannot replace any membef3 sb as to obtain a decomposition with a
greater number off1-good cycles. We suppose th&tis not H1-good. LetC; € D be a
cycle which is notH;-good. We can assume that the interiolgfcontains no face®(v),
wherev € V(G’)\V (K). We may also assume that the interior also contains exactly one of
the facesp;, i € {1, 2, 3} say®;. By Claim 7, the vertexv; has at least two neighbours in

V (hom(G|G1))\{v1, v2, v3}. ThusCj contains a vertex # u,u1, uz, uz and two edges

¢, e” € E(Cy) incident withwwheree’ € @(v}) ande” € @(vf), the vertices], v being
neighbours ofv; in V(G))\V(K). We have thathi(w)>4, and thus there is a path or
cycle of D\{C} which containsw.

We suppose there is a cyol&, € D\{C;} which containsw. We observe that faces
@(vy), and ®@(v]) both belong to the interior of”, or both belong to the exterior. Since
u € V(C))NV(Cy), atleastone ai’s neighboursy, uz, or uz belongs to botlt”] andCs,.
This means that we can find a verteke V (C}) NV (Cy)\{w, u} whereC;[ww'] contains
no vertices ofC; other tharw andw’. We perform a swap 067 andC; betweerw andw’
yielding two cyclesC] andCj where

C] = Cilwuw'1U Cylww'],  C5 = Chlwuw'] U Ci[ww’]

(see Fig.4). The cycleC;, = Cjlww’] U C5lww'] contains exactly one of the faces
@(vy), P(vy) in its interior (and hence exactly one in its exterior). TRt contains
exactly one of these faces in its interior, and one in its exterior. The same also applies to
C5. We shall show tha€’] andC, are H1-good. To show this, it suffices to show that they
are removable. LeH;’ = H{\E(CY), and letv € V(H{) be an arbitrary vertex where
dyy(v) 2 3.LetD’ = (D\{C}, C5}) U{C{, C5}. We note thaD’ contains at most one path
sinceD contains at most one path. Thus there is a cgtle D'\ {C/'} containingv, since
dH{(U) >3. We have that, v € V(C’) and consequently andv belong to the same block

of H{'. If H] has no vertices wheredy; (v) 23, thenH;’ consists of a cycle plus possibly



222 S. McGuinness / Journal of Combinatorial Theory, Series B 93 (2005) 207 -249

Fig. 4. Swapping”} andCy.

some isolated vertices. In either cas, consists of one non-trivial block plus possibly
some isolated vertices. This shows tldgt is removable inH;, and the same applies to
C5. We conclude that bott}] andC? are H1-good. However, this means tHat has more
Hi-good cycles tha®, contradicting the maximality ab.

From the above, we deduce tHai{C’} contains no cycles which contain. ThusD
contains a patlP’ which containaw. If C; contains a vertex oP’ other tharw or u, then
we could swapC; and P’ between two vertices so as to obtainffrgood cycleCy and a
removable pattP”. Then(D\{C3, P'}) U{C{, P"} would have mor&41-good cycles than
D, contradicting the maximality ab. ThusC; contains no such vertex, and in particular
this means that’; cannot contain both of the terminal vertiaes, w, of P’. In particular,
this means thatg, w, # w. However, since both terminal vertices have degree 5, there
is a cycle of D\{P’, C}}, sayC,, containing both of these vertices. LBt = C)[wowy].
ThenHy = H{\E(C}) U E(P") is 2-connected, has no vertices of degree 3, and has no
removable cycle which does not containThus by Lemma 2.3H;’ is the union of two
good cycles, sag'y, C5. BothC5 andCy containwo, w,, and at least one of them, say,
containsw. We can swag’; andC5 in Hj to obtain twoH1-good cyclesC] andCy'. If
C3 is not H1-good, then we can swap,” andC3 to obtain twoH;-good cycles. In either
case, we obtain &1—good decomposition. [

For a path inH;, we call the corresponding subgraplGfasemi-bondA decomposition
of G, consisting of two or more good bonds and at most one contractible semi-bond is said to
beG1-good if each of the bonds in the decomposition@gegood. Thatis, a decomposition
of G/ is G1-good if and only if the corresponding decompositionHfis Hi-good. The
previous lemma immediately implies that we can fg-good decompositions i .

5.2 Lemma. If {v1, v2, v3} is @ minimal good separatigrthen there exists &1-good
decomposition o7} .

We shall need a slight refinement of the previous lemma.
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5.3 Lemma. Suppos¢K | = 6 and|K23| = 5whereKy3 = vzxyvgw%3v2. Then one can
choose &1-good decomposition consisting of boréls, i = 1, 2, 3 and semi-bond S so
thatyvs ¢ S.

Proof. Suppos¢K | = 6 and|K23| = 5. Lete € E(H;) be the edge it corresponding to
yv3. We can find a decompositidd of H; consisting of three good cycl€g, i =1,2,3

and a removable path’ wheree ¢ E(P’). We chooseD to have as manyfi-good cycles

as possible subject o ¢ E(P’). We can now swap cycles and paths in the same way as
was done in the proof of Lemma 5.1 to obtain the desHeejood decomposition. [J

6. Cross-bonds

For a good separatiofv, vo, vz}, we call a bondB of G a cross-bondf either B is a
good bond oG fori = 1 or2,orB € B; U B, whereB! is a good bond o} fori = 1, 2.
A block of a graph is maximal connected subgraph which has no cut-vertex (separating
vertex). Every graph has a unigbleck decompositigiwhere any two blocks share at most
one vertex.

Claim 8. Let {v1, v2, v3} be a minimal good separation of G and let B be a cross-bond
of G.

() If (v1)p, (v2)B, and(v3)p all belong to one block of// B, thenG/ B is itself a block
and B is a good bond df.

(ii) If no block of G/B contains all of(v1) 3, (v2)p, and (vs) g, then G/B consists of
exactly two blocks which meet at a cut-vertex;gB which is one ofv1) g, (v2) 5, Or
(v3)B-

(iiiy If (v;)p = (v;)p for somei # j, thenG/B is itself a blockand B is a good bond
of G.

Proof. Let B be a cross-bond. B is a good bond o5/ for somei, thenB is seen to be
good inG and (i)—(iii) hold in this case. We suppose therefore #at B; U B, whereB!
is a good bond o6} fori =1,2. We letB; = B/ N E(G;), i =1,2.

We showed in Sectiodthatdists, (v;, v;) = 2, for somei # j. We can assume without
loss of generality thadlists, (v1, v3) = 2 andwj; € V(G)), i = 1,2. Now sinceB; is
contractible inG/, it holds that(vs)p; # (v1)p; (sincew!; € V(G)). Thus(va)p #
(v1) g, and not all the vertices;, i = 1, 2, 3 contract into a single vertex i@/ B;. This
also implies thatvi) gnp, # (v3)Bns;-

We shall first show thatG /B contains no loops. Suppose that= xy € E(G1)\B
contracts into a looge)p in G/B. Then(X)p = (y)p and there is a pat® < G(B)
betweenxandy. If P C Gy, then(X)p: = (y) ;, and consequentli) 5 would be a loop
of G/ B, a contradiction sincé; is good. ThusPZG1 and a portion oP, say pathQ, is
contained inG,. The pathQ has terminal vertices; andv; for somei # j. P is the union
of three pathsP = P; U P, U Q where we may assume th&{ has terminal verticeg
andv; and P, has terminal verticegandv;. SinceQ C G, it holds that(v,-)Bé = <vj)B§
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and henc:tauij2 ¢ V(G%). By the construction ofG, it follows thatv;v; € E(G), and

hencev;v; € B, since B, is good (otherwise, edge;v; becomes a loop IG5,/ B5).
Consequentlyy;v; € By, and Py U P, U {v;v;} is a path inG; (B7) betweernx andy. This
would mean thate) 5, is a loop inG/Bj yielding a contradiction (sinc®; is good). If
insteade € E(G2)\B, then we obtain a contradiction with similar arguments. This shows
thatG/ B contains no loops.

To show (i), suppose thét;) s, i = 1, 2, 3 belong to the same block &f/ B sayX, and
suppose that; /B has at least two blocks. The®/B has another block which is not a
loop and contains at most one of the verti¢esg, i = 1, 2, 3. Using the above, one can
show thatK is not a loop. TherY contains a vertexa)z where(a)p ¢ V(X). Suppose
thata € V(Gy). SinceG’/(B1 N B) is 2-connected(a)g,np, (v1),ng, and(vs)p,np
belong to the same block @f1/(B1 N B). However, sinceg contains only at most one of
the verticesv;)p, i = 1,2, 3, it must hold that{v1) g = (v3) g, Yielding a contradiction.
We conclude that: ¢ V(G1)\{v1, vz, v3}, and in a similar fashion, one can show that
a ¢ V(G2)\{v1, v2, v3}. Thus no such vertea exists, and hence no such blo¢lexists.

We conclude tha@ /B is itself a block (hence 2-connected), and tBus good.

The above argument also shows that each bloak a8 must contain at least two of the
vertices(v;) g, i =1,2,3. Thusif (v;)p = (v;)p for somei # j, thenG/B has only one
block, itself, and hencB is good. This proves (jii).

If G/B has more than one block, then by the above argument it has exactly two blocks,
separated by a vertex which is one of the vertigesg, i = 1, 2, 3. This proves (ii). O

Claim 9. Let{v1, v2, v3} be a good separation and let B be a cross-bond;off for all
i # j, (vi)p # (vj)p and there exists a path frofw;) 3 to (v;) g in (G/B)\(vk)p Where
k #1i, j, then B is good

Proof. LetB be a cross-bond, and suppose ¥at4 j, (v;)p # (v;)p and there exists
a path from(v;)p to (v;)p in (G/B)\(vr)p Wherek # i, j. This implies that none of
the vertices(v;)p, i = 1, 2, 3 are cut-vertices of;/ B. According to Claim8, B must be
good. [

7. Good separations of type 1

We suppose thatv, v2, vz} is a minimal good separation which has type 1. We have
thatdist, (vi, v;) = 2 for somei # j. We can assume without loss of generality that
distg, (v1, v3) = 2, w3 € V(G)), andvyvz, vovz € E(G)) fori = 1, 2. This we assume
for the remainder of this section.

Claim 10. Given{vs, v2, v3} is a good separation of tydeand B is a cross-bonave have
that (v1)p # (v3)p, and(v1)p and(v3)p belong to the same block 6f/ B.

Proof. LetB be a cross-bond. We may assume that Bj U B, whereB/ is contractible
in G} fori = 1,2. We have thatvy)p # (v3)p, i = 1,2, sinceB/ is contractible in
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G!. Thus(vi)p, # (v3)s, i = 1,2, and consequentlyv1)p # (v3)p. The bondB]
contains exactly 2 edges of the cyelgv3wiqv1 and exactly one of the edgesw; 5 or
v3wi5. As such, there is an edge 6w /(B N By) between(vi) gnp, and(vs)pnp,. Since
G2 is connected there is a pathdip/(B N B2) from (v1) pnp, t0 (v3) s, Thus there is a
cycle inG/B containing(v1) g and(vs) g. This implies thatv1) 5 and(vs) g belong to the
same block of5/B. [

Claim 11. Given {v1, v2, v3} is a good separation of typ& and B is a cross-bondf
v1v2 € B or vovs € B, then B is contractible

Proof. If vivo € B, then(v1)p = (v2) 5. By Claim8, Bis contractible. A similar conclusion
holds ifvovz € B. [

Claim 12. Given{v1, v2, v3}is agood separation of tydeand B is a cross-bondf there is
apath from(vy) g to (v2) g in (G/B)\ (v3) g and a path from{v2) g to (v3) g iNn (G/B)\{(v1) B,
then B is good

Proof. LetB be a cross-bond. Suppose that there is a fagity to (v2) g in (G/B)\{(v3)p

and a path from{v) g to (v3) s in (G/B)\{(v1) . By Claim 10, (v1) 5 and{v3)p belong to
the same block of;/B. Thus there is a path frorfv1) g to (v3)p in (G/B)\(v2) . It now
follows by Claim9 thatB is good. [

7.1 Lemma. Let H be a2-connected planar graph with girth at leadt If E(H) is the
edge-disjoint of two bond4; = [X;, Y;], i = 1, 2then fori = 1, 2 the induced subgraph
G(A;) is a forest with two componeng(X3_;) andG(Y3—;).

Proof. We assumél has a plane embedding witfaces. Lek = |E(H)|andv = |V (H)|.
Given thatE (H) is the disjoint union of two bondd; = [X;, Y;]i = 1,2 we see that
Ai = E(G(X3-;))UG(Y3-;)i =12 Fori = 1,2 we have thaG(X;) andG(Y;) are
connected and thu& (G(X;))UGY;))|=v—2, i =1,2. Thuse = |A1| + |A2| >2v — 4.
Let H* be the geometric dual ¢f. The bondsA; and A2 correspond to two cycles; and
C> in H* which partitionE (H*). Thus the maximum degree Hi* is at most 4However,
since the girth oH is at least 4, each face &f is bounded by a cycle of length at least
4. Thus the minimum degree iH* is at least 41t follows that H* must be 4-regular.
Thuse = |E(H™)| = 2|V(H*)| = 2f. Using Eulers formula , we have— ¢ + f = 2.
Substitutingf = § we obtains = 2v — 4. Thus equality holds in the previous inequality,
and this occurs only if for = 1, 2, G(A;) is a forest with two components(X3_;) and
G(Ys—;). O

7.1. The bondfi]

Lemma 2.3 implies that the dual; of G only has vertices of degree 2 or 4. This means
that G/, only has faces of size 2 or 4. Since no multiple edges occ® (ay Claim 2),
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all faces ofG’ have size 4. By Lemma 5.2;} has aG1-good decomposmomBll, B,
where we may assume thafv, € Bj; andvzvg € Bj,. Let B’lJ [Plj, ] j=12

wherevy € P{; (andvy, v3 € Q7,) andvz € Pj, (andvy, v2 € Q),). Slnce the edges of
G are partitioned by3; andB;, we have that foj = 1, 2 G//By; is a multiple edge with
endvertices(vl),gij and(vg)Bij. We note also that sino@’ is planar, Lemma 7.1 implies
that each of the componemSE(Pl’j) andG(Q’lj), Jj =1,2are trees.

The graphG’, has a good pair of bond®,; = [P, Q5;] andB}, = [P5,, Q,]. For
i,j=1,2let

Pj =PjNV(G). Qj=QjNV(G), Bj=BjNEG).

7.2. Finding two good bonds

We shall show tha contains a good pair of bonds. pg C V(G)\{v1, v2,v3}, j =
1, 2, thenB>1 and By, are seen to be a good pair of bondﬁnSo we may assume without
loss of generality thaP,, N {v1, vz, v3} # ¥. We shall also assume thBf, N {v1, v, v3} #
@. The case where the intersection is empty, is a good bond o6, and this case is easier.
We may assume thai € P, (andvz, v3 € 05;) andvs € Py, (andvy, v2 € 05,). We note
that since{B1;, B},} is aG1-good decomposition, it holds thm,\V(K) #0, j=12

By Lemma 7.1 we have that/ (Qlj) is a tree forj = 1, 2 (sinceG/ is planar) So for
J =12 G(Q1j)\{vovs_2;} is a forest with 2 components. Lgll and QlJ % pe sets of

vertices of these components whegee Q1J andvs_»; € Q1J , j = 1,2. We define
two cutsets

C21 = [P21U Q}y, P21 U Q1]

and

Co2 = [P22U Q3 P2 U Q3,1
Claim 13. If P21 # {v1}, then the cutsef’,1 is a good bond irG.

Proof. SupposeP,; # {v1}. We will first show thaiC>; is non-trivial. ClearlyP>1 U Q) , #
{v1}, andG (P21 U Q) is connected. To show that(P,1 U Q’,) is connected, we note
thathZU P12 € P21 U Qf,, and hence it suffices to show tha(leu P17) is connected.
Let v, € Ng,(v2)\{v1, v3}. Thenv, Q12U P1p. If vy, € le, then(vz)B/ = (v1)312
and consequently, is adjacent to at least one vertexla_fz, implying thatG(Q12 U P12)

is connected. I, € P1a, then it is clear thaG(Q2, U P1o) is connected. This shows

thatG (P21 U Q7,) is connected, and>; is a non-trivial bond. It is also a cross-bond since
C21 € Bj, U B,,. We will now show thaiC>; is good inG.

If vivo € E(G), thenvyva € C21 and hence by Claim1 C21 would be good. We may
therefore assume thaiv, ¢ E(G). To show thatC»; is good, Claim12 implies that it
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suffices to show that there is a path frém)c,, t0 (v2)c,, In (G/C21)\(v3)c,, and a path
from (U2>C21 to <U3)C21 in (G/CZl)\(U1>C21~

We shall first show that there is a path frdm ) c,, to (v2)c,, in (G/C21)\(v3)c,,. Let
vy € Ng,(v2)\{v1, v2}. It holds thatv), € Q%,U P1p. Suppose first that, € Q%,. Then
(v’z)B/12 = (v1) ), and hence there is a path frowb) c,, t0 (v1)c,, IN (G/C21)\ (V3) -
Suppose now that, € P21. Thenvv), € Bio, and hence), € 011. We have thatv’z)Bi1 =
(v3)p;,. and consequently, is adjacent to at least one vertexrf, sayv;. Then(v/z/)Bi2 =
(vi) gy, and thus(vy) 3,, = (v1) B,,.- Consequently, there is a path fraqmd)) c,, to (v1)c,,
in (G/C21)\(v3)c, .- Since no edges af,1 are incident withvy, it follows that(vy)c,, #
(v3)cy - Thus we can find a path frofvz) ¢y, 10 (v1)cyy IN (G/C21)\(v3)cy Via <v/2>C21
and(v5)c,,. In both cases there is a path fram)c,, t0 (v2)c,, IN (G/C21)\(v3)cys-

We shall now show that there is a path fr@m)c,, to (v3)c,, in (G/C21)\(v1)c,,- Let
vy € Ng,(v2)\{v1, v3}. Thenv, € P1U Q21. Suppose first that, € 02;. Then(u’z)Bé1 #
(v1) , ; for otherwise, the edgev, would become aloop i6,/ By If <”/2>Bél = (v3) gy,
then there is a path frorfvz) c,, t0 (v3)c,, iN (G/C21)\(v1)c,. Otherwise, if(vé)Bél #*
(vg)Bél, then sinceG’/B,, is 2-connected, there is a path fro(m&)Bél to (v3)Bél in
(G’Z/Bél)\wl)gél. In this case there is a path froftp) ¢,, to (v3)cy; IN (G/C21)\ (V1) Cyy-
Suppose now that, € P1. If (v5) By, = (V1) By, theN(v2) oy = (V) ey = (V1) ey - INthis
case, Clain8 implies thatC,; is good. We may therefore assume thaf) ,, # (v1) ;.
SinceG2(P2y) isconnected, thereisaverteék e Ng, (v5)N Po1. SinceGY, contains no trian-
gles, it holds thaty # v1. We also have tha(tv’z/)Bél £ (U/Z)Bél' Since(vl),gél = (v2)py, =
(v5) gy . We have thatvy) g 7 (v1) gy, . If (V3) g = (v3) gy, then(vy) ey = (v3)cy, and
hence there is a path frof2)c,, 10 (va)cy, I (G/C20\(V1)cy- If (V3) gy # (v3) gy,
then sinceG5/ By, is 2-connected, there is a path (67/B5,)\(v1) gy, from (v3)p, to
(U3)Bél. Thus there would be a path frofm) ¢, to (v3)c,, IN (G/C21)\(v1)c,, (given that
(v2)cyy # (v1)cy)- The proof of the claim now follows by Claih2. [

In the same way, one can show the following:
Claim 14. If P2y # {v3}, thenC»z is a good bond irG.
Let By = [P11U P21, P11 U P21], andB; = [P12 U Ppp, P12 U P2ol.

Claim 15. If B is a bond which is not good in ,GhenC»; and Co» are a good pair of
bonds inG.

Proof. We suppose thaB; is a bond which is not good i&F. The bondB; is non-trivial
since P11\{v1} # ¥, and it is also a cross-bond. According to Claiwand 10, G/B;
consists of two blocks where one block contajng g, and(vs) s,. If viva € E(G), then
v1v2 € Bp andB; would be contractible by Clairhl. Sovivs ¢ E(G). SinceB; is abond,
G(Q11U Q21) is connected and consequently there is vertexr Ng(v2) N (Q11U Q21).
Since(v2>3;l = <v1)3,-’1’ i=12we havetha(n/z)B[g1 = (U3)B[_/l, i = 1, 2and consequently
(vy) B, = (v3)B,. We deduce that there would be a path(@y B1)\(v1) g, from (v5)p, to
(v3) ;. Now Claim 8 implies that(vz) g, and(v3)p, belong to the same block @¥/B;.
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Arguing in a similar way withvy in place ofvy, we also deduce thdvi)p, and (va) g,
belong to the same block. Thysg) g, is a cut-vertex ofG/B1 which separate) g, and
(v2) B, -

We wish to show thatP>; # {vi}. Since hom(G) is 3-connectedfiom(G5) is 3-
connected, and there is a pahfrom v, to a vertex ofNg,(v1) which avoidsv; and
v3. We have thatvz) g, € V((P)p,) as(vz)p, is a cut-vertex inG/Bi. So for some vertex
z € V(P)wehavez), = (v3)p,. If z € P21, thenz # vy and hencé®,; # {v1}. Sowe can
assume thag ¢ Po1. If z € Ng,(v1), thenzvy € By and hencévi)p, = (z)p, = (v3) 5.
This gives a contradiction sinde1) 5, # (v3)p,. On the other hand, i ¢ Ng,(v1), then
zis adjacent to some vertex g since(z)p, = (va)p,. This means thaPy1 # {v1}.

Since P21 # {v1}, Claim 13 implies thatC»1 is a good bond. We now wish to show

that Co2 = [P22 U 03, P2p U Q3] is a good bond. By Claini4, it suffices to show that
P2y # {v3}. Sincehom(GY) is 3-connected, there is a path @p\{v3} from v to v;.
Since(vs) p, is a cut-vertex of5/ B1 separatinguv1) g, and(vz) g, , it follows that(va) 5, €
V({P)p,)- Thus there must be edges B$; incident withvz, and such edges belong to
G2(P22). We conclude thaPy, # {v3} and thusC2sis good. This completes the proof of the
claim. O

We have a similar result faB,, namely:

Claim 16. If B, is a bond which is not good in,GhenC2; and C»; are a good pair of
bonds

Claim 17. If B1 is not a bondthenC>; is good

Proof. SupposeB; is not a bond. Thelt7 (Q11 U Q21) consists of two components; one
containingv, and the otheps. Sincehom(GY) is 3-connected, there is a path@\{v1}
fromv2 to vz. Such a path must contain verticestofi\ {v1} sinceG2(Q21) is disconnected.
This means thaP,; # {v1}, and consequently;»>1 is a good bond by Clairh3. O

In a similar fashion, one can show:
Claim 18. If B is not a bondthenCs»2 is good

Claim 19. Given{v1, v, v3} is a minimal good separation which is of typgG has a pair
of good bonds

Proof. By Claims15-18, if both B1 and B2 are bonds, then eitheé?; and B, are a good
pair of bonds, oiIC21 andCo; are a good pair of bonds. We can thus assume without loss
of generality thatB; is not a bond and thus by Claift¥, C»; is a good bond. B> is not a
bond, then Claini8implies thatC,; is a good bond, in which cag&1 andC,, are a good
pair of bonds. We may thus assume tBatis a bond, and3; is good (otherwise(1,> and
C22 are a good pair by Claims6 and17). Moreover, we may assume th8t> = {vs} for
otherwise C2 is good by Claiml4.

Since B1 = [P11 U Po1, Q11 U Q1] is not a bond,G(Q11 U Q»1) consists of two
components. We lef? and Q2 be the sets of vertices in the components contairing
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and vs, respectively. Sincé?, = {v3} all edges incident withvs in G2 belong to B2
and hence also t@2. It follows that Ng,(v3) € Q% and consequentlp3\{v3} # ¥.
Now C = [Q8, 03] is clearly a non-trivial bond which is also a subsetRaf(and hence
is also a cross-bond). To show th@atis contractible, it suffices to show that there are
paths from(v2)¢ to (v1)c in (G/C)\(v3)c and from(vz)c to (v3)c in (G/C)\(v1)c. Let
vy, € Ng(v2)\{vy, v3}. If v, € O11, then(v’z)B11 = (v3)py,. IN this case, we can find a
path from(vz)c to (v3)c in (G/C)\(v1)c. If v, € P11, thenv, is adjacent to a vertex
vy € P11, wherev) # vy (sinceG1(P11) is connected and;’| contains no triangles).
We have thal(vz)gll = (v2) By, and hencegvy)p,, = (v3)By,. In this case, we can also
find a path from(vy)c to (v3)c in (G/C)\(v1)c and hence there is a path frofw)c to
(v3)c In (G/C)\(v1)c. To prove that there is a path frofm) ¢ to (v1)c in (G/C)\(v3)c,
we first observe thatom (GY) is 3-connected, and thus there is a patilom vy to vy in
G2\{vs, }. It follows that (P)¢ does not contairws)c, since no edges a8,; are incident
with v3 (as P22 = {vs}). Consequently{P)c contains a path fronjvz)c to (v1)c in
(G/C)\(v3)c. This shows tha€ is good, and we conclude th@tandB; are a good pair of
bonds. 0O

8. Good separations of type 3: part |

In this section, we shall assume that, v, vz} is a minimal good separation which has
type 3.G has a plane representation where the cy€le= viwi,vow35vswizv1 bounds
the faceF. By Lemma 5.2, the graply| has aG1-good decomposition. There are two
possibilities: either the decomposition consists of thBaegood bonds, or it consists of
threeG1-good bonds and a contractible semi-bond. We shall assume in this section that the
former holds; that is(;; has anG1-good decomposition consisting of thrég-good bonds
B/1j = [Pl’j, Q/ll-], Jj =1,2 3 wherefori =1,2,3we havey; € Pij ifand only if i = j.
Forj = 1,2, 3 we letPy = Pij N V(Gy) andQqj = Q’1j NV(Gy). According to Lemma
2.5, we may assume that every facedfis a 4-face apart from the 6-face boundedkby
and possibly one other 6-face. The graph has a good pair of bonds which we denote
by B/ [P/zj, / = 1,2. We letPy; = P’Zj NV(Gy) andQz; = Q’Zj NV (Gy) for
j= l, 2. We can assume thqalP2 N{vy, v2,v3}1<1, j=1,2 Since{Byj: j=1,23}
is aG1-good decomposition, we hav®;\V(K) # ¢, i = 1,2, 3. We may assume that
for at least one of the bond}éj = [Pz/j, Q/zj], j=12 thath’j N {v1, v2, v3} # ¥. For
otherwise,Bz; = Bj;, j = 1,2, would be a good pair of bonds &. We may assume
without loss of generality thay € P;, andvp, vz € Q5. LetBy = [P11UP21, Q11UQ21].

The cutsetB is a non-trivial bond; to see this, we have tdatt; (v2, v3) = 2, and as
such there is a 2-paihzvs fromva tovs. If z € P11U Poq, then e|ther(v2),3/1 = (v3)p. Or
(vz)Bé = (U3)32 depending on whethere P13 or z € Pp;. However, neither the flormer
nor the latter can occur sind ; and B;, are good bonds i’} andG5, respectively. Thus
z € Q11U Q21, and this means thak (Q11 U Q21) is connected an® is a bond. The
bond By is non-trivial sinceP11\V (K) # . Let G = G)\{w3,}. We have thaG, is 2-
connected and therefore has a good pair of bdigs= [P5,, Q3;] andB5, = [P5,, Q5,].
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Let
Vi={veV(Gy: (v, = (Vi)B,}, =123

Claim 20. If B1 is not a good bonghen there is a good pair of bonds .

Proof. We suppose tha®; is not good.B; is a cross-bond sinc; € Bj; U B5,. Clearly
(vi)p, # (vj)B,, I # j sinceBy; is good inG) and B, is good inGY. By Claim 8,
B1 would be good. Therefore, we can assume thats, # (v2),, (v3)p,. We have that
distg (v, v;) = 2, j = 1,2 and in factdg, (v, v;) = 2, j = 1,2 sincev; andv;
belong to a 4-face irG). Let vixvy be a path of length 2 from; to vo in G1. Then
B11 and By, each contain one of the edgesx andxvp, and consequentlyv1)p, and
(v2) g, are adjacent vertices i@/ B1. Similarly, (v1) 5, and(vs) g, are adjacent vertices in
G/B;. SinceBy is not good, Clain8 implies thatG /By consists of two blocks; a block}
containing(v1) g, and(vz) , and a blockk’;, containing(v1) g, and(v3) 3, . The set of edges
<B/12>Bil isabondinG’/Bj;. Thus(B12)p, € E(K}) Or (B12)p, € E(K3). Since(B12) s,
contains an edge betweén ) g, and(vz) g, , it must hold that B12) 5, € E(K7). Similarly,
(B13)B, S E(K}). SinceE(G’) = By, U B}, U B3, it holds thatG’ /(Bj; U B},) and
G'/(B13 U B},) are multiple edges. Consequently/B11 consists of two multiple, one
between(v1) g, and(vz) p,,, and the other betwedmn1) 5,, and(vs) g,,, €ach representing
the portions of} andK? in G1/B11, respectively. In particular, this means that there is no
vertexwoz € V(G); thatis, a vertex il having exactly, andvs as its neighbors. Consider
Gy If PyiN{vy,v2,v3} =0, i = 1,2 thenBy;, i = 1, 2is seento be a good pair of bonds
in G (sincewzs ¢ V(G)). We may therefore assume th&; N {v1, vz, v3}| = 1. We shall
also assume thaP;, N {v1, v2, v3}| = 1, as the easier case whé¥, N {vy, v, v3} = @
can be dealt with by similar arguments.

SinceG1/B11 consists of two multiple edges, it only has verti¢es z,,, i = 1,2, 3. If
v € Q13, then(v)p,, # (v3)p,,. Sincev andvz are separated by the edgesRit in G1.
Thusv ¢ V3 and hence € V1 U V,. This means thaP13 C V1 U V,. On the other hand,
if v e P13, then(v)p,, # (v1)By,, (V2)By,;. Thusv ¢ V1 U Vo, and hencev € V3. Since
P13U Q13 = V1 U Vo U Vg, it follows that Q13 = V3 U V3 and P13 = V3. By the same
token,Q12 = V4 U V3, and P12 = V.

Since the edges @B1>) ,, form a multiple edge between vertices) ,, and(vz) p,,, it
follows that every edge a1, has one endvertex ivi; and the other irV,. Similarly, every
edge ofB13 has one endvertex ivi and the other irv3 (Fig. 5).

Casel: Suppose; € Py; N Pj,. Sincevy € PJ; N PJ, it must hold that fori = 1
ori = 2thatwy € Py, (recall from the definition ofG}, thatw; is a vertex inG’, with
neighbours, v, andvs). We may assume without loss of generality thate P;. Since
(v1) B, is a cut-vertex ofG /By, it is clear thatVy # {v1}. Let

C1 = [(P11UP5) NV(G), (P}, UPS,) NV(G)]

and

C2 =[(V1UPY) NV(G), (V1 UPj) NV(G)].

We shall consider two subcases:
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Fig. 5.

Casel.1: Supposé (Q11) is connected. We wish to show th@t andCz is a good pair of
bonds ofG. SinceP11 # {v1} andG(Q11) is connected (and hen¢& (P;; U P5,) N V(G))
is connected), we have th@i is a non-trivial bond. Sinc5, is a bond inG/, we have that
G4(Q4%,) is connected and hen& (0%, NV (G)) is connected (because, w3, ¢ 0.
ThusC> is a bond, and it is non-trivial sincé; # {v1}.

(i) C1 is good. We will now show thaCy is good. If (v2)c; = (v3)cy, thenCy is
clearly contractible sinc&1/B11 consists of two multiple edges, one containig) z,,
and(vz) p,, and the other containin@1) g,, and(vs) g,,. We suppose therefore thab) ¢, #
(v3)c,. SinceBy, is good inGY, it follows that G5\ By is connected and there is a path in
(Gg/Bgz)\(vl)Bg2 from (vg)Bg2 to (v3)B//2. This means thatthere is a path @/ C1)\ (v1) ¢,
from (v2)c, 10 (v3)c,. ThusCy is goocf, sincdv;)c,, i = 1,2, 3 are all seen to belong to
the same block.

(i) C2 is good. We will now show tha€, is good. Since all the edges 8> U B13
are incident withvV,, we haveC, N E(G1) = B12 U B13. SinceG(Q11) is connected and
contains only edges df12U Bi3, it follows thatG1/(B12U B13) is a multiple edge between
(v1) ByUB1s @NA(V2) By,UB,5- This together with the fact thad), is contractible irGo (where
(”2>B£1 = (v3)3g1) implies thatCs is contractible. This completes Case 1.1.

Casel.2: Suppose that (Q11) is not connected.

(i) C1is good or there is a good pair of bondsGtQ5, N V(G)) is connected, the@y
is a non-trivial bond, and it can be shown to be contractible in the same way as in Case
1.1. If on the other hand (0%, N V(G)) is not connected, then it has two components, say

0}, j =2,3Wherev; € 0}y, j =2,3.ThenC} = [P1j U Oy, P1jU 04,1, j =2,3
is seen to be a pair of bonds (1 Sincedistg, (v1, v3) = 2, there is a pathvizvz in G1.
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We have that ¢ P1o; for otherwise,(vl)}gi2 = (Uz)Biz andG/Bj, would have a cut-vertex
(u1>3i2. If z € P11, then<z)C§ # (vz)cg, and hence there is a path fro(mnl)cg to (v3)c§
in (G/CH\(v2) 3.

Suppose € Q11. If <Z)c§ = (vz)c%, then there is a patR in G(C%) fromzto vy. Since
P cannot cross$11, we have thatP € G(Q11). We see that? U zvz is a path inG(Q11)

from vy to v3. However,G(Q11) is assumed to be disconnected, and therefore no such path
exists. In this case, we conclude thatife Q11, then (z)Cg + (v2>c§- Thus there is a

path from (v1)z to (v3) ¢z in (G/C%)\(vz)cg. One sees thaf'? is contractible, and the

same holds focg’. In this case, we have a good pair of bonds. Thus we may assume that
G (03, N V(G)) is connected and is a good bond.

(i) C2is good. We have thaf> is a non-trivial bond ofs (as in Case 1.1). lfvo)c, =
(v3)c,, then, asin Case 1.0 is contractible. Suppose instead that ¢, # (v3)c,. Since
G(0Q3,N V(G)) is assumed to be connected, it contains a pdtiom v; to v3. Since the
vertices ofQ%,N V (G) are separated from by the edges ofB5,U B1;) N E(G), any path
from P to v1 must contain at least one edge from this set. Stceontains no such edges,
we conclude that no path ii(C2) from P to v1 can exist. Consequentliy1)c, ¢ (P)c,.
This means thatP)c, contains a path fronfwz)c, to (v3)c, in (G/C2)\(v1)c,. ThusCa
is good inG, andC1 andC2 is a good pair of bonds. This completes Case 1.2.

Case2: Suppose; € Py, andvz € Py, Let

C1=[(P11UP3) NV(G), (P}, UPy) NV (G)]

and

C2 = [(P},U Py NV(G), (P, UPS) NV(G)].

We note first thatw, ¢ Py sincevz € Py, (and likewisewz ¢ Py,. Similar to Case 1,
we can show that eitheaf; is a good bond, or we can find a good pair of bonds. We can
therefore assume th@y is a good bond, and it remains show tliatis a good bond.

Since the edges aB13 are incident withVy and V3, and P12 = V», there is a path in
G1\ P12 from v1 to v3. We conclude thatG 1\ P12 is connected, and hene® is a bond.
Moreover,C> is non-trivial sinceP12 # {vo}. We have tha€; is a cross-bond, an@;)c, #
(vj)cyp, 1 # j. Sincedistg (vy, v2) = distg(v2, v3) = 2, we have thatvi)c,(v2)c, and
(v2)c,(v3)c, are edges ofi/ Ca.

To show thatCs is good, it suffices(by Clairf) to show that there is a path {67/ C2)\
(v2)c, from (v1)c, to (v3)c, and sinceP13\V(K) # @. SinceG1(P13) is connected and
contains only edges a#11,(becauseP13 = V3) there is an edge iG'1(P13) fromvz to a
vertexz € Py1. SinceG(Py1) is connected, it contains a path franto v. Thus there is a
pathP from v to vz in G(P13U P11). Since any path frorR to v in G1 must contain edges
of B11 U Bz there is no path irG (C2) from P to va. Thus(v2)c, ¢ (P)c,, we have that
(P)c, contains the desired path frofm)c, to (va)c,. This completes Case 2.

By similar arguments, one may deal with the case where Py}, andvs € Pj,. We
have one remaining case:
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Case3: Suppose, € Py, andvz € Py, Let

C2 = [(P1,UP5) NV(G), (P}, UP;) NV (G)]

C3 = [(P13UP5) NV(G), (Pj3UP,) NV(G)].

As in Case 2, we can show th@s is a good bond, and in the same way, we can show that
C3is a good bond. Thu€2 andCs is a good pair of bonds.
The proof of the claim follows from the consideration of Cases 1-3.]

Remark. We observe thatin the proof of the above claim, for each good Gauhstructed,
we have thatvi)c # (v2)c, (va)c-

Claim 21. If {v1, v2, v3} is @ minimal good separation which is of tyBevhereG/ is the
edge disjoint union of three good bontisen G has a good pair of bonds

Proof. From Claim20, we may assume tha?; is a good bond. We may also assume
that P, N {v1, v2, v3} # @, for otherwiseB,, = B5, and By, and By is a good pair of
bonds. We may assume without loss of generality tha¢ P, (andvy, vz € Q5,). Let

B2 = [P12 U P2y, P12 U P2s]. Similar to B1, one can show thag, is non-trivial, and ifB>

is not good, thei® has a good pair of bonds. So eitt®rand B2 are a good pair of bonds,
or we can find 2 other bonds which are a good pail]

9. Good separations of type 3: part Il

In this section, we shall assume tHai, v, v3} is a minimal good separation which is
of type 3 whereG has aG1-good decomposition consisting of thrég-good bonds and
a contractible semi-bon8. According to Lemma 2.5, we can assume tBgthas only
4-faces, with the exception of one 6-fde€bounded byK) and two 5-faces. Let

G*=G/S, G/=G;/S G*=G)S i=12
Vi ={(vi)s, i=123

Claim 22. SupposeB* is a contractible bond of;*. ThenB = > B* <y is seen to be a
bond of G. If B is non-contractibj¢hen for some # j, (v¥) g+ = (v;‘)g* and fork =1, 2,
the graphG; contains a pathP C G*(B*) fromv; to v;?. In particular, > P <g contains
a path P, C Kjj of length three between andv;.

Proof. SupposeB* is a contractible bond of;*, and letB = > B* <g. ThenB is a
bond, and we suppose thatis non-contractible. Sinc8is a contractible semi-bond, we
have thatG\ S is connected and;/S is 2-connected. Thus Lemma 2.6 implies tligtB
contains loops(and is 2-connected apart from these loops). Such loops be{Shg $ince
G/B/S = G/S/B = G*/B* is 2-connected. Thus there is an edge- xy € S and a
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pathP € G(B) from x to y. We shall choose and P such that| P| is minimum. This
means thaP U {e} is a cycle and”* = (P)g is a cycle containingX)s = (y)s. Suppose
C* C Gj. Ifthe regions inside and outsid&" contain vertices, the(C*) g+ is a cut-vertex
of G*/B* which contradicts the contractibility &* in G*. ThusC* bounds a face of7].
Lemma 2.7 implies thatE (C*) N B*| < 2. This means thatE (C*)| = 2, asC* C B*.
Thus|P| = 2 andP U {e} is a triangle, contradicting the fact th@tis triangle-free. We
conclude thaC* ¢ G7. Thus for some # j, C* contains a pattP;” C G7 from v to v}

and a pathPy C G3 from v} to v}. Consider the cycle; U {wj, wijvy, wjv¥). Similar
to the previous arguments, one deduces that the cycle bounds a fageanfd| P;"| < 2.

Thus> P{* <g contains a patlP; of length at most 3 from; tov; andPy C Kijj. This path
contains exactly one edge 8fnamelye. ThusKj; contains exactly one edge 8{which is
e) and this means thakj; | = 5, sinceScorresponds to a removable p&tin H; between

two vertices of degree 5. Consequent®,| = 3, and|P'| =2. [

Claim 23. Let B be a cross-bond of G not containing edgessoff B* = (B)gis a
contractible bond of5*, then B is contractible irG.

Proof. Let B be a cross-bond d& not containing edges & and letB* = (B)g. Then
B* is a bond ofG*. Suppose thaB* is a contractible bond afi*. If B is non-contractible
in G, then Claim22 implies thatG? contains a path with edges B* from v’ to vjf for
somei # j. SinceG3; contains no edges &, such a path has only edges # Thus
(vi)p = (v;)p for somei # j. By Claim8 and consequentlfs is contractible inG. [

The graphG’| has aG1-good decomposition consisting of three good bonds, denoted by
B/1j = [P/lj, Q’lj], j = 1,2,3, and a contractible semi-boi®l The graphG’, has a good
pair of bondsB),; = [P,;, Q5;1, j =1, 2. Foralli # j let

Bj =BjNE(G), Pj=P;NV(G), Qj=QjnVG),
Bi" = (Bj)s, Pj"=(Pj)s, Qj =(Qjs,
Bj = (Bij)s. Pj = (Pij)s, Qj = (Qj)s-

Since the decompositioBi’j, Jj =1,2,3 andSis G;-good, we have thaPj\V (K) #
@, j = 1,2, 3. We may assume that for some= {1, 2} itholdsthauPz/jm{vl, v2, v3}| < 1.
If Poj N{vy,vp,v3} =0, j =12, thenBéj = Bp;, j =1, 2 and these are a good pair
of bonds ofG. Consequently, we can assume ti®at N {v1, v2, v3} # ¥, andvy € Po1.
We shall also assume thBs, N {v1, v2, v3} # @ as the case whemo N {vy, v2, v3} =0
is easier and can be dealt with using the same arguments. We may assume without loss of
generality thatPo N {v1, v2, v3} = {v3}.
Let

Vi={v'eV(GD: (Vg =)y}, Vi=>Vi<s i=123
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Fori =1,2,3letY; (resp.Y!) be the vertices of the component@h (B12 U B13) (resp.
G’ (B1, U Bj5) containingy;. Let

B1 =[P11UP21, Q11U Q2] and By =[P13U P22, Q13U Q22].

We shall first show that the bond%, i = 1,2 are cross-bonds af. We have that
|Ko3| = 4, or 5. If |[Ko3] = 4, then E(K»23) C Bi1z U Bi3. Otherwise, if|K»3| = 5,
thenE(K23) C B12U B13U S. This means thak 23 contains no edges df;; and hence
V(K23) C Q). ThisimpliesthatG (Q11U Q1) is connected an#; is a bond. Furthermore,
B is non-trivial sinceP11\V (K) # (. HenceBs is a cross-bond, and the same applies
to Bo».

Claim 24. If |K12] = |K23| = 5, then G has a good pair of bonds

Proof. Suppose thgK1o| = |K23| = 5. Let G/ be the graph obtained fro6; by deleting
w}, andw; and adding edges v, andvzvs. Note that there is no 2-pathwv, in G, for
then{v1, w, v2} would be a good separation, contradicting the minimalitywaf vy, vs}.
Similarly, there is no 2-path betweep andvz in G7. ThusG7 is triangle-free.

As in Sectior7, G7 has a good pair of boncllﬂj = [P’l’j, ’1’j], j =1,2whereE(GY) =
B]_lUBi/Zandv]_ € P:I/./l’ v3 € P:[/Z LetD; = [(P&/jU P2)NV(G), (Pélfj UP2)NV(G)], j =
1, 2. Sincedistg (v2, v3) = 2, there is a 2-pathowvs in G2. Since B, is good IG5,
we havew ¢ P;,. Thusw e Q5;, and D1 is seen to be a non-trivial bond, in fact a
cross-bond. IfD1 is not good, then as was shown in the proof of Cldisn G/ D1 would
consist of two blocks; one containing:) p, and(v2) p, and the other containin@s) p,
and(vs) p,. However, sincelist; (v1, v2) = 2, there is an edge betweém) p, and(vz) p,
in G/Dy. This would imply that(vi) p,, (v2)p,, (v3)p, all belong to the same block in
G/ Di1—a contradiction. Thu®1 is good inG, and following similar reasoning) is also
good. 0O

9.1. The case wherB; is non-contractible

If |K23] = 5, then we may assume thidto| = 4 (by Claim24). In this case, we shall
assume (as guaranteed by Lemma 5.3) that the bBfidsi = 1, 2, 3 and semi-bonc
are chosen so thatvs ¢ S, given K>3 = vzxyvgw%gvz. On the other hand, ifK1»| = 5,
and|K»3| = 4, then we shall choose the bonB%, i =1, 2,3 and semi-bon& so that
yv1 ¢ S whereKio = vzxyvlwizvz.

Suppose thaB; is non-contractible. As in Part |, Claigimplies thatG /B consists of
two blocks, one containingy1) g, and(vz) p, and the other containing1) g, and(v3z) s, .
This means thafvy) g, is a cut-vertex oiG/B1 and hencavzz ¢ V(G). SinceB; is not
contractible and is a cross-bond, ClaR8implies thatB; = (B1)s is a non-contractible
bond of G*. This in turn implies thaG7/ Bf, consists of two multiple edges; one between
(vI)Bi«l and(vg)Bifl, and another betwee(m{)Bisl and<v§>3i“1' ThusG?/Bj, has exactly 3
vertices(v) gy, i = 1,2,3. Asin Part |, we have thalt;" U V' = Q75 V5 = Py, and
Bi,U B3 = [V], V(G)\V{]. Clearly V1 # {v1}, as(v1), is a cut-vertex ofG/Bj.



236 S. McGuinness / Journal of Combinatorial Theory, Series B 93 (2005) 207 -249

As was done in the proof of Clair20, we define the grapls; = G’z\w§3. The graph
G has a good pair of bond®;; = [P’z’j, ’z’j], j=12, where|P2”j N {v1, v2, v3}| <1
We may assume that for sonje= 1, 2 it holds that Pé’j N {v1, v2, v3}| = 1, for otherwise
ng, j = 1, 2 would be a good pair of bonds & (sincewss ¢ V(G)). We shall assume
that|P§’j N {v1, v, v3}| = 1, for both j = 1, 2; the case where it holds for only one of
j =1orj=2is easily handled by the same arguments.

Claim 25. If By is non-contractible andliK 23| = 5, then G contains a good pair of bonds

Proof. SupposeB; is non-contractible an@lk,3] = 5. Then there is no path fromp
to vz in Q11. Let K23 = vpxyvawigvz and P1 = Kp3\wis. By assumption, the bonds
B};, i = 1,2,3 and the semi-bon8are chosen so thatz ¢ S.

Recall the definition of;, i = 1, 2, 3. We shall first show that, # Y3. Suppose on
the contrary that’s = Y3. Then there is a pat® in G(B12 U B13) connectingvs andvs.
We may assume thay lies outside the regioR bounded by the cycl® U vzw%3v3. For
any vertexv lying in the interior ofR, it holds that any path from to vy must intersec®@,
and hence it must intersect vertices@{1. Thusv ¢ P13, for otherwise there would be a
path inG1(P11) from v to v; which does not interse@®11. ConsequentlyR contains no
vertices of P11 and hence no edges 8.

Since the cycl® U vzw%gvg contains no edges & Rmust contain the other 5-face which
is bounded by a 5-cycle, sayxox3xsxsx1 wherexixo € S. Fori =1, ..., 5 we have that
(xi) B,us is one of the vertices;) p,us, @ = 1, 2, 3. The cyclexixpxzxaxsxq contains no
edges ofB; sinceR contains no edges df;. We have that two of the verticas, x3, x4, x5
contractto the same vertexdn /B1US. Supposeéx1) s,us = (x4) p,us. Thenthereis apath
011N G(B11 U S) from x1 to x4. Now any path inG(B1 U S) from x3 to vy, v2, or vz must
intersectQ1, in which case(xa)p,us = (x1)p,us = (x4)p,us, Yielding a contradiction.
Thus(x1)p,us # (xa)p,us. and by similar reasoningez)z,us # (xs),us. Thus the
vertices(x1) p,us. (x3)B,us. (xa) Byus, (xs5)pyus are all different, yielding a contradiction.
Thus no such pat® exists , and’> # Ys.

We defineC1 andC» as follows (see Figo): let

C1=1[(V1UP21),V1UP2]
and

Co=[Y3UP2, Y3UP2].

9.1.1.C1 is good

We will first show thatC; is a bond by showing tha® (V1 U P»1) is connected. Since
distg (v2, v3) = 2, there is a 2-pathpwvs in G. This 2-path does not belong @, for
otherwise{v,, w, v3} would be a good separation & contradicting the minimality of
{v1, v2, v3}. Thus the 2-path belongs t&,. We have thatv ¢ P»1, for otherwise(vz)Bé1 =
<v3)Bél, contradicting the fact thak), is good. Sow € Q21 and consequently; (Q21) is
connected and’; is a non-trivial bond.
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Fig. 6.

LetCy = (C1)s. We have thaC1 N E(GY) = Bj,U By, and seeing a§1/(By,U Byy) is
amultiple edge with vertice@7) BB}, and(vy) B, UB}g It follows thatCy is a contractible
bond of G*. SinceC} N G5 = B3;, and(v]) g, # (v})py. Vi # j, it follows that for
i # j, G5 contains no path iG*(Cy) from v to v;?. Thus Claim22 implies thatC; must

be contractible irG and hence is a good bond.

9.1.2. C2 is good

We shall now show thaf, is a good bond. To show théb is a non-trivial bond, we
note first thatist; (v1, v2) = 2, and there is a patiyzv, betweerv, andvz. We have that
Y3N P11 = @ since every path fromg to P11 in G1 contains an edge df11. Suppose € Y3.
Thenz ¢ Py and thusv, € BioU BigU S. Clearlyzuv, ¢ S, for otherwisevjvs would
be an edge o6}. Thuszv, € B1» U Byz and this impliess; € Y, which is impossible
sinceY> N Y3 = ¥. We conclude that ¢ Y. If z € P2, then(vy)p,, = (v2)B,,, Which
is impossible sianv,')Bé2 # (vj)m,,, Vi # J. From this and the above, we conclude

thatz € Y3 U Py and thusG (Y2 U P»p) is connected, and? is a bond ofG. Furthermore,
sinceSwas chosen so thagy ¢ S, it holds thatvgy € B1oU B13. Thusy € Y3, andC» is
non-trivial.

To show thatC» is contractible, we will first show that it is a cross-bond. Let

Chly=[Y5 V(GD\Y5], Chy=Bj, Cj=(Ca)s.
Fori =1,2let
Cio =CoNnE(G)), ;z = ;2)5, C;-kz = (Ci2)s.

To show(>, is a cross-bond, it suffices to show thl’cjg, i =1, 2is contractible irG;. We
have thatC;, = B, is a contractible bond a’,. It remains to show that’, is contractible
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in G}. SinceCy, € B, andBfj is contractible inG%*, it follows that C7% is contractible
inGY'. LetT = S\C12. Let H = > GY* <7 and letC = > C35, <7 . We have that/\T
is connected andH/C)/T = (H/T)/C = G7/C5 Thus(H/C)/T is 2-connected,
and according to Lemma 2.6, eith&r/C is 2-connected or it contains loops.#f/C is
2-connected, thew’/Cy, is 2-connected sinc& /C = G’ /C},. We suppose therefore
that H/C contains loops. Then there is an edfje T, f = wz, and a pathQ in H from
wto zwith E(Q) C C. Choosd andQ such that the region bounded ByU f is minimal.
ThenQ U f is a cycle. Sinced/C is 2-connected apart from loops, it follows thatJ f
bounds a face dfl. By Lemma 2.7Q has at most two edges.|l@| = 2, thenQ U {f} is
a triangle. Sinc&s’ is triangle-free, the edges of E(Q) U {f} <(s\r) belong to a cycle
D in G} where|D| >4 andC}, contains all the edges &f except{ f}. By Lemma 2.7D
cannot bound a face @) since it contains at least three edges of a bon@ ¢ie. C).
ThusD contains vertices in both its interior and exterior. Since the verticés*of (D)g
are contracted together @7/ C15, it follows that G’/ C7%, would have a cut-vertex. This
contradicts the fact thaty%, is contractible inG’*. We conclude that such a pahcannot
exist, and consequently /C has no loops. This in turn implies th@t , is contractible in
G’ andC is a cross-bond ofs.

To show thatC, is contractible inG1, it suffices to show (by Clain®) that for all
i # j, there is a path fronfv;)c, to (vj)c, in (G/C2)\(vk)c, Wherek # i, j. Given that
C12 C B11U S, there are paths frortv1) ¢, to (v2)c, in (G/C2)\(v3)c, and from(v1)c,
to (v3)c, IN (G/C2)\(v2)c,. It remains to show that there is a path frém)c, to (v3)c,
in (G/C2)\(v1)c,. Recall thatC; is assumed to be a non-trivial (contractible) bond. This
means tha62(Q21) is connected and there is a p&ltn G2(Q21) from v, to vs. No vertex
of Q contracts ta1 in G2/ B2z as every path fron® to v1 must contain an edge froBy;.
Thus(Q)c, contains a path fronfws)c, to (v3)c, in (G/C2)\(v1)c,. This shows thaC;
is contractible inG.

From the above, we have th@t andC2 are good pair of bonds. This completes the proof
of the claim. O

Claim 26. If By is not contractiblethen G contains a good pair of bonds

Proof. Suppose thaB; is non-contractible. By the previous claim, we may assume that
| K23| = 4. As was done in Section defineG; = GH\ (w23}, and letBy, = [Py}, 04,1 and
B3, = [P5,, 05,] be agood pair of bonds f@r;. We may assume thaR,; N{vy, v2, v3}| =
1 and| P, N {v1, v2, v3}| = 1 (the easier case wheR§; N {v1, v, v3} = ¥ can be dealt
with by similar arguments). We shall examine a few cases.

Casel: Supposer; € Py; andvy € Py,. By definition, G, has a vertexwz whose
neighbours arey, vz, andvs. Thusw, € V(G5) and we may assume thap € P,. Let

C1 =[(P11UP5) NV(G), (P}, UP,) NV(G)]

and

Cz = [(V1UP3) NV(G), (V1UPZ) NV(G)].
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LetC! = (C;)s, i = 1, 2. Using the same arguments in the proof of Cl@&@{Case 1), one
can show tha€, i = 1, 2 are contractible i;*. We have thaB?} is a contractible bond
in G} and thus(v,-)Bi*1 # <Uj>B:/ﬂ, Vi # j. Consequently(v;*)B;l * “’;)Bi*l’ Vi # j.
SinceC; N E(G}) = Bj;, we have that for all # j there is no path i; (C7) from v* to
vf It follows by Claim22, thatC; is contractible inG. We may therefore assume th@at
is not contractible irG.

Now Claim22implies that for some 3 j itholds tha{v;')c; = (v})c;- Since(vi)c; #
<v;>C5, (vg)cz, it follows that(vg)cg = (v§)c>2k, and there is a pattP] = vu*v3 in

1(C3). According to Claim22, there is a pathP; C> P; <g having length 3 where
P1 C K>3 and thug K»3] = 5. However, we are assuming thiao3| = 4, and we have
a contradiction. Thug's is contractible and”; and C2 are a good pair of bonds. This
completes the proof of Case 1.

Case2: Suppose; € P;; andv, € PJ,. Let

Ci =[(Py; UP5) NV(G), (P, UPS)NV(G)], Cf=(Cs, i=12

(i) C1is good. One can show thatj(Q7,) is connected, and hencg is a bond. Using
the same arguments as given in the proof of Clah{Case 1.1), one can show th@f is
a contractible bond of*. SinceC; N E(G) = B}, and(v;‘)giel # (lﬁ)s{l, Vi #£ j, it
follows by Claim22thatC1 is contractible inG.

(ii) C2is good. The bond’; is seen to be a cross-bond®fWe shall now show that,
is contractible inG. If P{5\(V(K))s # @, then it follows from the arguments in the proof
of Claim 20 (Case 2) thaC3 is contractible inG*. In this case, Clain23 implies thatC,
is contractible.

We may therefore assume thaf;\(V(K))s = @. This means that all edges incident
with vz in G1\ E(K) belong toS U B13. We have forj = 1, 3 thatdistGI(vg, v}f) =2 and
<U§>C§ (v;‘f)cg is an edge o6G*/C3 for j = 1, 3. Thus there are paths frotny) ¢, to (v1)c,
in (G/C2)\(v3)c, and from(vz) ¢, to (v3)c, IN (G/C2)\{v1)c,. SinceC> is a cross-bond,
to show thatC is contractible it suffices to show that there is a path flopc, to (v3)c, in
(G/C2)\(v2)c,. We suppose that no such path exists. This meansithaB;, consists of
two blocks betweeiw?) ,, and(v;) ,,, for j = 1, 3, the corresponding blocks i}/ By,
being multiple edges. This means that for each vertex Q75 either(v*)Bi«2 = (v{)Bi«z
or <v*)31‘z = (v;>Bi«2. We shall show that this cannot happen. Sifkes| = 4, there is a
pathP; = vpz1v3 C K>s. Since all edges incident withy in G\ E (K ) belong toS U Bi3,
we have thavsz1 € Bia, and hencepzy € Bio. Thus(zi) g, = (v1) s, (SinceBy is not
contractible).

SupposdKi3| = 4, then there is a path, = vizovs C K13 wWherezovz ¢ Big (Since
PiS\(V(K))s = 0). Thenvizo € Bi1, vaz2 € Bis, and(zz2)p,; = (v1)py,. We have that
(z2) B, = (v2) By,; Otherwise there would be a path frdqm) g, to (v3) g, i (G/B2)\(v2) B,
inwhich case we are done. Singg) p,, = (v1),, fori = 1, 2thereisapathi; C G1(B11)
from z3 to z2. Let Ry be the region ofG] bounded byL1 U {v3, z1v3, z2v3} which does
not containvs. Similarly, since(z;) p,, = (v2)By,, { = 1,2, thereis a pattLy C G1(B12)
from z1 to z2. Since for each vertex* € Q7,we have thav* € ViU V5, it follows that
for eachv € V(L) which lies insideR; or onLy, (v)s € V. This holds since any path
from v to vz must contain vertices af; (andV (L1) C V1) and consequentlyp)s ¢ V'
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Fig. 7.

(see Fig.7). The above implies thak; contains no edges df,, for both endvertices of
such edges would contract IOT)le in G;/Bj,, producing a loop. We now defing, to
be the region bounded i, U {v3, z1v3, z2v3} which does not contain;. Similar to R1,
the regionR; contains no edges df;. However, since’ is planar, we cannot meet both
of the requirements tha; contains no edges d@f,, andR» contains no edges df;. Soin
this case(C> must be contractible.

SupposéKi3| = 5. Let K13 = vlwzgvgw}3v1. We have that eithefw) p,, = (v2)p,, Or
(22) By, = (v2) By, We have thabiw € B11U S (sinceP5\(V(K))s = #). Supposew
S. Then(w)p,, # (v2)By, (other\Nise(v{)Bf2 = (UE)BIZ ). Thus we have thatz)p,, =
(v2) By, 223 € B13, and hencew € Bi1. Thenthereisapath; € G1(B11U S) from
7110 z2. Let R1 be the region bounded by U {vs, z1v3, z2v3} which does not contaim,.
Since(z1) By, = (22) By, = (V2)By,, thereisapatily C G1(Bi12) from z1 to zo. Let R
be the region bounded by, U {v3, z1v3, z2v3} Which does not contain;. As before,R1
cannot contains edges bp, andR» cannot contain edges @ U B11. However, sinces
is planar, both of these requirements cannot be met simultaneously. In thi€ganast
be contractible.

If vyw € Bjy1, then one can argue in a similar fashion as in the above. Having con-
sidered all cases, we conclude tfiatmust be contractible, and hence good. This completes
Case 2.

If v1 € P5; andvz € Py, then we can find two contractible bonds via similar arguments
as used in Case 2. There is one remaining case:

Case3: Suppose» € P,; andvz € Py,. Let

C1 =[P, UP3) NV(G), (P}, UP;) NV (G)]

and

C2 = [(P13UP5) NV(G), (Pj3UP,,) NV(G)].
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The setsC; and C, are seen to be cross-bonds®@f One can show that, andC, are
contractible bonds o6 using the same arguments as given in Case 2. Consequéntly,
andCy is a good pair of bonds. This completes Case 3.

The proof of the claim now follows from Cases 1-3.[]

Similar to the above we have:
Claim 27. If Bz is non-contractiblethen G contains a good pair of bonds
To conclude this section, we have

Claim 28. If {vy, v2, v3} is @ minimal good separation which is of tyBevhereG/ is the
edge-disjoint union of three good bonds and a contractible semisibad G has a good
pair of bonds

Proof. By Claims26 and27, either By and B2 are a good pair of bonds, or we can find
another good pair of bonds. [

10. Separating sets of type 2

In this section, we shall assume that, vo, v3} is a minimal good separation which has
type 2. We shall assume thaists (v1, v;) = 2, j = 2, 3 anddisig (v2, v3) # 2.

10.1. The caseyvs € E(G)

Claim 29. If {v1, v2, v3}isaminimal good separation which is of typ@anduvovs € E(G),
then G has a good pair of bonds

Proof. We suppose thdt, v2, v3} is a separating set of type 2 whargs € E(G). The
graphG? has a good pair of bonds;; = [P;;, 031, j =1, 2. If P;; N {v1, v2, v3} =

P, j =1,2,thenBy; = Béj, j =1, 2isagood pair bonds @f. We may therefore assume

that Py, N {v1, v2, v3} # @. We shall also assume th&, N {v1, v2, v3} # @, as the case
where the intersection is empty is easier and follows from the same arguments. By Lemma
5.2, E(G) is the edge-disjoint union of twG1-good bondsBij = [Pl’j, Q’lj], j=12

and a contractible semi-bor&l

We consider two cases:

Casel: Suppose foj = 1, 2 thatvy € Pz’j, anduv, v3 € Q/Zj' We have that the dual
Hj contains no good cycle which avoids(corresponding to the fade in G7). Lemma
2.4 implies thatH; has a decomposition consisting of two good cydgsand C5, and
a removable pattP’. The vertexu is incident with two digons and an edge wheree
corresponds to the edgevs. By Lemma 2.4,P’ can be chosen so that it containsand
consequentlye ¢ E(C)), i = 1,2. The cyclesC;, i = 1,2 correspond to good bonds
B =[P;;, 0};,1In G, i =1,2. Sincee ¢ E(C}), i = 1,2 we have thatovz ¢ B, i =
1,2. Thus we may assume that € Pj;, (andvp, vz € Q7,,) fori = 1,2, and P; #
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{v1}, i = 1,2 Let By = [P11U P22, Q11U Q2] andB, = [P12U P21, Q12U Q21]. Since
vov3 € E(G),oneseesthadi(Q11U Q22) andG(Q12U Q21) are connected. Thug, andB;
are non-trivial bonds, which are also cross-bonds. Siligte (v1, v2) = distg (v1, v3) = 2,
andvpuz € E(G), one sees thab;) g, (v;)p, € E(G/B1), Vi # j, and the same holds for
B> as well. It now follows by Clain®, thatB;, i = 1, 2 is a good pair of bonds i&.

Case2: Suppose € Py, (andvy, vz € 05;), andvz ¢ P,;. We can assume without
loss of generality that, € P;, andvy, v3 € Q5,. We can, according to Lemma 2.4, choose
a decomposition of; consisting of two good cycleS; andC,, and a removable path’
such that the corresponding good bonds and contractible semi-bond, which we can assume
areBy;, i = 1,2, ands, are such thab; € P;; (andvz, v3 € Q7,) andvz € Pj, (and
v1, v3 € Q,). We may assume that the decompositi6y, C5, P’} is Hi-good, since if it
is not, then we can swap pairs of members to achieve one which is. This means that we can
assume thatB], B5, S} is aG1-good decomposition, and heng\V (K) # 0, i =1, 2.
Let By = [P11U Pp1, Q11U Qo1] and By = [Pp1 U Prp, Q12 U Q2] One sees thaB,
is a cross-bond of (sincevovs € E(G)). To show thatB; is a cross-bond, we note that
distg, (v1, v3) = 2, and hence there is a patzvs in G1. If z € P12, thenzvy, zvz € By,
However, By, is contractible inG’, and hence this is impossible. Thuse Q12, and
G(Q12 U Q22) is connected. This shows thAap is a non-trivial bond ofG, which is also
seen to be a cross-bond.

As in the previous case, one can show tBatis contractible. To show thag; is con-
tractible, we note thatovz € Bo. Thus(vp) g, = (v3)B,, and by Clain8, B, is contractible.
We conclude thaB; and B, are a good pair of bonds. This completes Case 2.

The proof of the claim now follows from Cases 1 and 2[]

10.2. The casezvs ¢ E(G)

In the rest of this section, we may assume that ¢ E(G). We define the triangle-free
graphs

1 1 1
EL/ = (G/l\{VZVB}) U {W533, W53V, W53V3},
2 2 2
G5 = (GH\{vava}) U {Wa, W53, WaV1, WaVa, WaVa, W53V2, W53V3).

The graphG has no good bond contained E(G?) for such bonds are good iB(G1),
violating the fact thafvy, v2, v3} is a good separation. The grapty has a good pair of
bondngj = [Pz”j, Q/Z’j], j=12We shallassumethalt’z”jﬂ{vl, vo,v3l =1, j=1,2
the other cases whefg’j N{v1, v2, v3} = ¥ for some; € {1, 2} are easier and can be dealt
with using similar arguments.

Claim 30. If |[K23] = 5, in G}, then G has a good pair of bonds

Proof. We assume thatk,3| = 5 whereK»3 = vaxyzuzve. Thus all faces oiGY are
4-faces apart from the facesxyzvawizvo andviwlvowlvawizvr. ThusGy has aGi-
good decomposition consisting of thréa-good bondstj = [Pﬁ, Q/l/j], j =123
where we may assume thate Pﬁ iff i = j. Fori, j = 1, 2 we shall write(G,)jj to mean
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Gi/(B{j’ N E(G;)). Similarly, fork = 1,2, 3 andi, j = 1, 2 we shall write{v)jj to mean
the vertex(vk)Bi/j/mE(Gi) in (G;)ij. We shall consider two cases:

Casel: Suppose there is a path framp)11 to (v3)11in (G1)11\(v1)11.

We shall consider two subcases:

Casel.1: Suppose; € Py andvz € Pg,. LetBy = [(P{;UP5) NV(G), (Q7;UQ5)N
V(G)].

(i) Suppose thaB is not a bond. ThenQ7; U 05,) N V(G) induces a subgraph with
two components. LeQ/, j = 2, 3 be the vertices in the component containing Let
C> = [Q? V(G)\0Q?]. SupposeQ?\{vo} # ¥. Then C, is a non-trivial bond. Since
distg (v1, v;) = 2, i = 2,3 we have thatv1) s, (vi)p, is an edge ofG /By fori = 2, 3.
Thus there is a path froffv1) ¢, to (v2)c, in (G/C2)\(v3)c, and from(v1)c, t0 (va)c, In
(G/C2)\(v2)c,. By assumption, we havis1)11 contains a path fronfvz)11 to (v3)11 in
(G1)11\(v1)11. Thus there is a path frorfv,) ¢, t0 (v3)c, i (G/C2)\(v1)c,. One sees that
C» is a good bond of;.

Suppose thap?\{vo} = @. We redefineC, asCy = [P{,NV(G), P{,NV(G)]. One
sees tha€; is a non-trivial bond. We shall show th&@p is good. IfC> is non-contractible,
then G/C> consists of 2 blocks, one containifg:)c,, (v2)c, and another containing
(v2)c,, (v3)c,. Note that the blocks restricted {6'1)12 are both multiple edges. We have
thatC» contains exactly one edge of the patlryzvz C K23 Since it contains exactly two
edges of the cyclesxyzvzws,, one of which is one of the edgesws; or vawi,. Suppose
v3z ¢ C2. Then(z)c, = (v2)c, and thereis apatRin G1(C2N E(G1)) fromzto vy. Since
02\{v2} = @, it follows thatxvy € BY, and thus(X)¢c, = (v1)c,. However, considering
the planarity ofG7, any path fromx to v1 or vz must intersect a vertex &f (see Fig8).
This implies thatX) ¢, = (v2)c,, Yielding a contradiction. Suppose instead thate C».
Then(y)c, = (v2)c,. Thereis a patl® in G1(C2 N E(G1)) fromyto va. By planarity, any
path fromx to v1 must intersect a vertex @f. This means thatX)c, = (v2)c,, yielding a
contradiction. We conclude théb is contractible and hence good.
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In the same way, we can define a baigwhereCz = [Q3, V(G)\ Q3] if 03\{v3} # ¥,
andCz = [P3NV(G), P{3N V(G)], otherwise. One can show th@ is good in the same
way as was done faf, and it follows thatC, andC3 are a good pair of bonds. Thus we
may assume thak; is a bond, andB1 is seen to be good.

(ii) SupposeBy is abond. LeB, = [(P],UP5,) NV (G), (Q],UQ%,)NV(G)]. ThenB;
is a non-trivial bond (sincdist; (v1, v3) = 2). We may assume th&p is non-contractible.
ThenG/ B> consists of two blocks, one of which contaifig) g, and (v2) g,. SinceBy is
assumed to be a good bond, there is a [aith G(Q7, U 05;) N V(G)) betweerw; and
v3. Since any path fron® to v; must contain edges df;,, it follows that(vi) g, ¢ (P)s,
and consequently there is a path frémm) , to (v3) s, in (G/B2)\(v1)B,. Thus the second
block of G/ B> contains(vz) g, and(vs) p,.

Applying the same reasoning as was usedfgin the previous paragraph, we deduce
thatG /B> cannot consist of two blocks, one containitg@) z,, (v2)s,, and another block
containing(v2) g,, (v3)g,. SO it must be the case thaj is contractible, and hendg; and
B> are a good pair of bonds. This completes Case 1.1.

If v1 € Py} andvs € Py, then we can find a good pair of bonds in the same way as in
the previous case. So essentially there is just one remaining subcase:

Casel.2: Suppose; € P,; andvz € Py,. Let

Bl = [(Pa_/z ) P/z/l) N V(G), (Q/]fz ) Q/zll) N V(G)],
B2 = [( /1/3 U 52) N V(G), (Q/]f?, ) Q/zlz) N V(G)]~

Using the fact thatlistg, (v1, v;) = 2, j = 2, 3, one can show thaB; and B, are (non-
trivial) bonds. Suppos8; is non-contractible. The&'/ B1 consists of two blocks; if these
blocks containv1) g,, (v2) B, and(v2) p,, (v3) B, respectively, then by arguing in a manner
similar to the above, we reach a contradiction. Thus we may assumé Bt consists
of two blocks, one containingvs) g, (v2) ;. and another containing1)p,, (va)g,. It

follows thatG1(Q7; N V(G)) is disconnected and has two components. Qét j =
2, 3 be the vertices in the component containing If Q7 U Pz//(j_l)\{vj} # 0, then

letC; = [(Q] U Py 1) N V(G), (Qju Py ;_1)) N V(G)]; otherwise, forj = 1,2 let

Cj = [PjNV(G), PN V(G)]. One sees thal';, j = 2,3 are good bonds and hence
form a good pair.

The same reasoning holdsab is not good. Thus eitheB, and B, are a good pair of
bonds, or we can find another good pair of bonds. This completes the proof of Case 1.2.

The proof of Case 1 follows from Cases 1.1 and 1.2.

Case?2: Suppose there is no path frofmp)11 to (v3)11 In (G1)11\{v1)11. The graph
(G1)11 consists of two blocks, which are multiple edges, one contaififig1, (v2)11 and
another containingv1)11, (v3)11. Fori = 1,2, 3letV; = {v € V(G1) : (V)11 = (V;)11}.
Since(G1)11 consists of just three verticds; )11, i = 1, 2, 3, it follows that V(G1) =
ViU VoU V3, V2 = P,NV(G), andVz = P/5N V(G). There are no edges froip to
V3, for otherwise(G1)11 would contain a path fronfwz)11 to (v3)11 which avoids(v1)11,
contradicting our assumption. Thikg,, V(G1)\ V1] = (B7,U B{3) N E(G1). We also have
thatQZ3 NV(G) =ViUWVy andQ’l’z NV(Gy) = ViU Vs,
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Let Gy = G4\ {w3,). The graphG/’ has a good pair of bondsy: = [P}, Q%1, j =
1, 2. We shall assume thaPz”Jf N{vy, vz, v3}] = 1, j = 1,2; the other cases, where
PZ/” {v1, v2, v3} = @ for somej € {1, 2}, can be handled in the same way. We shall
examine a few subcases:

Case2.1: Suppose; € Py}, andvy € P,5. We have thaiw, belongs to exactly one of
Py} or Py, \We may assume that, € P;]. Let

B1 = [(P1; UP25) NV(G), (Q1; U Q%) NV(G)],
B2 = [(V1UP) NV(G), (V2UV3UQ3) NV(G)].

We have that/1\{v1} # ¥ as(v1)11 is a cut-vertex of{G1)11. Sincew, € Pyj, it follows
thatG(Q5,NV(G)) is connected (sincBy; is a bond). Thus; is a non-trivial bond. Given
thatG(Q’” N V(G)) is connected, it contalns a pafrom vy to v3. Since any path from
P to v must contain edges @, this implies tha{ P) 5, contains a path iGG/B1)\(v1) 5,
from (v2)p, to (v3)p,. We conclude thaiB is contractible, and if it is a bond, then it
is good.

If By is notabond, the@2(Q%,N V(G)) has 2 components. Fgr= 2, 3 let Q2 be the
vertices in the component containing. For j = 2, 3, let

Cj =[(P{;U Q) NV(G). (P{UQHNV(G)L.

ConsiderC,. Suppose thaf’; is non-contractible. The@/ C, consists of two blocks where
one block containgv1)c, and(vz)c,. SinceB5, is good,G4'/ By, is 2-connected and there
is apath |r(G2/B”’)\<v1>Bw from (v2) gy to (vg)Bé/é Thus thereis a path G/ C2)\ (v1) ¢,
from (v2) ¢, to (v3)c,, and consequentlythe other block®f C» containgvz) ¢, and{vs)c,.
Now following the same arguments as in Case 1, one can show that this is impossible. Thus
C> is contractible and hence good. In the same way, it can be showd'4hatalso good
and henceC, andC3 are a good pair. We may therefore assume Hhas a good bond.
ConsiderB,. SinceB; is assumed to be a bond, it holds tiiai(Q7, U 055) N V(G))
is connected and hence contains a gattom v, to vz. Then(vq) s, ¢ (P)p, and conse-
quently there is a path i0G/B2)\(v1), between(vz) g, and(v3)p,. We deduce thaB»
is contractible and hence also good. In this cd&eand B, are a good pair of bonds. This
completes Case 1.2.
Case2.2: Suppose; € P,j andvz € Py, Let

B1 = [(P1; UP2) NV(G), (Q1; UQ3) NV (G)],
B2 = [(P1,UP3%) NV(G), (QU Qo) NV (G)].

We first note thatvp ¢ P57 asvz € Py5. Suppose thaBy is not a bond. As in Case 2.1, we
defineC, andCs. SinceC> is a bond and5’'/ BY; is 2-connected, we can find a path from
(v2)c, 10 (3) 5 IN (GY'/ C2)\(v1) ¢, (Via the same arguments in the previous case) and this
implies thatC» is good. We can argue the same &, and hence&”, andC3 are a good
pair of bonds. We may thus assume tBatis a bond, and it is seen to be good.

We suppose therefore th&p is non-contractible (noting thak, is a non-trivial bond).
Similarto Case 1, one can show tkigtB, consists of 2 blocks, one containing ) z,, (v2) B,
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and another containinq1) s,, (v3)s,. Since By is assumed to be a bond, we have that
G((Q1; U 0%) N V(G)) is connected and contains a pahfrom v, to v3. We have
that(v1)p, ¢ (P)p,. Thus there is a path i0G/B2)\(v1) 5, from (v2)p, t0 (v3)p,. This
contradicts the fact thdb,) g, is a cut-vertex ofz/ B,. ThusBs is contractible, an®; and
B> are a good pair of bonds. This completes Case 2.2.

If v1 € Pyj andvz € Py, then one can find a good pair of bonds in exactly the same
way as in Case 2.2. There is just one case remaining:

Case2.3: Suppose; € P,j andvz € Py,. Let

B1 = [(P{,UPs) NV (G), (Q1,U Q) NV (G)],
B2 = [(P{3U P45 NV(G), (Q]3U Q%) NV(G)].

Both By and B, are non-trivial bonds. Suppodga is non-contractible.

Then G/B; consists of two blocks, one containirigy) g, (v2)p,. Following the rea-
soning as in Case 1.1, one can show that the other block does not cantajp and
(v3) B, - Thus we have that the other block containg) g, and(vs) g,. Moreover, the block
containing(v1) s,, (v2) B, iS @ multiple edge. Since there is no path fr¢u)11 to (v3)11
in (G1)11\(v1)11 it follows that G1(Q7; N V(G)) is disconnected and has two compo-

nents. LetQ{, j = 2,3 be the vertices of the component containing Let C> =

[(Q2U P)) N V(G), (Q2U Py NV(G)]. If PJ;NV(G) = {va}, then there would be
a path in(G/B1)\(v2) g, from (v2)p, t0 (v3)p,. This contradicts the fact thdb1) p, is a
cut-vertex inG/B1. ThusPJ] N V(G) # {vz}, andC> is a non-trivial bond.

We shall show thaf€’, is contractible.

(i) Suppose thatv, € Bf,. Thenxy € Bj;. We have(X)Bifl = <”1>Bi’1’ and there is
a pathL in G1(B{; N E(G1)) from x to v1. We can assume théatis chosen such that it
contains no vertices ab?; for if no such path existed, théX)c, # (v1)c,, andCa would
be contractible. Suppose¢ V(L). LetRbe the region bounded lyu {xvzwizvl} where
y does not lie inR. We have that the vertices &%\ {v2} lie in the interior ofR. We have that
(y)B, = (v1)B,. Thus there is a path i61(B7, N E(G1)) fromyto v1, andy is adjacent to
avertex inP;, N V(G) = V2. However, this is impossible singdies outsideR.

Suppose € V(L). Thenyis adjacent to avertex € V(L)\{x}. We have thay’ € Q2.
Again let R be the region bounded b§ U {xvzwizvl}, wherez lies outsideR. Since
x,y € Q2 thereis a pattP, fromxtoy’ in G1(Q?). Since(y) 5, = (v1)5,, there is a path
P> fromyto vy in G1(B7,N E(G1)). Such a path lies iR since the vertices df2\{v,} lie
in R (see Fig9). We conclude that by planarity, the patAsand P, must cross. However,
this is impossible sinc& (P1) C V(Q7,) andV(P2) C V(P{). In this case(> must be
contractible.

(i) Supposexv, ¢ Bj,. Thenxv € BY,. If xy € B, theny € 03 andC, is seen to be
good since there would be a path betwées)c, and(va)c, in (G/C2)\{v1)c,. We may
thus assume thaty ¢ BY; and hencery € Bf,. Thus there is a pathy C G(P;}) fromy
to v1. We also have thatis adjacent to a vertex e Q% and there is a path, C G(Q{)
from y’ to vo. Due to planarity considerations, the pathsand L, must cross, which is
impossible sincd., € P;;. We reach a contradiction, and we conclude thaimust be
contractible in this case.
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We have thus shown that #1 is non-contractible, the@is is good. If B, is good, then
either B1, Bo or C2, Bz is a good pair of bonds. We suppose therefore #ats non-
contractible. LetCz = [(Q3 U PJ,) N V(G), (03 U Py,) N V(G)]. As with C2, we have
thatC3is a good bond. Thus eith®s, C3 or C2, C3is a good pair of bonds. This completes
the proof of Case 2.3. Case 2 now follows from Cases 2.1-2.3. This completes the proof of
the claim. O

Claim 31. SupposéK»3| = 4in G;. Then G has a good pair of bonds

Proof. G contains exactly two 5-faces and ha&agood decomposition consisting of
threeG1-good bondBy; = [P’l’j, ’1’j], j = 1,2,3 and a contractible semi-bor& We
may assume far, j = 1, 2, 3 thatv; € Pﬁ iff i = .

Casel. Suppose; € Pj. Let

B1 = [( /1,1 ) P/2/1) N V(G), (qu ) Q/zll) N V(G)]-

Bj is seen to be a non-trivial bond. In the same way as was done in the proof of Z3aim
one can show that iB; is non-contractible, then it is possible to construct a good pair of
bonds. Given this, we may assume tiFatis a good bond.

Supposev; € Py,. If |[K13| = 5, then letG]’ = (G’l\{W}S}) U {v1vs}. We have that
G is triangle-free and has @;-good decomposition consisting of tw®;-good bonds
B/l/Jf = [P’l/j’, Q/l’j], j =1 2wherev; € P/, j =1,2. We can now proceed in the same
manner as in sectior to show thatG has a good pair of bonds. Consequently, we may
assume thatk13| = 4 anddistg, (v1, v3) = 2. Let

B2 = [(P{,UP5,) NV(G), (Q1,U Q%) NV (G)].
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We see thaBs is a non-trivial bond. Given thak; is assumed to be good, we may assume
that B2 is non-contractible. Sincaist; (v1, v2) = 2, we have thatv1) 5, (v2) 5, iS an edge

of G/B>. We have thatK»3| = 4, and consequently there is a pathc K23\w%3 from vy

to v3. We have thaV (P) C Q7; and this implies thatv1)s, ¢ (P)g,, and there is a path

in (P)p, from (v2)p, t0 (v3)p, Which avoids(v1)z,. ThusG /B> consists of two blocks;
one containingvi) g,, (v2) B, and another containin@z) z,, (v3) s,

Let G* = (G)s, B; = (Bz)s, v/, i = 1,2,3. We have thatG*/B; consists of
two blocks; one containingv’l‘)B;, <v§)35 and another containing;;)gg, (v§)35. Using
the same methods as in the proof of Cla2® (where B3 plays the role ofB; and G*
plays the role ofG) we can construct a good pair of bonds, €&y i = 1,2 such that
Ci => C} <5, i = 1,2, are non-trivial bonds. Suppog® is non-contractible irG.
Then Claim22 implies that(v;*)q = (vj)q for somei # j and there is a path of length
3 betweerny; andv; in Kjj. Since no such path exists other thanffer 2 andj = 3, we
deduce tha(cv;)cf = (v§>q if C1is non-contractible. However, for the bonds, i = 1,2
constructed it holds that);)q # <v§)CI (see the remark following the proof of Claim
22). We conclude thaf’1 is contractible, and the same applie<to ThusC1 andC> are
a good pair of bonds.

Ifinsteadvs € Py,, then we letB; = [(P{53U P;,) N V(G), (Q73U 0%, N V(G)]. One
can show in a similar manner as to the above that eiBags good (in which cas#; and
B3 is a good pair), or one can construct another good pair of bonds. This completes the
proof for Case 1.

Case2: Suppose; € Py, anduvs € Py),. Let

Bl = [( /1/2U /2/1) N V(G), (Q/]fJ_U Q/z/l) N V(G)],

B2 = [(P1, U P3) NV(G), (Q1,U Q%) NV(G)I.

If |K13] = 4, then using the same reasoning as in Case 1 withetc., one can show
that eitherB1 and B, are a good pair of bonds or one can construct another such pair. We
may therefore assume thia13] = 5. Again, using the same arguments as in Case 1 with
G* etc., one can show that eith8p is good, or one can construct a good pair of bonds
of G. We may therefore assume thg¢ is good andB; is not contractible. We have that
(v1) B, (v2) B, IS @n edge o&i / B1 and there is a path frofw,) 5, t0 (v3) g, IN (G/B1)\(v1) B, -
ThusG/B; consists of two blocks; one containifig) 5,, (v2)p, and another containing
(v2)B;» (v3)B,. Using the same technique as in the proof of Cl&Bnwe can construct a
good pair of bonds. This completes Case 2.

The proof of the claim now follows from Cases 1 and 2 abové.]

Claim 32. If {v1, v2, v3} is @ minimal good separation which is of tygethen G has a
good pair of bonds

Proof. The proof of the claim follows from Claim29-31. [
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11. Conclusion

In consideration of the results given in the previous sections, notably Cl#in24, 28,
and32, one deduces that no minimal counterexanmplean exist, thereby concluding the
proof of main theorem (Theorem 1.4). We venture the following conjecture for matroids:

Conjecture 11.1. Let M be a connected binary matroid having cogirth at lea$tM is not
a circuit, and has no minor isomorphic 8,9, M*(Ks), F3, or Ry, then M contains two
disjoint circuitsC1 and C2 such thatM\C;, i = 1, 2 are connectetbut M/C;, i = 1,2
are disconnected
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