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Abstract

This paper addresses a problem posed by Oxley (Matroid Theory, Cambridge University Press,
Cambridge, 1992) for matroids.We shall show that ifG is a 2-connected graph which is not amultiple
edge, and which has noK5-minor, thenG has two edge-disjoint non-trivial bondsB for whichG/B

is 2-connected.
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1. Introduction

For a graphG we shall letε(G) and�(G) denote the number of edges and vertices in
G, respectively. For a set of edges or verticesA of V (G), we letG(A) denote the subgraph
induced byA. For sets of verticesX ⊆ V (G) andY ⊆ V (G) we denote the set of edges
having one endpoint inX and the other inYby [X,Y].A cutsetis a set of edges[X, X] for
someX. A cutset which is minimal is called abondor cocycle; that is,B = [X, X] is a
bond if and only if bothG(X) andG(X) are connected subgraphs. A bondB is said to be
trivial if B = [{v}, V (G)\{v}] for some vertexv. A collection of edge-disjoint bonds of a
graph which partitions its edges is called abond decomposition. If in addition all its bonds
are non-trivial, then the decomposition is said to benon-trivial.

E-mail address:tokigcanuck@aol.com

0095-8956/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jctb.2004.10.002

http://www.elsevier.com/locate/jctb
mailto:tokigcanuck@aol.com


208 S. McGuinness / Journal of Combinatorial Theory, Series B 93 (2005) 207 – 249

ForA ⊂ E(G) we letG/A denote the graph obtained by contracting the edges ofA. For
v ∈ V (G/A) we denote by> v <A the vertices in the component ofG′ = G(A) ∪ V (G)

corresponding tov. For an edgee ∈ E(G/A) we let> e<A denote the corresponding
edge inG. Similarly, for a subset of vertices (resp. edges)XofG/A we let> X <A denote
the subset of vertices (resp. edges)

⋃
x∈X > x <A . For a subgraphH of G/H induced

by V (H) we let> H <A denote the subgraph ofG induced by> V (H) <A . For each
vertexv ∈ V (G) we associate the vertexu ∈ V (G/A) wherev ∈ > u <A .We denoteu
by 〈v〉A . Similarly, for an edgee ∈ E(G)\A we associate the edgee′ ∈ E(G/A) where
e = > e′ <A .We denotee′ by 〈e〉A . For a subset of verticesX ⊆ V (G) we let 〈X〉A =
{〈v〉A : v ∈ X} and for a subset of edgesY ⊂ E(G) we let〈Y〉A = {〈e〉A : e ∈ Y\A}.
J. Oxley proposed the following problem in[7]:

1.1 Problem. Let M be a simple connected binary matroid having cogirth at least4.Does
M have a circuit C such thatM\C is connected?

Here, bycogirthof a matroidM we mean the minimum cardinality of a cocircuit inM.

For graphic matroids, this problem has been answered in the affirmative by a number of
authors including Jackson[3], Mader[5], and Thomassen and Toft[8]. Recently, Goddyn
and Jackson[1] proved that for any connected, binary matroidM having cogirth at least 5
which does not have either aF7-minor or aF ∗

7 -minor, there is a cycleC for whichM\C

is connected. For cographic matroids, the above problem translates as follows. A circuitT
in M∗(G) corresponds to a bond inG. The matroidM∗(G)\T is connected if and only if
either|E(G/T )| = 1 orG/T is loopless and 2-connected. Oxley’s problem for cographic
matroids can be restated as:

1.2 Problem. Given G is a2-connected, 3-edge connected graph with girth at least4,does
G contain a bond B such thatG/B is 2-connected?

We say that a collection of edgesA in a 2-connected graphG is contractibleif G/A is
2-connected. We say that a bond isgood if it is both non-trivial and contractible. We call
two edge-disjoint good bonds agood pairof bonds.
In [4], an example is given which shows that the answer to this problem is in gen-

eral negative. The main result of this paper addresses Oxley’s problem in the case of
non-simple cographic matroids. Here there is a small example of a graph based onK5
which has no contractible bonds: letB be a bond of cardinality 6 inK5, and letG be
the graph obtained fromK5 by duplicating each edge inE(K5)\B and then subdividing
both edges of each resulting digon exactly once (see Fig.1). ThenG is 2-connected with
girth at least 4, but contracting any bond ofG leaves a graph which is not 2-connected.
We say that a digon isisolated if it is a multiple 2-edge consisting of two non-loop
edges {e, f } where no other edge has the same end vertices ase and f. In [2],
the following theorem was proved which confirmed a conjecture of
Jackson[3]:

1.3 Theorem. Let G be a2-connected graph havingk ∈ {0,1} vertices of degree3 and
which has no Petersen graph minor and which is not a cycle. Then G has2−k edge-disjoint
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Fig. 1.

cycles C which are not isolated digons for whichG\E(C) is2-connected,apart for possibly
some isolated vertices.

In this paper, the main result is the analog of the above result in the case of cographic
matroids:

1.4 Theorem. Let G be a2-connected graph which is not a multiple edge and which has
no triangles. If G has noK5-minor, then it has a good pair of bonds.

The proof strategy of the main theorem is to use the minimum counterexample approach,
reducing as much as possible such a graph so that its structure is more apparent. The first
step is to show that it is non-planar. Then we use aWagner-type result for graphs without a
K5-minor to decompose the graph. In the initial stages of the proof, the problem of finding
contractible bonds in planar graphs is examined. Certain lemmas are given here which play
a central role in themain proof. Thereafter, we examine the case of non-planar graphswhere
we show that our graphG can be decomposed into a planar graphG1 and another graph
G2 whereG1 andG2 meet along a 3-vertex cut{v1, v2, v3}. The bulk of the paper involves
showing that certain contractible bonds forG1 andG2 can be ‘spliced’ together to form
contractible bonds inG. The splicing is easier or harder depending on the mutual distances
betweenv1, v2, andv3. We are able to succeed in our splicing operation for two main
reasons; firstly, we have a great deal of flexibility in how we choose our contractible bonds
inG1, and secondly, by attaching “gadgets” to the verticesv1, v2, v3, inG1 andG2, we are
able to coerce the constructed contractible bonds inG1 andG2 to have certain favourable
properties.
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2. Contractible bonds in planar graphs

AcycleC in a 2-connected graphG is said to beremovableif it is not an isolated digon and
G\E(C) is 2-connected apart from possibly some isolated vertices. A cycle which bounds
a face of a plane graph is said to befacial. We say that a cycle in a 2-connected plane graph
isgoodif it is both non-facial and removable.We call two edge-disjoint good cycles agood
pair of cycles. The following theorems were shown in[6]:

2.1 Theorem. Let G be a2-connected plane graph which is not a cycle. Given G has
k ∈ {0,1} vertices of degree3, there exists2− k good cycles in G.

2.2 Theorem. Let G be a2-connected plane graph having at mostk ∈ {0,1} faces which
are triangles. Assuming G is not a multiple edge, there exists2−k edge-disjoint good bonds.

The following lemmas play a central role in the proof of the main theorem.

2.3 Lemma. Let G be a2-connected plane graph with no vertices of degree3.Letv ∈ V (G)

be a vertex of degree4 where one or two isolated digons are incident withv. If G has no
good cycle not containingv, then G is the union of a good pair of cycles, and each vertex
has degree2 or 4.

Proof. SupposeG has no good cycle not containingv. By Theorem 2.1,G has a good pair
of cycles, sayC1 andC2 containingv and hence also edges of a digon incident tov, say
D, having edgese and f and verticesu andv. We may assume thate ∈ E(C1). Suppose
thatC1 contains no vertices of degree 5. LetG′ = G\E(C1). ThenG′ is 2-connected
(apart from possibly some isolated vertices) and has no vertices of degree 3. It follows by
Theorem 2.1 that ifG′ is not a cycle, then it has a good pair of cycles, one of which does
not containv. The cycle not containingv, sayC′

1, is seen to be good inG. This is because
G′\E(C′

1) is 2-connected except for possibly isolated vertices, andG\E(C′
1) is obtained

from G′\E(C′
1) by replacing the edges ofC1. Sincef ande are the edges ofG′\E(C′

1)

andE(C1), respectively, and have the same endpoints,G′\E(C′
1) is 2-connected except

for possibly isolated vertices. Since by assumption no such cycle inG exists,G′ must be a
cycle, and in this case,G is the union of a good pair of cycles. We may therefore assume
thatC1 contains at least one vertex of degree 5. Letw be the first vertex of degree 5 we
encounter while travelling fromv alongC1 where edgeeof digonD is traversed first. Let
P be the path representing the portion ofC1 traversed fromv tow, and letG′ = G\E(P ).
ThenG′ is 2-connected and has exactly one vertex of degree 3, namelyv. By Theorem 2.1,
there is a good cycle inG′, and this cycle cannot containv. Furthermore, this cycle is seen
to be good inG, and this is contrary to our assumption. Thus no such vertexw can exist and
this completes the proof of the lemma.�
A pathP in a 2-connected graphG is said to beremovableif G\E(P ) is 2-connected

aside possibly for some isolated vertices.

2.4 Lemma. Let G be a2-connected plane graph having no vertices of degree3. Let
v ∈ V (G) be a vertex of degree5 which is incident with two isolated digons. If G has no



S. McGuinness / Journal of Combinatorial Theory, Series B 93 (2005) 207 – 249 211

good cycle not containingv, then G is the union of a good pair of cycles and a removable
path fromv to a vertex of degree5.Moreover, all vertices of G have degree2 or 4, except
for v and another vertex of degree5, and the removable path may chosen to contain any
edge incident withv.

Proof. We suppose thatG has no good cycles not containingv. By Theorem 2.1,G has a
good pair of cycles. LetC1 andC2 be two such cycles. Since there are two digons incident
with v, the cyclesC1 andC2 contain edges of one such digon. Suppose thatC1 contains
no vertices of degree at least 5, apart fromv. ThenG′ = G\E(C1) is 2-connected (apart
from possibly some isolated vertices) and has exactly one vertex of degree 3, namelyv. By
Theorem 2.1, there exists a good cycleC′ inG′. Such a cycle does not containv, and is also
seen to be good inG. To see this, one can use the same argument as was used in the proof
of Lemma 2.3. Since this is contrary to our assumption,C1 must contain a vertex of degree
at least 5, apart fromv. Letwbe the first vertex of degree at least 5 that we encounter while
travelling alongC1 from v. LetP be the path representing the portion ofC1 traversed from
v tow, and letG′ = G\E(P ). ThendG′(v) = 4 and there are 1 or 2 digons incident with
v. If G′ has a good cycle not containingv, then such a cycle is clearly good inG. Thus
no such cycle exists inG′ and hence Lemma 2.3 implies thatG′ is the union of a good
pair of cycles. These cycles are also a good pair inG. Observing that each (non-isolated)
vertex inG′ has degree 2 or 4, and each internal vertex ofP has degree 2 or 4 inG, we
conclude that each vertex ofG has degree 2 or 4, except forv andwwhich have degree 5.
The above arguments also demonstrate that for any edge incident withv, there is a good
cycle containing it, and such a cycle must containw. Thus for any edge incident withv we
can choose the removable pathP so that it contains this edge.�

2.5 Lemma. Let G be a2-connected plane graph having no vertices of degree3. Let
v ∈ V (G) be a vertex of degree6 wherev is incident with three isolated digons. If G has
no good cycle not containingv, then we have two possibilities for G:

(i) G is the edge-disjoint union of three good cycles, and all vertices of G have degree2or
4,except forv and at most one other vertex of degree6.

(ii) G is the edge-disjoint union of three good cycles and a removable path between two
vertices of degree5.Moreover, all vertices of G have degree2 or 4, apart fromv and
two vertices of degree5.

Proof. We suppose thatG has no good cycle which does not containv. By Theorem
2.1,G has a good pair cycles, sayC1 andC2 which containv and hence also edges of a
digon incident tov. SupposeC1 contains no vertices of degree at least 5, apart fromv. Let
G′ = G\E(C1). ThenG′ is 2-connected (apart from possibly some isolated vertices), and
has no vertices of degree 3. Moreover,dG′(v) = 4, andv is incident with exactly one digon
in G′. If G′ contains a good cycle which avoidsv, then such a cycle is also good inG.

To see this, one can use the similar arguments as were used in the proof of Lemma 2.3.
Thus no such cycles exist inG′, and hence by Lemma 2.3 the edges ofG′ are partitioned
by a good pair cycles. These cycles together withC1 decompose the edges ofG into good
cycles. Consequently, each vertex ofG has degree 2, 4, or 6. SupposeG has two vertices of
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degree 6 apart fromv, saywandz. LetPbe the path fromw toz inC1 which containsv. Let
G′′ = G\E(P ). ThenG′′ is 2-connected (apart from possibly some isolated vertices), has
no vertices of degree 3, anddG′(w) = dG′(z) = 5, anddG′(v) = 4. The vertexv is incident
with one isolated digon inG′′, andG′′ contains no good cycles which avoidv. In this case,
Lemma 2.3 implies thatG′′ is the union of a good pair of cycles. This is impossible since
bothw andzhave odd degree (equal to 5) inG′′.We conclude that two such verticesw and
z cannot exist inG, and consequently,G has at most one other vertex of degree 6, apart
from v. Then (i) holds.
Suppose now thatC1 contains at least one vertex of degree at least 5, apart fromv. Let

P be a path traversed by moving alongC1 from v until one first reaches a vertex of degree
at least 5, sayu. LetG′ = G\E(P ). ThenG′ is 2-connected,dG′(v) = 5, andv is incident
with two isolated digons. We have thatG′ contains no good cycles which avoidv, as such
cycles are seen to be good inG. By Lemma 2.4,G′ is the union of a good pair of cyclesC′

1
andC′

2, and a removable pathP
′ from v to a vertex of degree 5 inG′, sayw. Furthermore,

each (non-isolated) vertex ofG′ has degree 2 or 4, apart fromv andwwhich have degree
5. If u = w, thendG(u) = 6, andG has no vertices of odd degree. Then we can show,
as in the previous paragraph, that (i) holds. We suppose therefore thatu �= w. This means
thatG has exactly 2 odd degree vertices which areu andw and every other vertex has
degree 2 or 4 apart fromv which has degree 6. ThendG′(u) = 4, anddG′(w) = 5, and
one of the cyclesC′

1 or C
′
2 contains bothu andw. We may assume thatC′

1 containsu and
w. LetP ′′ be the path fromu tow in C′′

1\{v}, and letG′′ = G\E(P ′′).We have thatG′′ is
2-connected (apart from possibly some isolated vertices),v is incident with three isolated
digons inG′′, andG′′ has no odd degree vertices. Repeating previous arguments, we deduce
thatG′′ is the edge-disjoint union of three good cycles, sayC′′

i , i = 1,2,3. Moreover, all
(non-isolated) vertices have degree 2 or 4, apart fromv and at most one other vertex of
degree 6. Ifv is the only vertex of degree 6 inG′′, then all the vertices ofG have degree
2 or 4, apart fromu, w, andv which have degrees 5, 5, and 6, respectively. Then (ii) is
seen to hold. IfG′′ has another vertex of degree 6, apart fromv, then this vertex must be
w. ThusdG(w) = 7, dG(u) = 5, dG(v) = 6, and all other vertices ofG have degree 2
or 4. SincedG(u) = 5, one of the cyclesC′′

i , i = 1,2,3 (which are good inG), sayC′′
1,

does not containu (but containsv). NowC′′
1 contains no vertices of degree 5, and thus by

the first part of the proof,G is the edge-disjoint union of three good cycles. This yields a
contradiction. We conclude that in this case,G has exactly one vertex of degree 6, namely
v, and hence all the vertices ofG have degree 2 or 4, with the exception ofu, w, andv

which have degrees 5, 5, and 6, respectively. In this case, (ii) holds withC′′
i , i = 1,2,3

andP ′′. �

2.6 Lemma. Let G be a2-connected graph and suppose S is a proper subset of edges such
that G\S is connected andG∗ = G/S is 2-connected. Suppose thatB∗ is a contractible
subset of edges inG∗. LetB = > B∗ <S . If B is not contractible in G, thenG/B contains
loops.

Proof. Let S, B, andB∗ be as in the statement of the lemma. We suppose thatB is not
contractible inG, andG′ = G/B contains no loops. LetS′ = 〈S〉B. If G′ contains 2 or
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1
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Fig. 2.�-sum ofG1 andG2.

more blocksK ′ whereE(K ′) �⊆ S′, thenG′/S′ has 2 or more blocks. However,

G′/S′ = G/B/S′ = (G/S)/B∗ = G∗/B∗

which is 2-connected. So at most one such block exists. Thus ifG′ hasmore than one block,
then we can find a blockK ′ of G′ whereE(K ′) ⊆ S′. If K ′ is not a loop, then the edges
of > K ′ <B form a cutset inG, which means that the edges ofSmust also be a cutset in
G. However, this is impossible sinceG\S is connected. ThusK ′ is a loop. So ifB is not
contractible inG thenG/B must contains loops, and moreover,G/B minus its loops is a
2-connected graph. �

2.1. The�-sum of two graphs

Following the definition given in[9], we define a�–sumof two graphsG1 andG2 with
ε(Gi)�7, i = 1,2 to be the graph obtained by ‘glueing’ togetherG1 andG2 along the
edges of a given triangle in bothG1 andG2 and then deleting the edges of this triangle (see
Fig. 2). We denote such a graph byG1 ⊕� G2.
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2.7 Lemma. Let G be a�-sum of planar graphsG = G1 ⊕� G2 whereG1 is a plane
graph. LetB = [X, X] be a bond of G and let C be a cycle which bounds a face ofG1.
Then|B ∩ E(C)|�2.

Proof. Let G = G1 ⊕� G2 where the�-sum occurs along a triangleT = uvw. Let
C be a cycle which bounds a face ofG1 and letB = [X, X] be a bond ofG. Suppose
|B ∩ E(C)|�3, ande1 = x1y1, e2 = x2y2, ande3 = x3y3 are three edges inB ∩ E(C).

We may assume thatxi ∈ X, i = 1,2,3, and we meet the edgese1, e2, e3 in this order
as we move alongC. So while traversingC we meet the verticesx1, y1, y2, x2, x3, y3
in this order (noting that it is possible thaty1 = y2 or x2 = x3). SinceB is a bond,
bothG(X) andG(X) are connected. So there exists a pathP from x1 to x2 in G(X)

and a pathQ from y1 to y3 in G(X). Either P ⊂ G1 or E(P ) ∩ E(G1) is a vertex
disjoint union of two pathsP1 andP2 wherePj = uj1uj2 · · · ujnj

, j = 1,2, andu11 =
x1, u2n2 = x2. If the latter occurs, thenu1n1, u21 ∈ {u, v, w}. SinceT = uvw is a
triangle ofG1, it follows that u1n1u21 ∈ E(G1), andP ′ = P1 ∪ P2 ∪ {u1n1u21} is a
path inG1 from x1 to x2. SinceQ does not intersectP it does not intersectP ′ either.
However, sinceG1 is plane, any path fromy1 to y3 in G1 must crossP ′ and this yields a
contradiction. IfP ⊂ G1, the same conclusion holds.We conclude that no such cycleCcan
exist. �

3. Reductions on a minimum counterexample

We suppose that Theorem 1.4 is false and suppose thatG is a minimal counterexample
whereε(G) is minimum subject to�(G) being minimum. By Theorem 2.2 we may assume
thatG is non-planar.
We call a pathPbetween two vertices of degree at least 3 athreadif it is an edge, or if all

its internal vertices have degree 2. We define thelengthof P to be the number of its edges
and we denote it by|P |.

Claim 1. G has no thread of length3 or greater.

Proof. SupposeT = u0e0u1 · · · ek−1uk is a thread wherek�3. Let G′ = (G\{u1, . . . ,

uk−1}) ∪ {u0uk}. SupposeG′ contains no triangles. Then by the minimality ofG, the graph
G′ has a good pair of bonds, sayB1 andB2. We may assume thatu0uk /∈ B1. ThenB1 and
C = [{u1, . . . , uk−1}, {u1, . . . , uk−1}] are a good pair of bonds inG.

We suppose instead thatG′ contains a triangle (which must containu0uk). LetG′′ be
the graph obtained fromG′ by deletingu0uk and adding a vertexu together with the edges
uu0 anduuk. The graphG′′ has no triangles sinceG has no edge betweenu0 anduk; for
otherwise it would have a triangle (sinceG′ has a triangle). Thus by assumption,G′′ has a
good pair of bonds, sayB1 andB2. If Bi, i ∈ {1,2} do not contain the edgesuu0 or uuk,
then they are a good pair inG. If for somei ∈ {1,2} Bi contains one of the edges incident
to u, for exampleu0u, thenB ′

i = (Bi\{uu0}) ∪ {e0} is a contractible bond inG. So the
bondsB1, B2 give rise to a good pair of bonds inG. �
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Claim 2. Between any two vertices of G there is at most one thread.

Proof. SupposeP1 andP2 are threads between two verticesu andv. By Claim1, a thread
ofGhas at most one internal vertex. Thus, given thatG is triangle-free, bothP1 andP2 have
the same length. LetG′ be the graph obtained fromG by deleting all the internal vertices
of P2. ThenG′ is 2-connected, triangle-free, and therefore has a good pair of bonds. Such
bonds are easily seen to be extendable to a good pair of bonds inG. �
For positive integersmandnwe letKm,n denote the complete bipartite graph with parts

of sizemandn.We letG8 denote theWagner graphwhich is the graph obtained from an
8-cyclev1v2 · · · v8v1 by adding the chordsvivi+4, i = 1,2,3,4.

Claim 3. G is not a subdivision ofK3,3 or G8.

Proof. Using Claim1, this is a straightforward exercise which is left to the reader.�

3.1. The graphhom(G)

For a graphG none of whose components are cycles, we define a graphhom(G) to be
the graph obtained fromG by suppressing all its vertices of degree 2. For a subgraphH of
Gwe definehom(G|H) to be the subgraph ofhom(G) induced byV (hom(G)) ∩ V (H).

Claim 4. hom(G) is 3-connected.

Proof. It suffices to show thatGhasno2-separating set apart from theneighbours of a vertex
of degree 2. Suppose the assertion is false, and there exists a 2-separating set ofG, {v1, v2}
which separates 2 subgraphsG1 andG2; that is,G = G1 ∪ G2 andV (G1) ∩ V (G2) =
{v1, v2}, whereGi, i = 1,2 is not a single vertex joined tov1 andv2.We haveE(G) =
E(G1) ∪ E(G2).We shall consider two cases.

Case1: Supposee = v1v2 ∈ E(G) (and thuse ∈ E(G1) ∩ E(G2)). Then bothG1 and
G2 are 2-connected and triangle-free, and moreover,ε(Gi) < ε(G), i = 1,2. For i = 1,2
the graphGi has a good pair of bondsBi1 andBi2. We may assume thate /∈ B11 ∪ B21.

One sees thatB11 andB21 is a good pair of bonds inG.

Case2:Supposev1v2 /∈ E(G). If Gi∪{v1v2}doesnot containa triangle, fori = 1,2, then
we can repeat more or less the same arguments as in Case 1. So we suppose it has a triangle.
Thenv1v2 is anedgeof this triangle. LetG′

i = Gi∪{ui, uiv1, uiv2}, i = 1,2,whereui, i =
1,2 are new vertices added toGi having neighboursv1 andv2.The graphG′

i is triangle-free
for i = 1,2 and has a good pair of bonds, sayB ′

i1 andB
′
i2. If B

′
ij , j ∈ {1,2} contain no edges

incident toui , then they are seen to be a good pair of bonds inG.Wemay assume thatB ′
11

andB ′
12 contain edges incident tou1.Wesupposewithout loss of generality thatu1v1 ∈ B11

andu1v2 ∈ B ′
12. LetB

′
ij = [P ′

1j, Q′
1j], i, j = 1,2.We can assume that at least one ofB ′

21
orB ′

22 contains an edge incident tou2. Suppose without loss of generality thatB ′
21 contains

u2v1.We may assume thatv1 ∈ P ′
11 (andu1, v2 ∈ Q′

11), v2 ∈ P ′
12 (andu1, v1 ∈ Q′

12), and
v1 ∈ P ′

21 (andu2, v2 ∈ Q′
21). The setA1 = [(Q′

12∪ P ′
21)\{u1, u2}, (P ′

12∪ Q′
21)\{u1, u2}]

is seen to be a good bond inG.Similarly, if B ′
22 containsu2v2, then, assumingv2 ∈ P22, the
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setA2 = [(P ′
11∪ Q′

22)\{u1, u2}, (Q′
11∪ P ′

22)\{u1, u2}] is a good bond ofG.We conclude
that regardless of whetherB ′

22 containsu2v2 or not,Gwill have a good pair of bonds. This
concludes Case 2.
The proof of the claim follows from Cases 1 and 2.�

4. Good separations

A separation(or separating set) of a graphG is a set of verticesS ⊂ V (G) such that
G\S has more components thanG.A separation withk vertices is called ak-separation.We
say that two subgraphsG1 andG2 are separated by a separationSif E(G1) ∩ E(G2) = ∅,

V (G1)∩V (G2) ⊆ S, V (Gi)\S �= ∅, i = 1,2, and any path from a vertex ofG1 to a vertex
of G2 must contain a vertex ofS. Extending this, we say thatk subgraphsG1, . . . , Gk are
separated by a separating setS if any pair of subgraphsGi, Gj , i �= j is separated byS.

We call a separating set{v1, v2, v3} which separates two subgraphsG1 andG2 a good
separationif G = G1 ∪ G2, V (G1) ∩ V (G2) = {v1, v2, v3}, and it satisfies an additional
three properties:

(i) G1 ∪ {v1v2, v2v3, v1v3} is planar and has a plane representation where the triangle
v1v2v3 bounds a 3-face.

(ii) |V (hom(G|G1))\{v1, v2, v3}|�2.
(iii) There is no good bond ofG contained inG1.

Our principle aim in this section is to show thatG has good separations. We shall use a
variation of Wagners theorem which can be found in[9].

4.1 Theorem. Let G be a3-connected non-planar graph without aK5-minor and which is
not isomorphic toK3,3 or G8. Assume G to have a designated triangle T or edgee. Then G
is a�-sumG1 ⊕� G2 whereG2 contains T ore, whichever applies, andG1 is planar.

Our aim is to show thatGhas a good separation. To this end, we shall need the following
lemma:

4.2 Lemma. Let G be a3-connected non-planar graph without aK5-minor, and which is
not isomorphic toG8. Then there exists a3-separating set{v1, v2, v3} which separates three
subgraphsG1, G2, G3whereG = G1∪G2∪G3, V (G1)∩V (G2)∩V (G3) = {v1, v2, v3},
andGi ∪ {v1v2, v2v3, v1v3} is planar fori = 1,2.

Proof. By induction on|E(G)|. Suppose thatG is a 3-connected, non-planar graph which
is not isomorphic toG8 and which has noK5-minor. If G is isomorphic toK3,3, then the
lemma is is seen to be true. We shall therefore assume thatG is not isomorphic toK3,3. In
addition, we assume that the lemma holds for any graph having fewer edges thanGwhich
satisfies the requirements of the lemma. By Theorem 4.1,G can be expressed as a�-sum
G1 ⊕� G2 whereG1 is planar. IfG2 is planar, thenG would be planar since a�-sum of
two planar graphs is also planar. ThusG2 is non-planar, and moreover it is 3-connected and
contains noK5-minor.Also,G2 is not isomorphic toK3,3 orG8 since it contains the triangle
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v1v2v3. The graphG2 has less edges thanG since by the definition of�-sum,|E(G1)|�7,
and hence

|E(G2)| = |E(G)| − |E(G1)| + 6< |E(G)|.

Consequently, by the inductive assumption, the lemma holds forG2, and it contains a 3-
separating set{u1, u2, u3}which separates three subgraphsG21, G22, andG23whereG21∪
G22∪G23 = G2, V (G21)∩V (G22)∩V (G23) = {u1, u2, u3},andG2j ∪{u1u2, u2u3, u1u3}
is planar forj = 1,2. We have that{v1, v2, v3} ⊂ V (G2j ), for somej. If this holds for
j = 1 or j = 2, thenG1 ⊕� G2j is planar. The set{u1, u2, u3} is seen to be the desired
3-separation ofG. The proof of the lemma now follows by induction.�

Claim 5. G has a good separation{v1, v2, v3}.

Proof. By Lemma4.2, there exists a 3-separating set{v1, v2, v3}which separates three sub-
graphsG1, G2, G3 whereV (G1) ∩ V (G2) ∩ V (G3) = {v1, v2, v3}, andGi ∪ {v1v2, v2v3,

v1v3} is planar fori = 1,2.We suppose that|V (hom(G|Gi))\{v1, v2, v3}| = 1 for i = 1,2
and letV (hom(G|Gi))\{v1, v2, v3} = {ui}, i = 1,2. Sincehom(G) is 3-connected, there
exists three threadsTi1, Ti2, Ti3 from ui to v1, v2, v3, respectively, which meet only atui .
Suppose|T11| + |T12| + |T13|� |T21| + |T22| + |T23|. LetG′ = G\(V (G2)\{v1, v2, v3}).
The graphG′ is 2-connected and contains a good pair of bonds which can easily be ex-
tended to a good pair of bonds ofG. We conclude that for somei ∈ {1,2} we have
|V (hom(G|Gi))\{v1, v2, v3}|�2.Wemay assume that this holds fori = 1. Suppose there
is a good bondBofG contained inG1. Then neitherG2 norG3 contains a good bond ofG.

If |V (hom(G|G2)\{v1, v2, v3}|�2, thenG2 can play the role ofG1 as in the definition of a
goodseparationandwearedone.Wesuppose therefore that|V (hom(G|G2)\{v1, v2, v3}| =
1. Then, using the same arguments as before, we have|V (hom(G|G3))\{v1, v2, v3}|�2.
If G3 is planar, thenG3 can play the role ofG1 as in the definition of a good separation
and we are done. We suppose therefore thatG3 is non-planar. Then it has a 3-separating
set{w1, w2, w3} similar to{v1, v2, v3} which separates 3 subgraphsH1, H2, H3 whereH1
andH2 are planar, and|V (hom(G|H1))\{w1, w2, w3}|�2. If there is a good bondC of G
whereC is contained inH1, thenBandCwould be a good pair of bonds. ThusH1 contains
no good bonds, and{w1, w2, w3} would be the desired separating set.�

4.1. The type of a good separation

Suppose{v1, v2, v3} is a good separation ofG. Suppose that inG1 for eachi �= j we
havedistG1(vi, vj ) = 1 ordistG1(vi, vj )�3. LetG′

1 = G1 ∪ {v1v2, v2v3, v1v3}. ThenG′
1

is a 2-connected planar graph with one triangle namelyv1v2v3. By Theorem 2.2,G′
1 has a

good bondB ′ which contains no edges of this triangle. ThusB ′ is also good inG, and this
contradicts the choice ofG1. Hence in a good separation{v1, v2, v3} it holds for at least
one pair of verticesvi, vj thatdistG1(vi, vj ) = 2.
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We say that a good separation{v1, v2, v3} is of typek, k ∈ {1,2,3} if there are exactly
k pairs of verticesvi, vj , i �= j wheredistG(vi, vj ) = 2. SinceG contains no trian-
gles, if distG1(vi, vj ) = 2, thendistG2(vi, vj )�2 (similarly, if distG2(vi, vj ) = 2, then
distG1(vi, vj )�2).

4.2. The graphsG′
1 andG′

2

We shall define a graphG′
1 obtained fromG1 in the following way: For every pair of

verticesvi, vj i �= j if distG1(vi, vj ) = 2, then provided there is no vertex of degree 2 in
G1 with neighboursvi andvj , we shall add such a vertex toG1 and label itw1ij . If such a
vertex already exists inG1, then we give it the same labelw1

ij . If distG1(vi, vj ) �= 2, then
provided there is no edge betweenvi andvj in G1, we shall add such an edge toG1.

We define a graphG′
2 from G2 in a corresponding way(with analogous verticesw2ij )

with one additional requirement. If{v1, v2, v3} is a separation of type 3, then providedG2
does not have a vertex of degree 3 withv1, v2, v3 as its neighbours, we shall add such a
vertex and label itw2. If such a vertex already exists inG2, then we shall give it the same
labelw2.
By Claim2,G1 andG2 cannot both have vertices of degree 2 with common neighbours

vi, vj . If such a vertex exists inG1 orG2, then we label it bywij in G. The three different
possibilities forG′

1 andG′
2 are depicted in Fig.3.

Given{v1, v2, v3} is a good separation, we may assume throughout thatG′
1 has a plane

representation wherev1, v2, v3 belong to a face which we denote byF.We have that|F | =
4,5, or 6 depending on whether the separation has type 1,2, or 3.We letK denote the cycle
which boundsF. For all i �= j , let Fij denote the face ofG′

i containingvi andvj (where
Fij �= F ), and letK ij denote the cycle which boundsFij .We denote the dual ofG′

1 byH
′
1

and we letu be the vertex ofH ′
1 corresponding to the faceF inG′

1. The vertexuhas exactly
three neighbours which we denote byu1,u2, andu3. For each vertexv ∈ V (G′

1) we let
�(v) denote the face inH ′

1 corresponding tov. For i = 1,2,3 we let�i = �(vi).

4.3. Wishbones and minimal good separations

A wishboneis a graph consisting of a vertex joined to three other vertices by disjoint
threads, where at least one of the threads has length 2.

Claim 6. Let {v1, v2, v3} be a good separation. ThenG1 does not contain an induced
subgraph which is a wishbone.

Proof. Suppose thatG1 contains awishboneTasan inducedsubgraph.Weshall assume that
T consists of a vertexa joined to verticesa1, a2, a3 by threadsT1, T2, andT3, respectively.
If for somei �= j we have|Ti |�2 and|Tj |�2, then lettingS = V (T )\{a1, a2, a3} one sees
thatB = [S, S] is a good bond ofG. This gives a contradiction, as{v1, v2, v3} is a good
separation and henceG1 contains no good bonds ofG.Thus|Ti |�2 for atmost one value of
i, and we can assume without loss of generality that|T1|�2 and|T2| = |T3| = 1. By Claim
1,wehave thatGhasno threadsof length 3or longer, andas such|T1| = 2.LetT1 = aba1. If
a2 anda3 are not joined by a thread of length 2, thenB = [{a, b}, {a, b}] is a good bond ofG
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Fig. 3. The graphsG′
1 andG′

2 as defined forG of type 1,2, or 3.

which is contained inG1. Again, this yields a contradiction. Thus there is a thread of length
2 betweena2 anda3. LetG′ = G\{a, b}.We have thatG′ is 2-connected and therefore has
a good pair of bonds, sayB ′

1 andB ′
2. LetB

′
i = [X′

i , V (G′)\X′
i], i = 1,2. For i = 1,2 we

can assume that|X′
i ∩ {a1, a2, a3}|�1.We have that〈a2〉B ′

i
�= 〈a3〉B ′

i
, i = 1,2 asa2 and

a3 are joined by a thread. Thus ifa1, a2, a3 /∈ X′
i , thenB

′
i is a good bond ofG. Suppose for

i = 1,2,3 it holds thatai /∈ X′
1 ∩ X′

2. Then the bondsB
′
i , i = 1,2 can easily be modified

to yield a good pair of bonds ofG. We therefore suppose that for somei ∈ {1,2,3} that
ai ∈ X′

1∩X′
2. If a1 ∈ X′

1∩X′
2, then[X′

1, V (G)\X′
1] and[X′

2∪{b}, V (G)\(X′
1∪{b})] are a

good pair of bonds. Suppose thata2 ∈ X′
1∩X′

2 ora3 ∈ X′
1∩X′

2. Then[X′
1, V (G)\X′

1] and[X′
2∪ {b}, V (G)\(X′

2∪ {b})] are a good pair of bonds ofG.We conclude thatG1 contains
no induced subgraph which is a wishbone.�
We say that a good separation{v1, v2, v3} isminimalif there is no other good separation

contained inV (G1).
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Claim 7. Let {v1, v2, v3} be a minimal good separation ofG. Then fori = 1,2,3 the
vertexvi has at least2 neighbours inV (hom(G|G1))\{v1, v2, v3}.

Proof. Suppose the claim is false and assume without loss of generality thatv1 only
has one neighbour inV (hom(G|G1))\{v1, v2, v3}. We may assume thatv1 is joined by a
threadT to a vertexa wheredG1(a)�3. Since{v1, v2, v3} is a good separation, we have
|V (hom(G|G1))\{v1, v2, v3}|�2. If |V (hom(G|G1))\{v1, v2, v3}| > 2, then{a, v2, v3}
would be a good separation ofG, contradicting the fact that{v1, v2, v3} is minimal. Thus
hom(G|G1)hasexactly five verticesv1, v2, v3, a,andanadditional vertexb.Sincehom(G)

is 3-connected,b is joined by three disjoint threadsT1, T2, T3 to a, v2, andv3 respectively.
By Claim6,G1 has no induced subgraph which is a wishbone. Thus|Ti | = 1, i = 1,2,3
andba, bv2, bv3 ∈ E(G). SincedG1(a)�3, we have thata is joined to at least one of
v2 or v3 by a threadT. If |T | = 1, thenG1 contains a triangle. Consequently,|T | = 2.
If a is not joined to bothv2 andv3 by threads, thenG1 would have an induced subgraph
containingT which is a wishbone. Thusa is joined to bothv2 andv3 by threads of length
2. LetS = V (G1)\{v1, v2, v3, b}. Then[S, S] is seen to be a good bond contained inG1.

This contradicts the fact that{v1, v2, v3, } is a good separation. We conclude thatv1 has at
least 2 neighbours inV (G′

1\K), and the same applies tov2 andv3. �

5. G1-good bonds andH1-good cycles

Suppose{v1, v2, v3} is a good separation. ThenG1 contains no good bonds ofG. This
means thatG′

1 has no good bondB = [X, V (G′
1)\X] such thatX ⊂ V (G′

1)\V (K). In the
dualH ′

1, this means thatH
′
1 has no good cycle which does not containu.We say that a good

bondB ′ = [X, Y ] in G′
1 is G1-good if X\V (K) �= ∅, andY\V (K) �= ∅. A cycle inH ′

1
corresponding to aG1-good bond is called aH1-goodcycle. That is, a good cycleC′ inH ′

1
isH1-good if both its interior and exterior contain faces�(v) wherev ∈ V (G′

1)\V (K).

According to Lemmas 2.3–2.5, we can find a decomposition ofH ′
1 into two or more good

cycles and at most one removable path (between vertices of degree 5).We have exactly four
possibilities:

(a) A decomposition into two good cycles (dH ′
1
(u) = 4).

(b) A decomposition into two good cycles and a removable path (dH ′
1
(u) = 5).

(c) A decomposition into three good cycles (dH ′
1
(u) = 6).

(d) A decomposition into three good cycles and a removable path (dH ′
1
(u) = 6).

If all the cycles in the decomposition areH1-good, then we say that the decomposition is
H1-good.

5.1. Swapping cycles

SupposeC′
1 andC

′
2 are two edge-disjoint cycles inH

′
1 which containu.Supposew, w′ ∈

V (C′
1) ∩ V (C′

2) wherew, w′ �= u. For i = 1,2 we letC′
i[ww′] denote the path inC′

i\{u}
betweenwandw′, and letC′

i[wuw′] denote the path inC′
i betweenwandw

′ which contains
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u. If C′
i[ww′], i = 1,2 contain no vertices ofV (C′

1) ∩ V (C′
2) other thanw andw

′, we can
define two new cycles

C′′
1 = C′

1[wuw′] ∪ C′
2[ww′], C′′

2 = C′
2[wuw′] ∪ C′

1[ww′].
We callC′′

i , i = 1,2 the cycles obtained byswappingC′
1 andC′

2 betweenw andw′.
We can also define a swap between a cycle and a path. LetC be a cycle ofH ′

1 containing
u and letP be a path inH ′

1 with terminal verticesw0 andwt which is edge-disjoint from
C. Supposew, w′ ∈ V (C) ∩ V (P ) andC[ww′] andP [ww′] contain no vertices ofP apart
fromw andw′.We can define a new cycleC′ and pathP ′. Assumingw occurs first while
travelling fromw0 towt alongP, we let

C′ = C[wuw′] ∪ P [ww′], P ′ = P [w0w] ∪ C[ww′] ∪ P [w′wt ].

5.1 Lemma. If {v1, v2, v3} is a minimal good separation, then there exists aH1-good
decomposition ofH ′

1.

Proof. We suppose that{v1, v2, v3} is a minimal good separation. Then there is a decom-
positionD of H ′

1 as specified by one of (a)–(d). We may assume thatD is maximal in the
sense that one cannot replace any members ofD so as to obtain a decomposition with a
greater number ofH1-good cycles. We suppose thatD is notH1-good. LetC′

1 ∈ D be a
cycle which is notH1-good. We can assume that the interior ofC′

1 contains no faces�(v),

wherev ∈ V (G′
1)\V (K).Wemay also assume that the interior also contains exactly one of

the faces�i , i ∈ {1,2,3} say�1. By Claim7, the vertexv1 has at least two neighbours in
V (hom(G|G1))\{v1, v2, v3}. ThusC′

1 contains a vertexw �= u, u1, u2, u3 and two edges
e′, e′′ ∈ E(C′

1) incident withwwheree′ ∈ �(v′
1) ande

′′ ∈ �(v′′
1), the verticesv

′
1, v′′

1 being
neighbours ofv1 in V (G′

1)\V (K). We have thatdH ′
1
(w)�4, and thus there is a path or

cycle ofD\{C′
1} which containsw.

We suppose there is a cycleC′
2 ∈ D\{C′

1} which containsw. We observe that faces
�(v′

1), and�(v′′
1) both belong to the interior ofC

′
2 or both belong to the exterior. Since

u ∈ V (C′
1)∩V (C′

2), at least one ofu
′s neighboursu1, u2, oru3 belongs to bothC′

1 andC
′
2.

This means that we can find a vertexw′ ∈ V (C′
1)∩V (C′

2)\{w, u}whereC′
2[ww′] contains

no vertices ofC′
1 other thanw andw

′.We perform a swap onC′
1 andC

′
2 betweenw andw

′
yielding two cyclesC′′

1 andC′′
2 where

C′′
1 = C′

1[wuw′] ∪ C′
2[ww′], C′′

2 = C′
2[wuw′] ∪ C′

1[ww′]
(see Fig.4). The cycleC′

12 = C′
1[ww′] ∪ C′

2[ww′] contains exactly one of the faces
�(v′

1), �(v′′
1) in its interior (and hence exactly one in its exterior). ThusC′′

1 contains
exactly one of these faces in its interior, and one in its exterior. The same also applies to
C′′
2 .We shall show thatC

′′
1 andC′′

2 areH1-good. To show this, it suffices to show that they
are removable. LetH ′′

1 = H ′
1\E(C′′

1), and letv ∈ V (H ′′
1 ) be an arbitrary vertex where

dH ′′
1
(v)�3. LetD′ = (D\{C′

1, C′
2}) ∪ {C′′

1, C′′
2}.We note thatD′ contains at most one path

sinceD contains at most one path. Thus there is a cycleC′ ∈ D′\{C′′
1} containingv, since

dH ′′
1
(v)�3.We have thatu, v ∈ V (C′) and consequentlyu andv belong to the same block

ofH ′′
1 . If H ′′

1 has no verticesv wheredH ′′
1
(v)�3, thenH ′′

1 consists of a cycle plus possibly
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Fig. 4. SwappingC′
1 andC′

2.

some isolated vertices. In either case,H ′′
1 consists of one non-trivial block plus possibly

some isolated vertices. This shows thatC′′
1 is removable inH

′
1, and the same applies to

C′′
2 .We conclude that bothC

′′
1 andC

′′
2 areH1-good. However, this means thatD′ has more

H1-good cycles thanD, contradicting the maximality ofD.

From the above, we deduce thatD\{C′
1} contains no cycles which containw. ThusD

contains a pathP ′ which containsw. If C′
1 contains a vertex ofP

′ other thanw or u, then
we could swapC′

1 andP ′ between two vertices so as to obtain anH1-good cycleC′′
1 and a

removable pathP ′′. Then(D\{C′
1, P ′}) ∪ {C′′

1, P ′′} would have moreH1-good cycles than
D, contradicting the maximality ofD. ThusC′

1 contains no such vertex, and in particular
this means thatC′

1 cannot contain both of the terminal verticesw0, wt of P ′. In particular,
this means thatw0, wt �= w. However, since both terminal vertices have degree 5, there
is a cycle ofD\{P ′, C′

1}, sayC′
2, containing both of these vertices. LetP ′′ = C′

2[w0wt ].
ThenH ′′

1 = H ′
1\E(C′

1) ∪ E(P ′′) is 2-connected, has no vertices of degree 3, and has no
removable cycle which does not containu. Thus by Lemma 2.3,H ′′

1 is the union of two
good cycles, sayC′′

2, C′′
3 . BothC′′

2 andC
′′
3 containw0, wt , and at least one of them, sayC′′

2,
containsw. We can swapC′

1 andC′′
2 in H ′

1 to obtain twoH1-good cyclesC′′
1 andC′′′

2 . If
C′′
3 is notH1-good, then we can swapC′′′

2 andC′′
3 to obtain twoH1-good cycles. In either

case, we obtain aH1—good decomposition. �
For a path inH ′

1, we call the corresponding subgraph inG′
1 asemi-bond.A decomposition

ofG′
1 consisting of twoormore goodbondsandatmost one contractible semi-bond is said to

beG1-good if each of the bonds in the decomposition areG1-good. That is, a decomposition
of G′

1 isG1-good if and only if the corresponding decomposition ofH ′
1 is H1-good. The

previous lemma immediately implies that we can findG1-good decompositions inG′
1.

5.2 Lemma. If {v1, v2, v3} is a minimal good separation, then there exists aG1-good
decomposition ofG′

1.

We shall need a slight refinement of the previous lemma.
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5.3 Lemma. Suppose|K| = 6 and |K23| = 5 whereK23 = v2xyv3w
1
23v2. Then one can

choose aG1-good decomposition consisting of bondsB ′
1i , i = 1,2,3 and semi-bond S so

that yv3 /∈ S.

Proof. Suppose|K| = 6 and|K23| = 5. Lete ∈ E(H ′
1) be the edge inH

′
1 corresponding to

yv3. We can find a decompositionD of H ′
1 consisting of three good cyclesC

′
i , i = 1,2,3

and a removable pathP ′ wheree /∈ E(P ′).We chooseD to have as manyH1-good cycles
as possible subject toe /∈ E(P ′). We can now swap cycles and paths in the same way as
was done in the proof of Lemma 5.1 to obtain the desiredH1-good decomposition. �

6. Cross-bonds

For a good separation{v1, v2, v3}, we call a bondB of G a cross-bondif eitherB is a
good bond ofG′

i for i = 1 or 2, orB ⊆ B ′
1∪B ′

2 whereB
′
i is a good bond ofG

′
i for i = 1,2.

A block of a graph is maximal connected subgraph which has no cut-vertex (separating
vertex). Every graph has a uniqueblock decomposition, where any two blocks share at most
one vertex.

Claim 8. Let {v1, v2, v3} be a minimal good separation of G and let B be a cross-bond
of G.

(i) If 〈v1〉B, 〈v2〉B, and〈v3〉B all belong to one block ofG/B, thenG/B is itself a block,
and B is a good bond ofG.

(ii) If no block ofG/B contains all of〈v1〉B, 〈v2〉B, and 〈v3〉B , then G/B consists of
exactly two blocks which meet at a cut-vertex ofG/B which is one of〈v1〉B, 〈v2〉B, or
〈v3〉B.

(iii) If 〈vi〉B = 〈vj 〉B for somei �= j, thenG/B is itself a block, and B is a good bond
of G.

Proof. Let B be a cross-bond. IfB is a good bond ofG′
i for somei, thenB is seen to be

good inG and (i)–(iii) hold in this case. We suppose therefore thatB ⊆ B ′
1 ∪ B ′

2 whereB
′
i

is a good bond ofG′
i for i = 1,2.We letBi = B ′

i ∩ E(Gi), i = 1,2.
We showed in Section4 thatdistG1(vi, vj ) = 2, for somei �= j . We can assume without

loss of generality thatdistG1(v1, v3) = 2 andwi
13 ∈ V (G′

i ), i = 1,2. Now sinceB ′
i is

contractible inG′
i , it holds that〈v3〉B ′

i
�= 〈v1〉B ′

i
(sincewi

13 ∈ V (G′
i )). Thus〈v3〉Bi

�=
〈v1〉Bi

and not all the verticesvi, i = 1,2,3 contract into a single vertex inG/Bi. This
also implies that〈v1〉B∩B1 �= 〈v3〉B∩B1.

We shall first show thatG/B contains no loops. Suppose thate = xy ∈ E(G1)\B

contracts into a loop〈e〉B in G/B. Then 〈X〉B = 〈y〉B and there is a pathP ⊆ G(B)

betweenx andy. If P ⊆ G1, then〈X〉B ′
1

= 〈y〉B ′
2
, and consequently〈e〉B ′

1
would be a loop

of G/B ′
1, a contradiction sinceB

′
1 is good. ThusP�G1 and a portion ofP, say pathQ, is

contained inG2. The pathQ has terminal verticesvi andvj for somei �= j. P is the union
of three paths:P = P1 ∪ P2 ∪ Q where we may assume thatP1 has terminal verticesx
andvi andP2 has terminal verticesy andvj . SinceQ ⊆ G2, it holds that〈vi〉B ′

2
= 〈vj 〉B ′

2
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and hencew2
ij /∈ V (G′

2). By the construction ofG
′
2, it follows thatvivj ∈ E(G′

2), and
hencevivj ∈ B ′

2 sinceB ′
2 is good (otherwise, edgevivj becomes a loop inG′

2/B ′
2).

Consequently,vivj ∈ B ′
1, andP1 ∪ P2 ∪ {vivj } is a path inG′

1(B
′
1) betweenx andy. This

would mean that〈e〉B ′
1
is a loop inG′

1/B ′
1 yielding a contradiction (sinceB

′
1 is good). If

insteade ∈ E(G2)\B, then we obtain a contradiction with similar arguments. This shows
thatG/B contains no loops.
To show (i), suppose that〈vi〉B, i = 1,2,3 belong to the same block ofG/B sayX, and

suppose thatG/B has at least two blocks. ThenG/B has another blockYwhich is not a
loop and contains at most one of the vertices〈vi〉B, i = 1,2,3. Using the above, one can
show thatK is not a loop. ThenY contains a vertex〈a〉B where〈a〉B /∈ V (X). Suppose
that a ∈ V (G1). SinceG′

1/(B1 ∩ B) is 2-connected,〈a〉B1∩B, 〈v1〉B1∩B, and 〈v3〉B1∩B

belong to the same block ofG1/(B1 ∩ B). However, sinceY contains only at most one of
the vertices〈vi〉B, i = 1,2,3, it must hold that〈v1〉B = 〈v3〉B, yielding a contradiction.
We conclude thata /∈ V (G1)\{v1, v2, v3}, and in a similar fashion, one can show that
a /∈ V (G2)\{v1, v2, v3}. Thus no such vertexa exists, and hence no such blockY exists.
We conclude thatG/B is itself a block (hence 2-connected), and thusB is good.
The above argument also shows that each block ofG/B must contain at least two of the

vertices〈vi〉B, i = 1,2,3. Thus if 〈vi〉B = 〈vj 〉B for somei �= j, thenG/B has only one
block, itself, and henceB is good. This proves (iii).
If G/B has more than one block, then by the above argument it has exactly two blocks,

separated by a vertex which is one of the vertices〈vi〉B, i = 1,2,3. This proves (ii). �

Claim 9. Let {v1, v2, v3} be a good separation and let B be a cross-bond ofG. If for all
i �= j, 〈vi〉B �= 〈vj 〉B and there exists a path from〈vi〉B to 〈vj 〉B in (G/B)\〈vk〉B where
k �= i, j, then B is good.

Proof. Let B be a cross-bond, and suppose that∀i �= j, 〈vi〉B �= 〈vj 〉B and there exists
a path from〈vi〉B to 〈vj 〉B in (G/B)\〈vk〉B wherek �= i, j. This implies that none of
the vertices〈vi〉B, i = 1,2,3 are cut-vertices ofG/B. According to Claim8, Bmust be
good. �

7. Good separations of type 1

We suppose that{v1, v2, v3} is a minimal good separation which has type 1. We have
that distG1(vi, vj ) = 2 for somei �= j. We can assume without loss of generality that
distG1(v1, v3) = 2,wi

13 ∈ V (G′
i ), andv1v2, v2v3 ∈ E(G′

i ) for i = 1,2. This we assume
for the remainder of this section.

Claim 10. Given{v1, v2, v3} is a good separation of type1and B is a cross-bond,we have
that 〈v1〉B �= 〈v3〉B, and〈v1〉B and〈v3〉B belong to the same block ofG/B.

Proof. LetB be a cross-bond. We may assume thatB ⊆ B ′
1 ∪ B ′

2 whereB
′
i is contractible

in G′
i for i = 1,2. We have that〈v1〉B ′

i
�= 〈v3〉B ′

i
, i = 1,2, sinceB ′

i is contractible in
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G′
i . Thus〈v1〉Bi

�= 〈v3〉Bi
, i = 1,2, and consequently,〈v1〉B �= 〈v3〉B. The bondB ′

1
contains exactly 2 edges of the cyclev1v2v3w

′
13v1 and exactly one of the edgesv1w

′
13 or

v3w
′
13. As such, there is an edge inG1/(B ∩ B1) between〈v1〉B∩B1 and〈v3〉B∩B1. Since

G2 is connected there is a path inG2/(B ∩ B2) from 〈v1〉B∩B2 to 〈v3〉B∩B2. Thus there is a
cycle inG/B containing〈v1〉B and〈v3〉B. This implies that〈v1〉B and〈v3〉B belong to the
same block ofG/B. �

Claim 11. Given {v1, v2, v3} is a good separation of type1 and B is a cross-bond, if
v1v2 ∈ B or v2v3 ∈ B, then B is contractible.

Proof. If v1v2 ∈ B, then〈v1〉B = 〈v2〉B . ByClaim8,B is contractible.A similar conclusion
holds ifv2v3 ∈ B. �

Claim 12. Given{v1, v2, v3} is a good separation of type1and B is a cross-bond, if there is
a path from〈v1〉B to 〈v2〉B in (G/B)\〈v3〉B and a path from〈v2〉B to 〈v3〉B in (G/B)\〈v1〉B,

then B is good.

Proof. LetB be a cross-bond. Suppose that there is a path〈v1〉B to 〈v2〉B in (G/B)\〈v3〉B
and a path from〈v2〉B to 〈v3〉B in (G/B)\〈v1〉B . By Claim10, 〈v1〉B and〈v3〉B belong to
the same block ofG/B. Thus there is a path from〈v1〉B to 〈v3〉B in (G/B)\〈v2〉B . It now
follows by Claim9 thatB is good. �

7.1 Lemma. Let H be a2-connected planar graph with girth at least4. If E(H) is the
edge-disjoint of two bondsAi = [Xi, Yi], i = 1,2 then fori = 1,2 the induced subgraph
G(Ai) is a forest with two componentsG(X3−i ) andG(Y3−i ).

Proof. We assumeH has a plane embedding withf faces. Letε = |E(H)| and� = |V (H)|.
Given thatE(H) is the disjoint union of two bondsAi = [Xi, Yi] i = 1,2 we see that
Ai = E(G(X3−i ) ∪ G(Y3−i )) i = 1,2. For i = 1,2 we have thatG(Xi) andG(Yi) are
connected and thus|E(G(Xi) ∪ G(Yi))|�� − 2, i = 1,2. Thusε = |A1| + |A2|�2� − 4.
LetH ∗ be the geometric dual ofH. The bondsA1 andA2 correspond to two cyclesC1 and
C2 in H ∗ which partitionE(H ∗). Thus the maximum degree inH ∗ is at most 4. However,
since the girth ofH is at least 4, each face ofH is bounded by a cycle of length at least
4. Thus the minimum degree inH ∗ is at least 4. It follows thatH ∗ must be 4-regular.
Thusε = |E(H ∗)| = 2|V (H ∗)| = 2f. Using Eulers formula , we have� − ε + f = 2.
Substitutingf = ε

2 we obtainε = 2� − 4. Thus equality holds in the previous inequality,
and this occurs only if fori = 1,2, G(Ai) is a forest with two componentsG(X3−i ) and
G(Y3−i ). �

7.1. The bondsB ′
ij

Lemma 2.3 implies that the dualH ′
1 ofG

′
1 only has vertices of degree 2 or 4. This means

thatG′
1 only has faces of size 2 or 4. Since no multiple edges occur inG (by Claim2),
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all faces ofG′
1 have size 4. By Lemma 5.2,G

′
1 has aG1-good decomposition{B′

11,B
′
12}

where we may assume thatv1v2 ∈ B ′
11 andv2v3 ∈ B ′

12. Let B
′
1j = [P′

1j,Q
′
1j], j = 1,2

wherev1 ∈ P ′
11 (andv2, v3 ∈ Q′

11) andv3 ∈ P ′
12 (andv1, v2 ∈ Q′

12). Since the edges of
G′
1 are partitioned byB

′
11 andB

′
12 we have that forj = 1,2G′

1/B ′
1j is a multiple edge with

endvertices〈v1〉B ′
1j
and〈v3〉B ′

1j
. We note also that sinceG′

1 is planar, Lemma 7.1 implies

that each of the componentsG(P ′
1j) andG(Q′

1j), j = 1,2 are trees.
The graphG′

2 has a good pair of bondsB
′
21 = [P′

21,Q
′
21] andB′

22 = [P′
22,Q

′
22]. For

i, j = 1,2 let

Pij = P′
ij ∩ V(Gi ), Qij = Q′

ij ∩ V(Gi ), Bij = B′
ij ∩ E(Gi ).

7.2. Finding two good bonds

We shall show thatG contains a good pair of bonds. IfP ′
2j ⊆ V (G2)\{v1, v2, v3}, j =

1,2, thenB21 andB22 are seen to be a good pair of bonds inG. So we may assume without
loss of generality thatP ′

21∩{v1, v2, v3} �= ∅.We shall also assume thatP ′
22∩{v1, v2, v3} �=

∅. The case where the intersection is empty,B ′
22 is a good bond ofG, and this case is easier.

Wemay assume thatv1 ∈ P ′
21 (andv2, v3 ∈ Q′

21) andv3 ∈ P ′
22 (andv1, v2 ∈ Q′

22).We note
that since{B ′

11, B ′
12} is aG1-good decomposition, it holds thatP1j\V (K) �= ∅, j = 1,2.

By Lemma 7.1 we have thatG′
1(Q

′
1j) is a tree forj = 1,2 (sinceG′

1 is planar). So for

j = 1,2; G(Q1j)\{v2v5−2j } is a forest with 2 components. LetQ2
1j andQ

5−2j
1j be sets of

vertices of these components wherev2 ∈ Q2
1j andv5−2j ∈ Q

5−2j
1j , j = 1,2. We define

two cutsets

C21 = [P21∪Q112,P21∪Q112]

and

C22 = [P22∪Q311,P22∪Q311].

Claim 13. If P21 �= {v1}, then the cutsetC21 is a good bond inG.

Proof. SupposeP21 �= {v1}.Wewill first show thatC21 is non-trivial. ClearlyP21∪Q′
12 �=

{v1}, andG(P21 ∪ Q′
12) is connected. To show thatG(P21∪ Q′

12) is connected, we note

thatQ2
12∪P12 ⊆ P21∪ Q′

12, and hence it suffices to show thatG(Q2
12∪P12) is connected.

Let v′
2 ∈ NG1(v2)\{v1, v3}. Thenv′

2 ∈ Q2
12 ∪ P12. If v′

12 ∈ Q2
12, then〈v′

2〉B ′
12

= 〈v1〉B ′
12

,

and consequentlyv′
2 is adjacent to at least one vertex ofP12, implying thatG(Q2

12∪ P12)

is connected. Ifv′
2 ∈ P12, then it is clear thatG(Q2

12 ∪ P12) is connected. This shows

thatG(P21∪ Q′
12) is connected, andC21 is a non-trivial bond. It is also a cross-bond since

C21 ⊆ B ′
12∪ B ′

21.We will now show thatC21 is good inG.

If v1v2 ∈ E(G), thenv1v2 ∈ C21 and hence by Claim11C21 would be good. We may
therefore assume thatv1v2 /∈ E(G). To show thatC21 is good, Claim12 implies that it
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suffices to show that there is a path from〈v1〉C21 to 〈v2〉C21 in (G/C21)\〈v3〉C21 and a path
from 〈v2〉C21 to 〈v3〉C21 in (G/C21)\〈v1〉C21.
We shall first show that there is a path from〈v1〉C21 to 〈v2〉C21 in (G/C21)\〈v3〉C21. Let

v′
2 ∈ NG1(v2)\{v1, v2}. It holds thatv′

2 ∈ Q2
12 ∪ P12. Suppose first thatv′

2 ∈ Q2
12. Then〈v′

2〉B ′
12

= 〈v1〉B ′
12
, and hence there is a path from〈v′

2〉C21 to 〈v1〉C21 in (G/C21)\〈v3〉C21.
Suppose now thatv′

2 ∈ P21.Thenv2v′
2 ∈ B12, and hencev′

2 ∈ Q11.Wehave that〈v′
2〉B ′

11
=

〈v3〉B ′
11

, and consequentlyv′
2 is adjacent to at least one vertex ofP11, sayv′′

2.Then〈v′′
2〉B ′

12
=

〈v1〉B ′
12

, and thus〈v′′
2〉B12 = 〈v1〉B12. Consequently, there is a path from〈v′′

2〉C21 to 〈v1〉C21
in (G/C21)\〈v3〉C21. Since no edges ofC21 are incident withv′

2, it follows that〈v′
2〉C21 �=

〈v3〉C21. Thus we can find a path from〈v2〉C21 to 〈v1〉C21 in (G/C21)\〈v3〉C21 via 〈v′
2〉C21

and〈v′′
2〉C21. In both cases there is a path from〈v1〉C21 to 〈v2〉C21 in (G/C21)\〈v3〉C21.

We shall now show that there is a path from〈v2〉C21 to 〈v3〉C21 in (G/C21)\〈v1〉C21. Let
v′
2 ∈ NG2(v2)\{v1, v3}. Thenv′

2 ∈ P21∪Q21. Suppose first thatv′
2 ∈ Q21. Then〈v′

2〉B ′
21

�=
〈v1〉B ′

21
; for otherwise, the edgev2v′

2 would become a loop inG
′
2/B ′

21. If 〈v′
2〉B ′

21
= 〈v3〉B ′

21
,

then there is a path from〈v2〉C21 to 〈v3〉C21 in (G/C21)\〈v1〉C21. Otherwise, if〈v′
2〉B ′

21
�=

〈v3〉B ′
21

, then sinceG′
2/B ′

21 is 2-connected, there is a path from〈v′
2〉B ′

21
to 〈v3〉B ′

21
in

(G′
2/B ′

21)\〈v1〉B ′
21

. In this case there is a path from〈v2〉C21 to 〈v3〉C21 in (G/C21)\〈v1〉C21.
Suppose now thatv′

2 ∈ P21. If 〈v′
2〉B21 = 〈v1〉B21, then〈v2〉C21 = 〈v′

2〉C21 = 〈v1〉C21. In this
case, Claim8 implies thatC21 is good. We may therefore assume that〈v′

2〉B21 �= 〈v1〉B21.
SinceG2(P21) is connected, there isavertexv′′

2 ∈ NG2(v
′
2)∩P21.SinceG′

2 containsno trian-
gles, it holds thatv′′

2 �= v1.We also have that〈v′′
2〉B ′

21
�= 〈v′

2〉B ′
21

. Since〈v1〉B ′
21

= 〈v2〉B ′
21

=
〈v′
2〉B ′

21
, we have that〈v′′

2〉B ′
21

�= 〈v1〉B ′
21
. If 〈v′′

2〉B ′
21

= 〈v3〉B ′
21

, then〈v′′
2〉C21 = 〈v3〉C21, and

hence there is a path from〈v2〉C21 to 〈v3〉C21 in (G/C21)\〈v1〉C21. If 〈v′′
2〉B ′

21
�= 〈v3〉B ′

21
,

then sinceG′
2/B ′

21 is 2-connected, there is a path in(G
′
2/B ′

21)\〈v1〉B ′
21
from 〈v′′

2〉B ′
21
to

〈v3〉B ′
21

. Thus there would be a path from〈v2〉C21 to 〈v3〉C21 in (G/C21)\〈v1〉C21 (given that
〈v2〉C21 �= 〈v1〉C21). The proof of the claim now follows by Claim12. �
In the same way, one can show the following:

Claim 14. If P22 �= {v3}, thenC22 is a good bond inG.

LetB1 = [P11∪ P21,P11∪ P21], andB2 = [P12∪ P22,P12∪ P22].

Claim 15. If B1 is a bond which is not good in G, thenC21 and C22 are a good pair of
bonds inG.

Proof. We suppose thatB1 is a bond which is not good inG. The bondB1 is non-trivial
sinceP11\{v1} �= ∅, and it is also a cross-bond. According to Claims8 and10, G/B1
consists of two blocks where one block contains〈v1〉B1 and〈v3〉B1. If v1v2 ∈ E(G), then
v1v2 ∈ B1 andB1 would be contractible by Claim11. Sov1v2 /∈ E(G).SinceB1 is a bond,
G(Q11∪ Q21) is connected and consequently there is vertexv′

2 ∈ NG(v2) ∩ (Q11∪ Q21).

Since〈v2〉B ′
i1

= 〈v1〉B ′
i1

, i = 1,2wehave that〈v′
2〉B ′

i1
= 〈v3〉B ′

i1
, i = 1,2andconsequently

〈v′
2〉B1 = 〈v3〉B1.We deduce that there would be a path in(G/B1)\〈v1〉B1 from 〈v′

2〉B1 to〈v3〉B1. Now Claim8 implies that〈v2〉B1 and〈v3〉B1 belong to the same block ofG/B1.
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Arguing in a similar way withv1 in place ofv2, we also deduce that〈v1〉B1 and 〈v3〉B1
belong to the same block. Thus〈v3〉B1 is a cut-vertex ofG/B1 which separates〈v1〉B1 and
〈v2〉B1.
We wish to show thatP21 �= {v1}. Sincehom(G) is 3-connected,hom(G′

2) is 3-
connected, and there is a pathP from v2 to a vertex ofNG2(v1) which avoidsv1 and
v3.We have that〈v3〉B1 ∈ V (〈P 〉B1) as〈v3〉B1 is a cut-vertex inG/B1. So for some vertex
z ∈ V (P )wehave〈z〉B1 = 〈v3〉B1. If z ∈ P21, thenz �= v1 andhenceP21 �= {v1}.Sowecan
assume thatz /∈ P21. If z ∈ NG2(v1), thenzv1 ∈ B1 and hence〈v1〉B1 = 〈z〉B1 = 〈v3〉B1.
This gives a contradiction since〈v1〉B1 �= 〈v3〉B1. On the other hand, ifz /∈ NG2(v1), then
z is adjacent to some vertex inP21 since〈z〉B1 = 〈v3〉B1. This means thatP21 �= {v1}.
SinceP21 �= {v1}, Claim 13 implies thatC21 is a good bond. We now wish to show

thatC22 = [P22 ∪ Q3
11, P22∪ Q3

11] is a good bond. By Claim14, it suffices to show that
P22 �= {v3}. Sincehom(G′

2) is 3-connected, there is a path inG2\{v3} from v2 to v1.

Since〈v3〉B1 is a cut-vertex ofG/B1 separating〈v1〉B1 and〈v2〉B1, it follows that〈v3〉B1 ∈
V (〈P 〉B1). Thus there must be edges ofB21 incident withv3, and such edges belong to
G2(P22).Weconclude thatP22 �= {v3} and thusC22 is good. This completes the proof of the
claim. �
We have a similar result forB2, namely:

Claim 16. If B2 is a bond which is not good in G, thenC21 and C22 are a good pair of
bonds.

Claim 17. If B1 is not a bond, thenC21 is good.

Proof. SupposeB1 is not a bond. ThenG(Q11 ∪ Q21) consists of two components; one
containingv2 and the otherv3. Sincehom(G′

2) is 3-connected, there is a path inG2\{v1}
fromv2 tov3.Such a pathmust contain vertices ofP21\{v1} sinceG2(Q21) is disconnected.
This means thatP21 �= {v1}, and consequently,C21 is a good bond by Claim13. �
In a similar fashion, one can show:

Claim 18. If B2 is not a bond, thenC22 is good.

Claim 19. Given{v1, v2, v3} is a minimal good separation which is of type1,G has a pair
of good bonds.

Proof. By Claims15–18, if bothB1 andB2 are bonds, then eitherB1 andB2 are a good
pair of bonds, orC21 andC22 are a good pair of bonds. We can thus assume without loss
of generality thatB1 is not a bond and thus by Claim17, C21 is a good bond. IfB2 is not a
bond, then Claim18implies thatC22 is a good bond, in which caseC21 andC22 are a good
pair of bonds. We may thus assume thatB2 is a bond, andB2 is good (otherwise,C12 and
C22 are a good pair by Claims16and17). Moreover, we may assume thatP22 = {v3} for
otherwise,C22 is good by Claim14.
SinceB1 = [P11 ∪ P21, Q11 ∪ Q21] is not a bond,G(Q11 ∪ Q21) consists of two

components. We letQ2 andQ3 be the sets of vertices in the components containingv2
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andv3, respectively. SinceP22 = {v3} all edges incident withv3 in G2 belong toB22
and hence also toQ3. It follows thatNG2(v3) ⊆ Q3 and consequentlyQ3\{v3} �= ∅.
Now C = [Q3, Q3] is clearly a non-trivial bond which is also a subset ofB1 (and hence
is also a cross-bond). To show thatC is contractible, it suffices to show that there are
paths from〈v2〉C to 〈v1〉C in (G/C)\〈v3〉C and from〈v2〉C to 〈v3〉C in (G/C)\〈v1〉C. Let
v′
2 ∈ NG(v2)\{v1, v3}. If v′

2 ∈ Q11, then〈v′
2〉B11 = 〈v3〉B11. In this case, we can find a

path from〈v2〉C to 〈v3〉C in (G/C)\〈v1〉C. If v′
2 ∈ P11, thenv′

2 is adjacent to a vertex
v′′
2 ∈ P11, wherev′′

2 �= v1 (sinceG1(P11) is connected andG′
1 contains no triangles).

We have that〈v′
2〉B11 = 〈v2〉B11 and hence〈v′′

2〉B11 = 〈v3〉B11. In this case, we can also
find a path from〈v′′

2〉C to 〈v3〉C in (G/C)\〈v1〉C and hence there is a path from〈v2〉C to
〈v3〉C in (G/C)\〈v1〉C . To prove that there is a path from〈v2〉C to 〈v1〉C in (G/C)\〈v3〉C,

we first observe thathom(G′
2) is 3-connected, and thus there is a pathP from v2 to v1 in

G2\{v3, }. It follows that〈P 〉C does not contain〈v3〉C, since no edges ofB21 are incident
with v3 (asP22 = {v3}). Consequently,〈P 〉C contains a path from〈v2〉C to 〈v1〉C in
(G/C)\〈v3〉C. This shows thatC is good, and we conclude thatCandB2 are a good pair of
bonds. �

8. Good separations of type 3: part I

In this section, we shall assume that{v1, v2, v3} is a minimal good separation which has
type 3.G′

1 has a plane representation where the cycleK = v1w
1
12v2w

1
23v3w

1
13v1 bounds

the faceF. By Lemma 5.2, the graphG′
1 has aG1-good decomposition. There are two

possibilities: either the decomposition consists of threeG1-good bonds, or it consists of
threeG1-good bonds and a contractible semi-bond.We shall assume in this section that the
former holds; that is,G′

1 has anG1-good decomposition consisting of threeG1-good bonds
B′

1j = [P ′
1j, Q′

1j], j = 1,2,3 where fori = 1,2,3 we havevi ∈ P ′
1j if and only if i = j.

For j = 1,2,3 we letP1j = P ′
1j ∩ V (G1) andQ1j = Q′

1j ∩ V(G1). According to Lemma
2.5, we may assume that every face ofG′

1 is a 4-face apart from the 6-face bounded byK
and possibly one other 6-face. The graphG′

2 has a good pair of bonds which we denote
by B′

2j = [P′
2j ,Q′

2j ], j = 1,2.We letP2j = P′
2j ∩ V(G2) andQ2j = Q′

2j ∩ V(G2) for
j = 1,2.We can assume that|P ′

2j ∩ {v1, v2, v3}]�1, j = 1,2. Since{B1j : j = 1,2,3}
is aG1-good decomposition, we haveP1i\V (K) �= ∅, i = 1,2,3. We may assume that
for at least one of the bondsB ′

2j = [P ′
2j , Q′

2j ], j = 1,2 thatP ′
2j ∩ {v1, v2, v3} �= ∅. For

otherwise,B2j = B ′
2j , j = 1,2, would be a good pair of bonds ofG. We may assume

without loss of generality thatv1 ∈ P ′
21andv2, v3 ∈ Q′

21. LetB1 = [P11∪P21,Q11∪Q21].
The cutsetB1 is a non-trivial bond; to see this, we have thatdistG(v2, v3) = 2, and as

such there is a 2-pathv2zv3 fromv2 tov3. If z ∈ P11∪P21, then either〈v2〉B ′
11

= 〈v3〉B ′
11
or

〈v2〉B ′
21

= 〈v3〉B ′
21
, depending on whetherz ∈ P11 or z ∈ P21. However, neither the former

nor the latter can occur sinceB ′
11 andB

′
21 are good bonds inG

′
1 andG

′
2, respectively. Thus

z ∈ Q11 ∪ Q21, and this means thatG(Q11 ∪ Q21) is connected andB1 is a bond. The
bondB1 is non-trivial sinceP11\V (K) �= ∅. LetG′′

2 = G′
2\{w223}.We have thatG′′

2 is 2-
connected and therefore has a good pair of bondsB′′

21 = [P′′
21,Q

′′
21] andB′′

22 = [P′′
22,Q

′′
22].
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Let

Vi = {v ∈ V(G1) : 〈v〉B11 = 〈vi〉B11}, i = 1,2,3.

Claim 20. If B1 is not a good bond, then there is a good pair of bonds inG.

Proof. We suppose thatB1 is not good.B1 is a cross-bond sinceB1 ⊆ B ′
11∪ B ′

21. Clearly〈vi〉B1 �= 〈vj 〉B1, i �= j sinceB ′
11 is good inG′

1 andB ′
21 is good inG′

2. By Claim 8,
B1 would be good. Therefore, we can assume that〈v1〉B1 �= 〈v2〉B1, 〈v3〉B1.We have that
distG(v1, vj ) = 2, j = 1,2 and in factdG1(v1, vj ) = 2, j = 1,2 sincev1 and vj

belong to a 4-face inG′
1. Let v1xv2 be a path of length 2 fromv1 to v2 in G1. Then

B11 andB12 each contain one of the edgesv1x and xv2, and consequently〈v1〉B1 and
〈v2〉B1 are adjacent vertices inG/B1. Similarly, 〈v1〉B1 and〈v3〉B1 are adjacent vertices in
G/B1. SinceB1 is not good, Claim8 implies thatG/B1 consists of two blocks; a blockK ′

1
containing〈v1〉B1 and〈v2〉B1 and a blockK ′

2 containing〈v1〉B1 and〈v3〉B1. The set of edges〈B ′
12〉B ′

11
is a bond inG′

1/B ′
11. Thus〈B12〉B1 ⊆ E(K ′

1) or 〈B12〉B1 ⊆ E(K ′
2). Since〈B12〉B1

contains an edge between〈v1〉B1 and〈v2〉B1, it must hold that〈B12〉B1 ⊆ E(K ′
1). Similarly,〈B13〉B1 ⊆ E(K ′

2). SinceE(G′
1) = B ′

11 ∪ B ′
12 ∪ B ′

13, it holds thatG
′
1/(B ′

11 ∪ B ′
12) and

G′
1/(B ′

13 ∪ B ′
12) are multiple edges. Consequently,G/B11 consists of two multiple, one

between〈v1〉B11 and〈v2〉B11, and the other between〈v1〉B11 and〈v3〉B11, each representing
the portions ofK ′

1 andK
′
2 inG1/B11, respectively. In particular, this means that there is no

vertexw23 ∈ V (G); that is, a vertex inGhaving exactlyv2 andv3 as its neighbors. Consider
G′′
2. If P ′′

2i ∩{v1, v2, v3} = ∅, i = 1,2, thenB ′′
2i , i = 1,2 is seen to be a good pair of bonds

in G (sincew23 /∈ V (G)). We may therefore assume that|P ′′
21∩ {v1, v2, v3}| = 1. We shall

also assume that|P ′′
22 ∩ {v1, v2, v3}| = 1, as the easier case whenP ′′

22 ∩ {v1, v2, v3} = ∅
can be dealt with by similar arguments.
SinceG1/B11 consists of two multiple edges, it only has vertices〈vi〉B11, i = 1,2,3. If

v ∈ Q13, then〈v〉B11 �= 〈v3〉B11, sincev andv3 are separated by the edges ofB13 in G1.

Thusv /∈ V3 and hencev ∈ V1 ∪ V2. This means thatQ13 ⊆ V1 ∪ V2. On the other hand,
if v ∈ P13, then〈v〉B11 �= 〈v1〉B11, 〈v2〉B11. Thusv /∈ V1 ∪ V2, and hencev ∈ V3. Since
P13 ∪ Q13 = V1 ∪ V2 ∪ V3, it follows thatQ13 = V1 ∪ V3 andP13 = V3. By the same
token,Q12 = V1 ∪ V3, andP12 = V2.

Since the edges of〈B12〉B11 form a multiple edge between vertices〈v1〉B11 and〈v2〉B11, it
follows that every edge ofB12 has one endvertex inV1 and the other inV2. Similarly, every
edge ofB13 has one endvertex inV1 and the other inV3 (Fig. 5).

Case1: Supposev1 ∈ P ′′
21 ∩ P ′′

22. Sincev1 ∈ P ′′
21 ∩ P ′′

22, it must hold that fori = 1
or i = 2 thatw2 ∈ P ′′

2i (recall from the definition ofG′
2 thatw2 is a vertex inG

′
2 with

neighboursv1, v2, andv3).Wemay assume without loss of generality thatw2 ∈ P ′′
21. Since〈v1〉B1 is a cut-vertex ofG/B1, it is clear thatV1 �= {v1}. Let

C1 = [(P′
11∪ P′′

22) ∩ V(G), (P′
11∪ P′′

22) ∩ V(G)]
and

C2 = [(V1 ∪ P′′
21) ∩ V(G), (V1 ∪ P′′

21) ∩ V(G)].
We shall consider two subcases:
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Q
13

v1

v2

v3

V1

V2V3

P11

Q11

Fig. 5.

Case1.1: SupposeG(Q11) is connected.Wewish to show thatC1 andC2 is a good pair of
bonds ofG. SinceP11 �= {v1} andG(Q11) is connected (and henceG((P ′

11∪ P ′′
22) ∩ V (G))

is connected), we have thatC1 is a non-trivial bond. SinceB ′′
21 is a bond inG

′′
2, we have that

G′′
2(Q

′′
21) is connected and henceG2(Q

′′
21∩V (G)) is connected (becausew2, w2

23 /∈ Q′′
21).

ThusC2 is a bond, and it is non-trivial sinceV1 �= {v1}.
(i) C1 is good. We will now show thatC1 is good. If 〈v2〉C1 = 〈v3〉C1, thenC1 is

clearly contractible sinceG1/B11 consists of two multiple edges, one containing〈v1〉B11
and〈v2〉B11 and theother containing〈v1〉B11 and〈v3〉B11.Wesuppose therefore that〈v2〉C1 �=
〈v3〉C1. SinceB ′′

22 is good inG
′′
2, it follows thatG

′′
2\B ′′

2 is connected and there is a path in
(G′′

2/B ′′
22)\〈v1〉B ′′

22
from 〈v2〉B ′′

22
to 〈v3〉B ′′

22
.Thismeans that there is a path in(G/C1)\〈v1〉C1

from 〈v2〉C1 to 〈v3〉C1. ThusC1 is good, since〈vi〉C1, i = 1,2,3 are all seen to belong to
the same block.
(ii) C2 is good. We will now show thatC2 is good. Since all the edges ofB12 ∪ B13

are incident withV1, we haveC2 ∩ E(G1) = B12 ∪ B13. SinceG(Q11) is connected and
contains only edges ofB12∪B13, it follows thatG1/(B12∪B13) is a multiple edge between
〈v1〉B12∪B13 and〈v2〉B12∪B13.This together with the fact thatB

′′
21 is contractible inG2 (where

〈v2〉B ′′
21

= 〈v3〉B ′′
21
) implies thatC2 is contractible. This completes Case 1.1.

Case1.2: Suppose thatG(Q11) is not connected.
(i) C1 is good or there is a good pair of bonds. IfG(Q′′

22∩ V (G)) is connected, thenC1
is a non-trivial bond, and it can be shown to be contractible in the same way as in Case
1.1. If on the other handG(Q′′

22∩ V (G)) is not connected, then it has two components, say

Q
j
22, j = 2,3 wherevj ∈ Q

j
22, j = 2,3. ThenC

j
2 = [P1j ∪ Q

j
22, P1j ∪ Q

j
22], j = 2,3

is seen to be a pair of bonds inG. SincedistG1(v1, v3) = 2, there is a pathv1zv3 in G1.
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We have thatz /∈ P12; for otherwise,〈v1〉B ′
12

= 〈v2〉B ′
12
andG/B ′

12 would have a cut-vertex〈v1〉B ′
12

. If z ∈ P11, then〈z〉C22 �= 〈v2〉C22 , and hence there is a path from〈v1〉C22 to 〈v3〉C22
in (G/C22)\〈v2〉C22 .
Supposez ∈ Q11. If 〈z〉C22 = 〈v2〉C22 , then there is a pathP inG(C22) from z to v2. Since

P cannot crossB11, we have thatP ⊆ G(Q11).We see thatP ∪ zv3 is a path inG(Q11)

from v2 to v3.However,G(Q11) is assumed to be disconnected, and therefore no such path
exists. In this case, we conclude that ifz ∈ Q11, then 〈z〉C22 �= 〈v2〉C22 . Thus there is a
path from〈v1〉C22 to 〈v3〉C22 in (G/C22)\〈v2〉C22 . One sees thatC

2
2 is contractible, and the

same holds forC32. In this case, we have a good pair of bonds. Thus we may assume that
G(Q′′

22∩ V (G)) is connected andC1 is a good bond.
(ii) C2 is good. We have thatC2 is a non-trivial bond ofG (as in Case 1.1). If〈v2〉C2 =

〈v3〉C2, then, as inCase 1.1,C2 is contractible. Suppose instead that〈v2〉C2 �= 〈v3〉C2.Since
G(Q′′

22 ∩ V (G)) is assumed to be connected, it contains a pathP from v2 to v3. Since the
vertices ofQ′′

22∩V (G) are separated fromv1 by the edges of(B ′′
22∪B ′

11)∩E(G), any path
fromP to v1 must contain at least one edge from this set. SinceC2 contains no such edges,
we conclude that no path inG(C2) fromP to v1 can exist. Consequently,〈v1〉C2 /∈ 〈P 〉C2.
This means that〈P 〉C2 contains a path from〈v2〉C2 to 〈v3〉C2 in (G/C2)\〈v1〉C2. ThusC2
is good inG, andC1 andC2 is a good pair of bonds. This completes Case 1.2.

Case2: Supposev1 ∈ P ′′
21, andv2 ∈ P ′′

22. Let

C1 = [(P′
11∪ P′′

21) ∩ V(G), (P′
11∪ P′′

21) ∩ V(G)]

and

C2 = [(P′
12∪ P′′

22) ∩ V(G), (P′
12∪ P′′

22) ∩ V(G)].

We note first thatw2 /∈ P ′′
21 sincev2 ∈ P ′′

22 (and likewise,w2 /∈ P ′′
22. Similar to Case 1,

we can show that eitherC1 is a good bond, or we can find a good pair of bonds. We can
therefore assume thatC1 is a good bond, and it remains show thatC2 is a good bond.
Since the edges ofB13 are incident withV1 andV3, andP12 = V2, there is a path in

G1\P12 from v1 to v3. We conclude thatG1\P12 is connected, and henceC2 is a bond.
Moreover,C2 is non-trivial sinceP12 �= {v2}.We have thatC2 is a cross-bond, and〈vi〉C2 �=
〈vj 〉C2, i �= j . SincedistG(v1, v2) = distG(v2, v3) = 2, we have that〈v1〉C2〈v2〉C2 and
〈v2〉C2〈v3〉C2 are edges ofG/C2.

To show thatC2 is good, it suffices(by Claim9) to show that there is a path in(G/C2)\
〈v2〉C2 from 〈v1〉C2 to 〈v3〉C2 and sinceP13\V (K) �= ∅. SinceG1(P13) is connected and
contains only edges ofB11,(becauseP13 = V3) there is an edge inG1(P13) from v3 to a
vertexz ∈ P11. SinceG(P11) is connected, it contains a path fromz to v. Thus there is a
pathP from v1 to v3 inG(P13∪ P11). Since any path fromP to v inG1 must contain edges
of B11∪ B13 there is no path inG(C2) from P to v2. Thus〈v2〉C2 /∈ 〈P 〉C2, we have that
〈P 〉C2 contains the desired path from〈v1〉C2 to 〈v3〉C2. This completes Case 2.
By similar arguments, one may deal with the case wherev1 ∈ P ′′

21, andv3 ∈ P ′′
22. We

have one remaining case:
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Case3: Supposev2 ∈ P ′′
21, andv3 ∈ P ′′

22. Let

C2 = [(P′
12∪ P′′

21) ∩ V(G), (P′
12∪ P′′

21) ∩ V(G)]
C3 = [(P′

13∪ P′′
22) ∩ V(G), (P′

13∪ P′′
21) ∩ V(G)].

As in Case 2, we can show thatC2 is a good bond, and in the same way, we can show that
C3 is a good bond. ThusC2 andC3 is a good pair of bonds.
The proof of the claim follows from the consideration of Cases 1–3.�

Remark.Weobserve that in the proof of the above claim, for each good bondCconstructed,
we have that〈v1〉C �= 〈v2〉C, 〈v3〉C.

Claim 21. If {v1, v2, v3} is a minimal good separation which is of type3whereG′
1 is the

edge disjoint union of three good bonds, then G has a good pair of bonds.

Proof. From Claim20, we may assume thatB1 is a good bond. We may also assume
thatP ′

22 ∩ {v1, v2, v3} �= ∅, for otherwiseB22 = B ′
22 andB22 andB1 is a good pair of

bonds. We may assume without loss of generality thatv2 ∈ P ′
22 (andv1, v3 ∈ Q′

22). Let
B2 = [P12∪ P22,P12∪ P22]. Similar toB1, one can show thatB2 is non-trivial, and ifB2
is not good, thenG has a good pair of bonds. So eitherB1 andB2 are a good pair of bonds,
or we can find 2 other bonds which are a good pair.�

9. Good separations of type 3: part II

In this section, we shall assume that{v1, v2, v3} is a minimal good separation which is
of type 3 whereG′

1 has aG1-good decomposition consisting of threeG1-good bonds and
a contractible semi-bondS. According to Lemma 2.5, we can assume thatG′

1 has only
4-faces, with the exception of one 6-faceF (bounded byK) and two 5-faces. Let

G∗ = G/S, G∗
i = Gi/S, G′∗

i = G′
i/S, i = 1,2,

v∗
i = 〈vi〉S, i = 1,2,3.

Claim 22. SupposeB∗ is a contractible bond ofG∗. ThenB = > B∗ <S is seen to be a
bond of G. If B is non-contractible, then for somei �= j, 〈v∗

i 〉B∗ = 〈v∗
j 〉B∗ and fork = 1,2,

the graphG∗
k contains a pathP ∗

k ⊂ G∗(B∗) fromv∗
i tov∗

j . In particular,> P ∗
1 <S contains

a pathP1 ⊂ Kij of length three betweenvi andvj .

Proof. SupposeB∗ is a contractible bond ofG∗, and letB = > B∗ <S . ThenB is a
bond, and we suppose thatB is non-contractible. SinceS is a contractible semi-bond, we
have thatG\S is connected andG/S is 2-connected. Thus Lemma 2.6 implies thatG/B

contains loops(and is 2-connected apart from these loops). Such loops belong to〈S〉B since
G/B/S = G/S/B = G∗/B∗ is 2-connected. Thus there is an edgee = xy ∈ S and a
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pathP ⊆ G(B) from x to y. We shall choosee andP such that|P | is minimum. This
means thatP ∪ {e} is a cycle andC∗ = 〈P 〉S is a cycle containing〈X〉S = 〈y〉S. Suppose
C∗ ⊂ G∗

1. If the regions inside and outsideC
∗ contain vertices, then〈C∗〉B∗ is a cut-vertex

ofG∗/B∗ which contradicts the contractibility ofB∗ inG∗. ThusC∗ bounds a face ofG∗
1.

Lemma 2.7 implies that|E(C∗) ∩ B∗|�2. This means that|E(C∗)| = 2, asC∗ ⊆ B∗.
Thus|P | = 2 andP ∪ {e} is a triangle, contradicting the fact thatG is triangle-free. We
conclude thatC∗ �⊂ G∗

1. Thus for somei �= j, C∗ contains a pathP ∗
1 ⊂ G∗

1 from v∗
i to v∗

j

and a pathP ∗
2 ⊂ G∗

2 from v∗
i to v∗

j . Consider the cycleP ∗
1 ∪ {w1

ij , w1
ij v

∗
i , w1

ij v
∗
j }. Similar

to the previous arguments, one deduces that the cycle bounds a face ofG′∗
1 and|P ∗

1 |�2.
Thus> P ∗

1 <S contains a pathP1 of length at most 3 fromvi to vj andP1 ⊂ Kij . This path
contains exactly one edge ofS, namelye. ThusKij contains exactly one edge ofS(which is
e) and this means that|Kij | = 5, sinceScorresponds to a removable pathP in H ′

1 between
two vertices of degree 5. Consequently,|P1| = 3, and|P ∗

1 | = 2. �

Claim 23. Let B be a cross-bond of G not containing edges ofS. If B∗ = 〈B〉S is a
contractible bond ofG∗, then B is contractible inG.

Proof. Let B be a cross-bond ofG not containing edges ofSand letB∗ = 〈B〉S . Then
B∗ is a bond ofG∗. Suppose thatB∗ is a contractible bond ofG∗. If B is non-contractible
in G, then Claim22 implies thatG∗

2 contains a path with edges inB
∗ from v∗

i to v∗
j for

somei �= j. SinceG∗
2 contains no edges ofS, such a path has only edges inB. Thus

〈vi〉B = 〈vj 〉B for somei �= j. By Claim8 and consequently,B is contractible inG. �
The graphG′

1 has aG1-good decomposition consisting of three good bonds, denoted by
B′

1j = [P′
1j,Q

′
1j], j = 1,2,3, and a contractible semi-bondS. The graphG′

2 has a good
pair of bondsB′

2j = [P′
2j ,Q′

2j ], j = 1,2. For all i �= j let

Bij = B′
ij ∩ E(G), Pij = P′

ij ∩ V(G), Qij = Q′
ij ∩ V(G),

B′∗
ij = 〈B′

ij 〉S, P′∗
ij = 〈P′

ij 〉S, Q′∗
ij = 〈Q′

ij 〉S,

B∗
ij = 〈Bij 〉S, P∗

ij = 〈Pij 〉S, Q∗
ij = 〈Qij 〉S.

Since the decompositionB ′
ij , j = 1,2,3 andS is G1-good, we have thatP1j\V (K) �=

∅, j = 1,2,3.Wemay assume that for somej ∈ {1,2} it holds that|P ′
2j ∩{v1, v2, v3}|�1.

If P2j ∩ {v1, v2, v3} = ∅, j = 1,2, thenB ′
2j = B2j , j = 1,2 and these are a good pair

of bonds ofG. Consequently, we can assume thatP21 ∩ {v1, v2, v3} �= ∅, andv1 ∈ P21.

We shall also assume thatP22∩ {v1, v2, v3} �= ∅ as the case whereP22∩ {v1, v2, v3} = ∅
is easier and can be dealt with using the same arguments. We may assume without loss of
generality thatP22∩ {v1, v2, v3} = {v3}.
Let

V∗
i = {v∗ ∈ V(G∗

1) : 〈v∗〉B∗
11

= 〈v∗
i 〉B∗

11
}, Vi = > V∗

i <S, i = 1,2,3.
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For i = 1,2,3 letYi (resp.Y ′
i) be the vertices of the component inG1(B12 ∪ B13) (resp.

G′
1(B

′
12∪ B ′

13)) containingvi . Let

B1 = [P11∪ P21,Q11∪Q21] and B2 = [P13∪ P22,Q13∪Q22].
We shall first show that the bondsBi, i = 1,2 are cross-bonds ofG. We have that

|K23| = 4, or 5. If |K23| = 4, thenE(K23) ⊂ B12 ∪ B13. Otherwise, if|K23| = 5,
thenE(K23) ⊂ B12 ∪ B13 ∪ S. This means thatK23 contains no edges ofB ′

11 and hence
V (K23) ⊂ Q′

11.This implies thatG(Q11∪Q21) is connectedandB1 is a bond. Furthermore,
B1 is non-trivial sinceP11\V (K) �= ∅. HenceB1 is a cross-bond, and the same applies
toB2.

Claim 24. If |K12| = |K23| = 5, then G has a good pair of bonds.

Proof. Suppose that|K12| = |K23| = 5. LetG′′
1 be the graph obtained fromG

′
1 by deleting

w1
12 andw

1
23 and adding edgesv1v2 andv2v3.Note that there is no 2-pathv1wv2 inG′′

1, for
then{v1, w, v2} would be a good separation, contradicting the minimality of{v1, v2, v3}.
Similarly, there is no 2-path betweenv2 andv3 in G′′

1. ThusG
′′
1 is triangle-free.

As in Section7,G′′
1 has a good pair of bondsB

′′
1j = [P′′

1j,Q
′′
1j], j = 1,2 whereE(G′′

1) =
B11∪B ′′

12andv1 ∈ P ′′
11, v3 ∈ P ′′

12. LetDj = [(P′′
1j∪P2j )∩V(G), (P′′

1j ∪ P2j ) ∩ V(G)], j =
1,2. SincedistG(v2, v3) = 2, there is a 2-pathv2wv3 in G2. SinceB ′

21 is good inG′
2,

we havew /∈ P ′
21. Thusw ∈ Q′

21, andD1 is seen to be a non-trivial bond, in fact a
cross-bond. IfD1 is not good, then as was shown in the proof of Claim15, G/D1 would
consist of two blocks; one containing〈v1〉D1 and〈v2〉D1 and the other containing〈v2〉D1

and〈v3〉D1. However, sincedistG(v1, v2) = 2, there is an edge between〈v1〉D1 and〈v2〉D1

in G/D1. This would imply that〈v1〉D1, 〈v2〉D1, 〈v3〉D1 all belong to the same block in
G/D1—a contradiction. ThusD1 is good inG, and following similar reasoning,D2 is also
good. �

9.1. The case whereB1 is non-contractible

If |K23| = 5, then we may assume that|K12| = 4 (by Claim24). In this case, we shall
assume (as guaranteed by Lemma 5.3) that the bondsB ′

1i , i = 1,2,3 and semi-bondS
are chosen so thatyv3 /∈ S, givenK23 = v2xyv3w

1
23v2. On the other hand, if|K12| = 5,

and|K23| = 4, then we shall choose the bondsB ′
1i , i = 1,2,3 and semi-bondSso that

yv1 /∈ S whereK12 = v2xyv1w
1
12v2.

Suppose thatB1 is non-contractible. As in Part I, Claim8 implies thatG/B1 consists of
two blocks, one containing〈v1〉B1 and〈v2〉B1 and the other containing〈v1〉B1 and〈v3〉B1.
This means that〈v1〉B1 is a cut-vertex ofG/B1 and hencew23 /∈ V (G). SinceB1 is not
contractible and is a cross-bond, Claim23 implies thatB∗

1 = 〈B1〉S is a non-contractible
bond ofG∗. This in turn implies thatG∗

1/B∗
11 consists of two multiple edges; one between〈v∗

1〉B∗
11
and〈v∗

2〉B∗
11

, and another between〈v∗
1〉B∗

11
and〈v∗

3〉B∗
11

. ThusG∗
1/B∗

11 has exactly 3
vertices〈v∗

i 〉B∗
11

, i = 1,2,3. As in Part I, we have thatV ∗
1 ∪ V ∗

2 = Q∗
13, V ∗

2 = P ∗
12, and

B∗
12∪ B∗

13 = [V ∗
1 , V (G∗

1)\V ∗
1 ]. ClearlyV1 �= {v1}, as〈v1〉B1 is a cut-vertex ofG/B1.
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As was done in the proof of Claim20, we define the graphG′′
2 = G′

2\w223. The graph
G′′
2 has a good pair of bondsB

′′
21 = [P′′

2j ,Q′′
2j ], j = 1,2, where|P ′′

2j ∩ {v1, v2, v3}|�1.
We may assume that for somej = 1,2 it holds that|P ′′

2j ∩ {v1, v2, v3}| = 1, for otherwise
B ′′
2j , j = 1,2 would be a good pair of bonds ofG (sincew23 /∈ V (G)). We shall assume
that |P ′′

2j ∩ {v1, v2, v3}| = 1, for both j = 1,2; the case where it holds for only one of
j = 1 or j = 2 is easily handled by the same arguments.

Claim 25. If B1 is non-contractible and|K23| = 5, then G contains a good pair of bonds.

Proof. SupposeB1 is non-contractible and|K23| = 5. Then there is no path fromv2
to v3 in Q11. Let K23 = v2xyv3w

1
23v2 andP1 = K23\w1

23. By assumption, the bonds
B ′
1i , i = 1,2,3 and the semi-bondSare chosen so thatyv3 /∈ S.

Recall the definition ofYi, i = 1,2,3. We shall first show thatY2 �= Y3. Suppose on
the contrary thatY2 = Y3. Then there is a pathQ in G(B12 ∪ B13) connectingv2 andv3.
We may assume thatv1 lies outside the regionR bounded by the cycleQ ∪ v2w

1
23v3. For

any vertexv lying in the interior ofR, it holds that any path fromv to v1 must intersectQ,
and hence it must intersect vertices ofQ11. Thusv /∈ P11, for otherwise there would be a
path inG1(P11) from v to v1 which does not intersectQ11. Consequently,R contains no
vertices ofP11 and hence no edges ofB1.

Since the cycleQ∪v2w
1
23v3 contains no edges ofS,Rmust contain the other 5-facewhich

is bounded by a 5-cycle, sayx1x2x3x4x5x1 wherex1x2 ∈ S. For i = 1, . . . ,5 we have that
〈xi〉B1∪S is one of the vertices〈vi〉B1∪S, i = 1,2,3. The cyclex1x2x3x4x5x1 contains no
edges ofB1 sinceRcontains no edges ofB1.We have that two of the verticesx1, x3, x4, x5
contract to the samevertex inG1/B1∪S.Suppose〈x1〉B1∪S = 〈x4〉B1∪S.Then there is a path
Q1 inG(B11∪ S) from x1 to x4. Now any path inG(B1 ∪ S) from x3 to v1, v2, or v3 must
intersectQ1, in which case〈x3〉B1∪S = 〈x1〉B1∪S = 〈x4〉B1∪S , yielding a contradiction.
Thus〈x1〉B1∪S �= 〈x4〉B1∪S, and by similar reasoning〈x3〉B1∪S �= 〈x5〉B1∪S. Thus the
vertices〈x1〉B1∪S, 〈x3〉B1∪S, 〈x4〉B1∪S, 〈x5〉B1∪S are all different, yielding a contradiction.
Thus no such pathQ exists , andY2 �= Y3.

We defineC1 andC2 as follows (see Fig.6): let

C1 = [(V1 ∪ P21),V1 ∪ P21]
and

C2 = [Y3 ∪ P22,Y3 ∪ P22].

9.1.1. C1 is good
We will first show thatC1 is a bond by showing thatG(V1 ∪ P21) is connected. Since

distG(v2, v3) = 2, there is a 2-pathv2wv3 in G. This 2-path does not belong toG1, for
otherwise{v2, w, v3} would be a good separation ofG, contradicting the minimality of
{v1, v2, v3}. Thus the 2-path belongs toG2.We have thatw /∈ P21, for otherwise〈v2〉B ′

21
=

〈v3〉B ′
21

, contradicting the fact thatB ′
21 is good. Sow ∈ Q21 and consequently,G(Q21) is

connected andC1 is a non-trivial bond.
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LetC∗
1 = 〈C1〉S.Wehave thatC∗

1∩E(G∗
1) = B∗

12∪B∗
13, and seeing asG

∗
1/(B∗

12∪B∗
13) is

amultiple edgewith vertices〈v∗
1〉B∗

12∪B∗
13
and〈v∗

2〉B∗
12∪B∗

13
, it follows thatC∗

1 is a contractible
bond ofG∗. SinceC∗

1 ∩ G∗
2 = B∗

21, and〈v∗
i 〉B∗

21
�= 〈v∗

j 〉B∗
21

, ∀i �= j, it follows that for
i �= j ,G∗

2 contains no path inG
∗(C∗

1) from v∗
i to v∗

j . Thus Claim22 implies thatC1 must
be contractible inG and hence is a good bond.

9.1.2. C2 is good
We shall now show thatC2 is a good bond. To show thatC2 is a non-trivial bond, we

note first thatdistG(v1, v2) = 2, and there is a pathv1zv2 betweenv1 andv2. We have that
Y3∩P11 = ∅ since every path fromv3 toP11 inG1 contains an edge ofB11.Supposez ∈ Y3.

Thenz /∈ P11 and thuszv2 ∈ B12 ∪ B13 ∪ S. Clearlyzv2 /∈ S, for otherwisev∗
1v

∗
2 would

be an edge ofG∗
1. Thuszv2 ∈ B12 ∪ B13 and this impliesv2 ∈ Y2, which is impossible

sinceY2 ∩ Y3 = ∅. We conclude thatz /∈ Y3. If z ∈ P22, then〈v1〉B22 = 〈v2〉B22, which
is impossible since〈vi〉B ′

22
�= 〈vj 〉B ′

22
, ∀i �= j. From this and the above, we conclude

thatz ∈ Y3 ∪ P22 and thusG(Y2 ∪ P22) is connected, andC2 is a bond ofG. Furthermore,
sinceSwas chosen so thatv3y /∈ S, it holds thatv3y ∈ B12∪ B13. Thusy ∈ Y3, andC2 is
non-trivial.
To show thatC2 is contractible, we will first show that it is a cross-bond. Let

C′
12 = [Y ′

3,V(G′
1)\Y ′

2], C′
22 = B′

22, C∗
2 = 〈C2〉S.

For i = 1,2 let

Ci2 = C2 ∩ E(Gi ), C′∗
i2 = 〈C′

i2〉S, C∗
i2 = 〈Ci2〉S.

To showC2 is a cross-bond, it suffices to show thatC′
i2, i = 1,2 is contractible inG′

i . We
have thatC′

22 = B ′
22 is a contractible bond ofG

′
2. It remains to show thatC

′
12 is contractible
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in G′
1. SinceC

∗
12 ⊆ B∗

11, andB ′∗
11 is contractible inG

′∗
1 , it follows thatC′∗

12 is contractible
in G′∗

1 . Let T = S\C12. LetH = > G′∗
1 <T and letC = > C′∗

12 <T .We have thatH\T

is connected and(H/C)/T = (H/T )/C = G′∗
1 /C′∗

12. Thus(H/C)/T is 2-connected,
and according to Lemma 2.6, eitherH/C is 2-connected or it contains loops. IfH/C is
2-connected, thenG′

1/C′
12 is 2-connected sinceH/C = G′

1/C′
12. We suppose therefore

thatH/C contains loops. Then there is an edgef ∈ T , f = wz, and a pathQ in H from
w to zwith E(Q) ⊆ C. Choosef andQ such that the region bounded byQ ∪ f is minimal.
ThenQ ∪ f is a cycle. SinceH/C is 2-connected apart from loops, it follows thatQ ∪ f

bounds a face ofH. By Lemma 2.7,Q has at most two edges. If|Q| = 2, thenQ ∪ {f } is
a triangle. SinceG′

1 is triangle-free, the edges of> E(Q) ∪ {f } <(S\T ) belong to a cycle
D in G′

1 where|D|�4 andC′
12 contains all the edges ofD except{f }. By Lemma 2.7,D

cannot bound a face ofG′
1 since it contains at least three edges of a bond ofG (i.e.C2).

ThusD contains vertices in both its interior and exterior. Since the vertices ofD∗ = 〈D〉S
are contracted together inG′∗

1 /C′∗
12, it follows thatG

′∗
1 /C′∗

12 would have a cut-vertex. This
contradicts the fact thatC′∗

12 is contractible inG
′∗
1 .We conclude that such a pathQ cannot

exist, and consequentlyH/C has no loops. This in turn implies thatC′
12 is contractible in

G′
1 andC2 is a cross-bond ofG.

To show thatC2 is contractible inG1, it suffices to show (by Claim9) that for all
i �= j, there is a path from〈vi〉C2 to 〈vj 〉C2 in (G/C2)\〈vk〉C2 wherek �= i, j. Given that
C12 ⊂ B11 ∪ S, there are paths from〈v1〉C2 to 〈v2〉C2 in (G/C2)\〈v3〉C2 and from〈v1〉C2
to 〈v3〉C2 in (G/C2)\〈v2〉C2. It remains to show that there is a path from〈v2〉C2 to 〈v3〉C2
in (G/C2)\〈v1〉C2. Recall thatC1 is assumed to be a non-trivial (contractible) bond. This
means thatG2(Q21) is connected and there is a pathQ inG2(Q21) fromv2 tov3.No vertex
of Q contracts tov1 in G2/B22 as every path fromQ to v1 must contain an edge fromB21.
Thus〈Q〉C2 contains a path from〈v2〉C2 to 〈v3〉C2 in (G/C2)\〈v1〉C2. This shows thatC2
is contractible inG.

From the above, we have thatC1 andC2 are good pair of bonds. This completes the proof
of the claim. �

Claim 26. If B1 is not contractible, then G contains a good pair of bonds.

Proof. Suppose thatB1 is non-contractible. By the previous claim, we may assume that
|K23| = 4.Aswas done in Section7, defineG′′

2 = G′
2\{w2

23}, and letB ′′
21 = [P ′′

21, Q′′
21] and

B ′′
22 = [P ′′

22, Q′′
22] be a good pair of bonds forG′′

2.Wemayassume that|P ′′
21∩{v1, v2, v3}| =

1 and|P ′′
22 ∩ {v1, v2, v3}| = 1 (the easier case whereP ′′

21 ∩ {v1, v2, v3} = ∅ can be dealt
with by similar arguments). We shall examine a few cases.

Case1: Supposev1 ∈ P ′′
21 andv1 ∈ P ′′

22. By definition,G
′
2 has a vertexw2 whose

neighbours arev1, v2, andv3. Thusw2 ∈ V (G′′
2) and we may assume thatw2 ∈ P ′′

21. Let

C1 = [(P′
11∪ P′′

22) ∩ V(G), (P′
11∪ P′′

22) ∩ V(G)]

and

C2 = [(V1 ∪ P′′
21) ∩ V(G), (V1 ∪ P′′

21) ∩ V(G)].
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LetC∗
i = 〈Ci〉S, i = 1,2.Using the same arguments in the proof of Claim20(Case 1), one

can show thatC∗
i , i = 1,2 are contractible inG∗.We have thatB ′∗

11 is a contractible bond
in G′∗

1 and thus〈vi〉B ′∗
11

�= 〈vj 〉B ′∗
11

, ∀i �= j. Consequently,〈v∗
i 〉B∗

11
�= 〈v∗

j 〉B∗
11

, ∀i �= j.

SinceC∗
1 ∩ E(G∗

1) = B∗
11, we have that for alli �= j there is no path inG∗

1(C
∗
1) from v∗

i to
v∗

j . It follows by Claim22, thatC1 is contractible inG.We may therefore assume thatC2
is not contractible inG.

NowClaim22implies that for somei �= j it holds that〈v∗
i 〉C∗

2
= 〈v∗

j 〉C∗
2
.Since〈v∗

1〉C∗
2

�=
〈v∗
2〉C∗

2
, 〈v∗

3〉C∗
2
, it follows that 〈v∗

2〉C∗
2

= 〈v∗
3〉C∗

2
, and there is a pathP ∗

1 = v∗
2u

∗v∗
3 in

G∗
1(C

∗
2). According to Claim22, there is a pathP1 ⊂> P ∗

1 <S having length 3 where
P1 ⊂ K23 and thus|K23| = 5. However, we are assuming that|K23| = 4, and we have
a contradiction. ThusC2 is contractible andC1 andC2 are a good pair of bonds. This
completes the proof of Case 1.

Case2: Supposev1 ∈ P ′′
21 andv2 ∈ P ′′

22. Let

Ci = [(P′
1i ∪ P′′

2i ) ∩ V(G), (P′
1i ∪ P′′

2i ) ∩ V(G)], C∗
i = 〈Ci〉S, i = 1,2.

(i) C1 is good. One can show thatG∗
1(Q

∗
11) is connected, and henceC

∗
1 is a bond. Using

the same arguments as given in the proof of Claim20 (Case 1.1), one can show thatC∗
1 is

a contractible bond ofG∗. SinceC∗
1 ∩ E(G∗

1) = B∗
11 and〈v∗

i 〉B∗
11

�= 〈v∗
j 〉B∗

11
, ∀i �= j, it

follows by Claim22 thatC1 is contractible inG.

(ii) C2 is good. The bondC2 is seen to be a cross-bond ofG. We shall now show thatC2
is contractible inG. If P ∗

13\〈V (K)〉S �= ∅, then it follows from the arguments in the proof
of Claim20 (Case 2) thatC∗

2 is contractible inG
∗. In this case, Claim23 implies thatC2

is contractible.
We may therefore assume thatP ∗

13\〈V (K)〉S = ∅. This means that all edges incident
with v3 in G1\E(K) belong toS ∪ B13.We have forj = 1,3 thatdistG∗

1
(v∗
2, v∗

j ) = 2 and
〈v∗
2〉C∗

2
〈v∗

j 〉C∗
2
is an edge ofG∗/C∗

2 for j = 1,3. Thus there are paths from〈v2〉C2 to 〈v1〉C2
in (G/C2)\〈v3〉C2 and from〈v2〉C2 to 〈v3〉C2 in (G/C2)\〈v1〉C2. SinceC2 is a cross-bond,
to show thatC2 is contractible it suffices to show that there is a path from〈v1〉C2 to 〈v3〉C2 in
(G/C2)\〈v2〉C2.We suppose that no such path exists. This means thatG1/B12 consists of
two blocks between〈v2〉B12 and〈vj 〉B12, for j = 1,3, the corresponding blocks inG∗

1/B∗
12

being multiple edges. This means that for each vertexv∗ ∈ Q∗
13 either〈v∗〉B∗

12
= 〈v∗

1〉B∗
12

or 〈v∗〉B∗
12

= 〈v∗
2〉B∗

12
.We shall show that this cannot happen. Since|K23| = 4, there is a

pathP1 = v2z1v3 ⊂ K23. Since all edges incident withv3 inG\E(K) belong toS ∪ B13,
we have thatv3z1 ∈ B13, and hencev2z1 ∈ B12. Thus〈z1〉B11 = 〈v1〉B11 (sinceB1 is not
contractible).
Suppose|K13| = 4, then there is a pathP2 = v1z2v3 ⊂ K13 wherez2v3 /∈ B11 (since

P ∗
13\〈V (K)〉S = ∅). Thenv1z2 ∈ B11, v3z2 ∈ B13, and〈z2〉B11 = 〈v1〉B11. We have that

〈z2〉B12 = 〈v2〉B12; otherwise there would be a path from〈v1〉B2 to 〈v3〉B2 in (G/B2)\〈v2〉B2
inwhich casewearedone.Since〈zi〉B11 = 〈v1〉B11 for i = 1,2 there is apathL1 ⊂ G1(B11)

from z1 to z2. Let R1 be the region ofG′
1 bounded byL1 ∪ {v3, z1v3, z2v3} which does

not containv2. Similarly, since〈zi〉B12 = 〈v2〉B12, i = 1,2, there is a pathL2 ⊂ G1(B12)

from z1 to z2. Since for each vertexv∗ ∈ Q∗
13 we have thatv

∗ ∈ V ∗
1 ∪ V ∗

2 , it follows that
for eachv ∈ V (L2) which lies insideR1 or onL1, 〈v〉S ∈ V ∗

1 . This holds since any path
from v to v2 must contain vertices ofL1 (andV (L1) ⊂ V1) and consequently〈v〉S /∈ V ∗

2
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(see Fig.7). The above implies thatR1 contains no edges ofL2, for both endvertices of
such edges would contract to〈v∗

1〉B∗
11
in G∗

1/B∗
11, producing a loop. We now defineR2 to

be the region bounded byL2 ∪ {v3, z1v3, z2v3} which does not containv1. Similar toR1,

the regionR2 contains no edges ofL1. However, sinceG′
1 is planar, we cannot meet both

of the requirements thatR1 contains no edges ofL2, andR2 contains no edges ofL1. So in
this case,C2 must be contractible.
Suppose|K13| = 5. LetK13 = v1wz2v3w

1
13v1.We have that either〈w〉B12 = 〈v2〉B12 or

〈z2〉B12 = 〈v2〉B12.We have thatv1w ∈ B11∪S (sinceP ∗
13\〈V (K)〉S = ∅). Supposev1w ∈

S. Then〈w〉B12 �= 〈v2〉B12 (otherwise〈v∗
1〉B∗

12
= 〈v∗

2〉B∗
12
). Thus we have that〈z2〉B12 =

〈v2〉B12, z2v3 ∈ B13, and hencez2w ∈ B11. Then there is a pathL1 ⊂ G1(B11∪ S) from
z1 to z2. LetR1 be the region bounded byL1∪ {v3, z1v3, z2v3} which does not containv2.
Since〈z1〉B12 = 〈z2〉B12 = 〈v2〉B12, there is a pathL2 ⊂ G1(B12) from z1 to z2. Let R2
be the region bounded byL2 ∪ {v3, z1v3, z2v3} which does not containv1. As before,R1
cannot contains edges ofL2, andR2 cannot contain edges ofL1∪ B11. However, sinceG′

1
is planar, both of these requirements cannot be met simultaneously. In this case,C2 must
be contractible.
If v1w ∈ B11, then one can argue in a similar fashion as in the above. Having con-

sidered all cases, we conclude thatC2 must be contractible, and hence good. This completes
Case 2.
If v1 ∈ P ′′

21 andv3 ∈ P ′′
22, then we can find two contractible bonds via similar arguments

as used in Case 2. There is one remaining case:
Case3: Supposev2 ∈ P ′′

21 andv3 ∈ P ′′
22. Let

C1 = [(P′
12∪ P′′

21) ∩ V(G), (P′
12∪ P′′

21) ∩ V(G)]
and

C2 = [(P′
13∪ P′′

22) ∩ V(G), (P′
13∪ P′′

22) ∩ V(G)].
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The setsC1 andC2 are seen to be cross-bonds ofG. One can show thatC1 andC2 are
contractible bonds ofG using the same arguments as given in Case 2. Consequently,C1
andC2 is a good pair of bonds. This completes Case 3.
The proof of the claim now follows from Cases 1–3.�
Similar to the above we have:

Claim 27. If B2 is non-contractible, then G contains a good pair of bonds.

To conclude this section, we have

Claim 28. If {v1, v2, v3} is a minimal good separation which is of type3whereG′
1 is the

edge-disjoint union of three good bonds and a contractible semi-bond, then G has a good
pair of bonds.

Proof. By Claims26 and27, eitherB1 andB2 are a good pair of bonds, or we can find
another good pair of bonds.�

10. Separating sets of type 2

In this section, we shall assume that{v1, v2, v3} is a minimal good separation which has
type 2. We shall assume thatdistG(v1, vj ) = 2, j = 2,3 anddistG(v2, v3) �= 2.

10.1. The casev2v3 ∈ E(G)

Claim 29. If {v1, v2, v3} is a minimal good separation which is of type2,andv2v3 ∈ E(G),

then G has a good pair of bonds.

Proof. We suppose that{v1, v2, v3} is a separating set of type 2 wherev2v3 ∈ E(G). The
graphG′

2 has a good pair of bondsB
′
2j = [P ′

2j , Q′
2j ], j = 1,2. If P ′

2j ∩ {v1, v2, v3} =
∅, j = 1,2, thenB2j = B ′

2j , j = 1,2 is a good pair bonds ofG.Wemay therefore assume
thatP ′

21 ∩ {v1, v2, v3} �= ∅.We shall also assume thatP ′
22 ∩ {v1, v2, v3} �= ∅, as the case

where the intersection is empty is easier and follows from the same arguments. By Lemma
5.2,E(G′

1) is the edge-disjoint union of twoG1-good bondsB ′
1j = [P ′

1j, Q′
1j], j = 1,2

and a contractible semi-bondS.
We consider two cases:
Case1: Suppose forj = 1,2 thatv1 ∈ P ′

2j , andv2, v3 ∈ Q′
2j . We have that the dual

H ′
1 contains no good cycle which avoidsu (corresponding to the faceF in G′

1). Lemma
2.4 implies thatH ′

1 has a decomposition consisting of two good cyclesC′
1 andC′

2, and
a removable pathP ′. The vertexu is incident with two digons and an edgee, wheree
corresponds to the edgev2v3. By Lemma 2.4,P ′ can be chosen so that it containse, and
consequently,e /∈ E(C′

i ), i = 1,2. The cyclesC′
i , i = 1,2 correspond to good bonds

B ′
i = [P ′

1i , Q′
1i] in G′

1, i = 1,2. Sincee /∈ E(C′
i ), i = 1,2 we have thatv2v3 /∈ B ′

i , i =
1,2. Thus we may assume thatv1 ∈ P ′

1i , (andv2, v3 ∈ Q′
1i ,) for i = 1,2, andP1i �=
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{v1}, i = 1,2. LetB1 = [P11∪ P22, Q11∪ Q22] andB2 = [P12∪ P21, Q12∪ Q21]. Since
v2v3 ∈ E(G), one sees thatG(Q11∪Q22)andG(Q12∪Q21)are connected.ThusB1 andB2
are non-trivial bonds, which are also cross-bonds. SincedistG(v1, v2) = distG(v1, v3) = 2,
andv2v3 ∈ E(G), one sees that〈vi〉B1〈vj 〉B1 ∈ E(G/B1), ∀i �= j, and the same holds for
B2 as well. It now follows by Claim9, thatBi, i = 1,2 is a good pair of bonds inG.

Case2: Supposev1 ∈ P ′
21, (andv2, v3 ∈ Q′

21), andv2 /∈ P ′
21.We can assume without

loss of generality thatv2 ∈ P ′
22 andv1, v3 ∈ Q′

22.We can, according to Lemma 2.4, choose
a decomposition ofH ′

1 consisting of two good cyclesC
′
1 andC′

2, and a removable pathP
′

such that the corresponding good bonds and contractible semi-bond, which we can assume
areB ′

1i , i = 1,2, andS, are such thatv1 ∈ P ′
11 (andv2, v3 ∈ Q′

11) andv2 ∈ P ′
12 (and

v1, v3 ∈ Q′
12). We may assume that the decomposition{C′

1, C′
2, P ′} isH1-good, since if it

is not, then we can swap pairs of members to achieve one which is. This means that we can
assume that{B ′

1, B ′
2, S} is aG1-good decomposition, and henceP1i\V (K) �= ∅, i = 1,2.

Let B1 = [P11 ∪ P21, Q11 ∪ Q21] andB2 = [P21 ∪ P12, Q12 ∪ Q22]. One sees thatB1
is a cross-bond ofG (sincev2v3 ∈ E(G)). To show thatB2 is a cross-bond, we note that
distG1(v1, v3) = 2, and hence there is a pathv1zv3 inG1. If z ∈ P12, thenzv1, zv3 ∈ B ′

12.

However,B ′
12 is contractible inG

′
1, and hence this is impossible. Thusz ∈ Q12, and

G(Q12 ∪ Q22) is connected. This shows thatB2 is a non-trivial bond ofG, which is also
seen to be a cross-bond.
As in the previous case, one can show thatB1 is contractible. To show thatB2 is con-

tractible, we note thatv2v3 ∈ B2.Thus〈v2〉B2 = 〈v3〉B2, and by Claim8,B2 is contractible.
We conclude thatB1 andB2 are a good pair of bonds. This completes Case 2.

The proof of the claim now follows from Cases 1 and 2.�

10.2. The casev2v3 �∈ E(G)

In the rest of this section, we may assume thatv2v3 /∈ E(G).We define the triangle-free
graphs

G′′
1 = (G′

1\{v2v3}) ∪ {w123,w123v2,w123v3},
G′′
2 = (G′

2\{v2v3}) ∪ {w2,w223,w2v1,w2v2,w2v3,w223v2,w223v3}.
The graphG has no good bond contained inE(G′′

1) for such bonds are good inE(G1),

violating the fact that{v1, v2, v3} is a good separation. The graphG′′
2 has a good pair of

bondsB ′′
2j = [P ′′

2j , Q′′
2j ], j = 1,2.Weshall assume that|P ′′

2j ∩{v1, v2, v3}| = 1, j = 1,2;
the other cases whereP ′′

2j ∩{v1, v2, v3} = ∅ for somej ∈ {1,2} are easier and can be dealt
with using similar arguments.

Claim 30. If |K23| = 5, in G′
1, then G has a good pair of bonds.

Proof. We assume that|K23| = 5 whereK23 = v2xyzv3v2. Thus all faces ofG′′
1 are

4-faces apart from the facesv2xyzv3w
1
23v2 andv1w

1
12v2w

1
23v3w

1
13v1. ThusG

′′
1 has aG1-

good decomposition consisting of threeG1-good bondsB ′′
1j = [P ′′

1j, Q′′
1j], j = 1,2,3

where we may assume thatvi ∈ P ′′
1j iff i = j. For i, j = 1,2 we shall write〈Gi〉ij to mean
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Gi/(B ′′
ij ∩ E(Gi)). Similarly, for k = 1,2,3 andi, j = 1,2 we shall write〈vk〉ij to mean

the vertex〈vk〉B ′′
ij ∩E(Gi)

in 〈Gi〉ij .We shall consider two cases:
Case1: Suppose there is a path from〈v2〉11 to 〈v3〉11 in 〈G1〉11\〈v1〉11.
We shall consider two subcases:
Case1.1: Supposev1 ∈ P ′′

21 andv2 ∈ P ′′
22. LetB1 = [(P′′

11∪P′′
21)∩V(G), (Q′′

11∪Q′′
21)∩

V(G)].
(i) Suppose thatB1 is not a bond. Then(Q′′

11 ∪ Q′′
21) ∩ V (G) induces a subgraph with

two components. LetQj, j = 2,3 be the vertices in the component containingvj . Let
C2 = [Q2, V (G)\Q2]. SupposeQ2\{v2} �= ∅. ThenC2 is a non-trivial bond. Since
distG(v1, vi) = 2, i = 2,3 we have that〈v1〉B1〈vi〉B1 is an edge ofG/B1 for i = 2,3.
Thus there is a path from〈v1〉C2 to 〈v2〉C2 in (G/C2)\〈v3〉C2 and from〈v1〉C2 to 〈v3〉C2 in
(G/C2)\〈v2〉C2. By assumption, we have〈G1〉11 contains a path from〈v2〉11 to 〈v3〉11 in
〈G1〉11\〈v1〉11. Thus there is a path from〈v2〉C2 to 〈v3〉C2 in (G/C2)\〈v1〉C2.One sees that
C2 is a good bond ofG.

Suppose thatQ2\{v2} = ∅. We redefineC2 asC2 = [P ′′
12 ∩ V (G), P ′′

12∩ V (G)]. One
sees thatC2 is a non-trivial bond. We shall show thatC2 is good. IfC2 is non-contractible,
thenG/C2 consists of 2 blocks, one containing〈v1〉C2, 〈v2〉C2 and another containing
〈v2〉C2, 〈v3〉C2. Note that the blocks restricted to〈G1〉12 are both multiple edges. We have
thatC2 contains exactly one edge of the pathv2xyzv3 ⊂ K23 since it contains exactly two
edges of the cyclev2xyzv3w

1
23, one of which is one of the edgesv2w

1
23 or v3w

1
23. Suppose

v3z /∈ C2.Then〈z〉C2 = 〈v2〉C2 and there is a pathP inG1(C2∩E(G1)) fromz tov2. Since
Q2\{v2} = ∅, it follows thatxv2 ∈ B ′′

11 and thus〈X〉C2 = 〈v1〉C2. However, considering
the planarity ofG′′

1, any path fromx to v1 or v3 must intersect a vertex ofP (see Fig.8).
This implies that〈X〉C2 = 〈v2〉C2, yielding a contradiction. Suppose instead thatv3z ∈ C2.

Then〈y〉C2 = 〈v2〉C2. There is a pathP inG1(C2∩ E(G1)) from y to v2. By planarity, any
path fromx to v1 must intersect a vertex ofP. This means that〈X〉C2 = 〈v2〉C2, yielding a
contradiction. We conclude thatC2 is contractible and hence good.
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In the same way, we can define a bondC3 whereC3 = [Q3, V (G)\Q3] if Q3\{v3} �= ∅,

andC3 = [P ′′
13∩V (G), P ′′

13∩ V (G)], otherwise. One can show thatC3 is good in the same
way as was done forC2, and it follows thatC2 andC3 are a good pair of bonds. Thus we
may assume thatB1 is a bond, andB1 is seen to be good.
(ii) SupposeB1 is a bond. LetB2 = [(P′′

12∪P′′
22)∩V(G), (Q′′

12∪Q′′
22)∩V(G)]. ThenB2

is a non-trivial bond (sincedistG(v1, v3) = 2).We may assume thatB2 is non-contractible.
ThenG/B2 consists of two blocks, one of which contains〈v1〉B2 and〈v2〉B2. SinceB1 is
assumed to be a good bond, there is a pathP in G(Q′′

11 ∪ Q′′
21) ∩ V (G)) betweenv2 and

v3. Since any path fromP to v1 must contain edges ofB ′′
11, it follows that〈v1〉B2 /∈ 〈P 〉B2

and consequently there is a path from〈v2〉B2 to 〈v3〉B2 in (G/B2)\〈v1〉B2. Thus the second
block ofG/B2 contains〈v2〉B2 and〈v3〉B2.
Applying the same reasoning as was used forC2 in the previous paragraph, we deduce

thatG/B2 cannot consist of two blocks, one containing〈v1〉B2, 〈v2〉B2, and another block
containing〈v2〉B2, 〈v3〉B2. So it must be the case thatB2 is contractible, and henceB1 and
B2 are a good pair of bonds. This completes Case 1.1.
If v1 ∈ P ′′

21 andv3 ∈ P ′′
22, then we can find a good pair of bonds in the same way as in

the previous case. So essentially there is just one remaining subcase:
Case1.2: Supposev2 ∈ P ′′

21 andv3 ∈ P ′′
22. Let

B1 = [(P′′
12∪ P′′

21) ∩ V(G), (Q′′
12∪Q′′

21) ∩ V(G)],
B2 = [(P′′

13∪ P′′
22) ∩ V(G), (Q′′

13∪Q′′
22) ∩ V(G)].

Using the fact thatdistG1(v1, vj ) = 2, j = 2,3, one can show thatB1 andB2 are (non-
trivial) bonds. SupposeB1 is non-contractible. ThenG/B1 consists of two blocks; if these
blocks contain〈v1〉B1, 〈v2〉B1 and〈v2〉B1, 〈v3〉B1, respectively, then by arguing in a manner
similar to the above, we reach a contradiction. Thus we may assume thatG/B1 consists
of two blocks, one containing〈v1〉B1, 〈v2〉B1, and another containing〈v1〉B1, 〈v3〉B1. It
follows thatG1(Q

′′
11 ∩ V (G)) is disconnected and has two components. LetQ

j
1, j =

2,3 be the vertices in the component containingvj . If Q
j
1 ∪ P ′′

2(j−1)\{vj } �= ∅, then

let Cj = [(Qj
1 ∪ P ′′

2(j−1)) ∩ V (G), (Q
j
1 ∪ P ′′

2(j−1)) ∩ V (G)]; otherwise, forj = 1,2 let

Cj = [P ′′
1j ∩ V (G), P ′′

1j ∩ V (G)]. One sees thatCj , j = 2,3 are good bonds and hence
form a good pair.
The same reasoning holds ifB2 is not good. Thus eitherB1 andB2 are a good pair of

bonds, or we can find another good pair of bonds. This completes the proof of Case 1.2.
The proof of Case 1 follows from Cases 1.1 and 1.2.
Case2: Suppose there is no path from〈v2〉11 to 〈v3〉11 in 〈G1〉11\〈v1〉11. The graph

〈G1〉11 consists of two blocks, which are multiple edges, one containing〈v1〉11, 〈v2〉11 and
another containing〈v1〉11, 〈v3〉11. For i = 1,2,3 letVi = {v ∈ V(G1) : 〈v〉11 = 〈vi〉11}.
Since〈G1〉11 consists of just three vertices〈vi〉11, i = 1,2,3, it follows thatV (G1) =
V1 ∪ V2 ∪ V3, V2 = P ′′

12 ∩ V (G), andV3 = P ′′
13 ∩ V (G). There are no edges fromV2 to

V3, for otherwise〈G1〉11 would contain a path from〈v2〉11 to 〈v3〉11 which avoids〈v1〉11,
contradicting our assumption. Thus[V1, V (G1)\V1] = (B ′′

12∪B ′′
13)∩E(G1).We also have

thatQ′′
13∩ V (G1) = V1 ∪ V2 andQ′′

12∩ V (G1) = V1 ∪ V3.
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LetG′′′
2 = G′′

2\{w223}. The graphG′′′
2 has a good pair of bondsB

′′′
2j = [P′′′

2j ,Q′′′
2j ], j =

1,2. We shall assume that|P ′′′
2j ∩ {v1, v2, v3}| = 1, j = 1,2; the other cases, where

P ′′′
2j ∩ {v1, v2, v3} = ∅ for somej ∈ {1,2}, can be handled in the same way. We shall
examine a few subcases:

Case2.1: Supposev1 ∈ P ′′′
21, andv1 ∈ P ′′′

22.We have thatw2 belongs to exactly one of
P ′′′
21 or P

′′′
22. We may assume thatw2 ∈ P ′′′

21. Let

B1 = [(P′′
11∪ P′′′

22) ∩ V(G), (Q′′
11∪Q′′′

22) ∩ V(G)],
B2 = [(V1 ∪ P′′′

21) ∩ V(G), (V2 ∪ V3 ∪Q′′′
21) ∩ V(G)].

We have thatV1\{v1} �= ∅ as〈v1〉11 is a cut-vertex of〈G1〉11. Sincew2 ∈ P ′′′
21, it follows

thatG(Q′′′
21∩V (G)) is connected (sinceB ′′′

21 is a bond). ThusB2 is a non-trivial bond. Given
thatG(Q′′′

21∩ V (G)) is connected, it contains a pathP from v2 to v3. Since any path from
P to v1 must contain edges ofB2, this implies that〈P 〉B1 contains a path in(G/B1)\〈v1〉B1
from 〈v2〉B1 to 〈v3〉B1. We conclude thatB1 is contractible, and if it is a bond, then it
is good.
If B1 is not a bond, thenG2(Q

′′′
22∩ V (G)) has 2 components. Forj = 2,3 letQj

2 be the
vertices in the component containingvj . For j = 2,3, let

Cj = [(P ′′
1j ∪ Q

j
2) ∩ V (G), (P ′′

1j ∪ Q
j
2) ∩ V (G)].

ConsiderC2.Suppose thatC2 is non-contractible. ThenG/C2 consists of two blocks where
one block contains〈v1〉C2 and〈v2〉C2. SinceB ′′′

22 is good,G
′′′
2 /B ′′′

22 is 2-connected and there
is a path in(G2/B ′′′

22)\〈v1〉B ′′′
22
from 〈v2〉B ′′′

22
to 〈v3〉B ′′′

22
. Thus there is a path in(G/C2)\〈v1〉C2

from〈v2〉C2 to〈v3〉C2,andconsequently theother blockofG/C2 contains〈v2〉C2 and〈v3〉C2.
Now following the same arguments as in Case 1, one can show that this is impossible. Thus
C2 is contractible and hence good. In the same way, it can be shown thatC3 is also good
and henceC2 andC3 are a good pair. We may therefore assume thatB1 is a good bond.
ConsiderB2. SinceB1 is assumed to be a bond, it holds thatG((Q′′

11 ∪ Q′′′
22) ∩ V (G))

is connected and hence contains a pathP from v2 to v3. Then〈v1〉B2 /∈ 〈P 〉B2 and conse-
quently there is a path in(G/B2)\〈v1〉B2 between〈v2〉B2 and〈v3〉B2. We deduce thatB2
is contractible and hence also good. In this case,B1 andB2 are a good pair of bonds. This
completes Case 1.2.

Case2.2: Supposev1 ∈ P ′′′
21 andv2 ∈ P ′′′

22. Let

B1 = [(P′′
11∪ P′′′

21) ∩ V(G), (Q′′
11∪Q′′′

21) ∩ V(G)],
B2 = [(P′′

12∪ P′′′
22) ∩ V(G), (Q′′

12∪Q′′′
22) ∩ V(G)].

We first note thatw2 /∈ P ′′′
21 asv2 ∈ P ′′′

22. Suppose thatB1 is not a bond. As in Case 2.1, we
defineC2 andC3. SinceC2 is a bond andG′′′

2 /B ′′′
21 is 2-connected, we can find a path from〈v2〉C2 to 〈v3〉C3 in (G′′′

2 /C2)\〈v1〉C2 (via the same arguments in the previous case) and this
implies thatC2 is good. We can argue the same forC3, and henceC2 andC3 are a good
pair of bonds. We may thus assume thatB1 is a bond, and it is seen to be good.
We suppose therefore thatB2 is non-contractible (noting thatB2 is a non-trivial bond).

Similar toCase1,onecanshow thatG/B2 consistsof 2blocks,onecontaining〈v1〉B2, 〈v2〉B2
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and another containing〈v1〉B2, 〈v3〉B2. SinceB1 is assumed to be a bond, we have that
G((Q′′

11 ∪ Q′′′
21) ∩ V (G)) is connected and contains a pathP from v2 to v3. We have

that 〈v1〉B2 /∈ 〈P 〉B2. Thus there is a path in(G/B2)\〈v1〉B2 from 〈v2〉B2 to 〈v3〉B2. This
contradicts the fact that〈v1〉B2 is a cut-vertex ofG/B2. ThusB2 is contractible, andB1 and
B2 are a good pair of bonds. This completes Case 2.2.
If v1 ∈ P ′′′

21 andv3 ∈ P ′′′
22, then one can find a good pair of bonds in exactly the same

way as in Case 2.2. There is just one case remaining:
Case2.3: Supposev2 ∈ P ′′′

21 andv3 ∈ P ′′′
22. Let

B1 = [(P′′
12∪ P′′′

21) ∩ V(G), (Q′′
12∪Q′′′

21) ∩ V(G)],
B2 = [(P′′

13∪ P′′′
22) ∩ V(G), (Q′′

13∪Q′′′
22) ∩ V(G)].

BothB1 andB2 are non-trivial bonds. SupposeB1 is non-contractible.
ThenG/B1 consists of two blocks, one containing〈v1〉B1, 〈v2〉B1. Following the rea-

soning as in Case 1.1, one can show that the other block does not contain〈v2〉B1 and
〈v3〉B1. Thus we have that the other block contains〈v1〉B1 and〈v3〉B1.Moreover, the block
containing〈v1〉B1, 〈v2〉B1 is a multiple edge. Since there is no path from〈v2〉11 to 〈v3〉11
in 〈G1〉11\〈v1〉11 it follows thatG1(Q

′′
11 ∩ V (G)) is disconnected and has two compo-

nents. LetQj
1, j = 2,3 be the vertices of the component containingvj . Let C2 =

[(Q2
1 ∪ P ′′′

21) ∩ V (G), (Q2
1 ∪ P ′′′

21) ∩ V (G)]. If P ′′′
21 ∩ V (G) = {v2}, then there would be

a path in(G/B1)\〈v2〉B1 from 〈v2〉B1 to 〈v3〉B1. This contradicts the fact that〈v1〉B1 is a
cut-vertex inG/B1. ThusP ′′′

21∩ V (G) �= {v2}, andC2 is a non-trivial bond.
We shall show thatC2 is contractible.
(i) Suppose thatxv2 ∈ B ′′

12. Thenxy ∈ B ′′
11. We have〈X〉B ′′

11
= 〈v1〉B ′′

11
, and there is

a pathL in G1(B
′′
11 ∩ E(G1)) from x to v1. We can assume thatL is chosen such that it

contains no vertices ofQ3
1; for if no such path existed, then〈X〉C2 �= 〈v1〉C2, andC2 would

be contractible. Supposey /∈ V (L). LetRbe the region bounded byL∪{xv2w
1
12v1}where

ydoes not lie inR.We have that the vertices ofV2\{v2} lie in the interior ofR.We have that
〈y〉B1 = 〈v1〉B1. Thus there is a path inG1(B

′′
12∩ E(G1)) from y to v1, andy is adjacent to

a vertex inP ′′
12∩ V (G) = V2. However, this is impossible sincey lies outsideR.

Supposey ∈ V (L). Theny is adjacent to a vertexy′ ∈ V (L)\{x}.We have thaty′ ∈ Q2
1.

Again let R be the region bounded byL ∪ {xv2w
1
12v1}, wherez lies outsideR. Since

x, y′ ∈ Q2
1, there is a pathP1 from x to y′ inG1(Q

2
1). Since〈y〉B1 = 〈v1〉B1, there is a path

P2 from y to v1 inG1(B
′′
12∩ E(G1)). Such a path lies inRsince the vertices ofV2\{v2} lie

in R (see Fig.9). We conclude that by planarity, the pathsP1 andP2 must cross. However,
this is impossible sinceV (P1) ⊂ V (Q′′

11) andV (P2) ⊂ V (P ′′
11). In this case,C2 must be

contractible.
(ii) Supposexv2 /∈ B ′′

12. Thenxv2 ∈ B ′′
11. If xy ∈ B ′′

11, theny ∈ Q3
1 andC2 is seen to be

good since there would be a path between〈v2〉C2 and〈v3〉C2 in (G/C2)\〈v1〉C2. We may
thus assume thatxy /∈ B ′′

11 and hencexy ∈ B ′′
12. Thus there is a pathL1 ⊂ G(P ′′

11) from y
to v1.We also have thaty is adjacent to a vertexy′ ∈ Q2

1 and there is a pathL2 ⊂ G(Q2
1)

from y′ to v2. Due to planarity considerations, the pathsL1 andL2 must cross, which is
impossible sinceL2 ⊆ P ′′

11. We reach a contradiction, and we conclude thatC2 must be
contractible in this case.
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We have thus shown that ifB1 is non-contractible, thenC2 is good. IfB2 is good, then
eitherB1, B2 or C2, B2 is a good pair of bonds. We suppose therefore thatB2 is non-

contractible. LetC3 = [(Q3
1 ∪ P ′′

22) ∩ V (G), (Q3
1 ∪ P ′′

22) ∩ V (G)]. As with C2, we have
thatC3 is a good bond. Thus eitherB1, C3 orC2, C3 is a good pair of bonds. This completes
the proof of Case 2.3. Case 2 now follows from Cases 2.1–2.3. This completes the proof of
the claim. �

Claim 31. Suppose|K23| = 4 in G′
1. Then G has a good pair of bonds.

Proof. G′′
1 contains exactly two 5-faces and has aG1-good decomposition consisting of

threeG1-good bondsB1j = [P′′
1j,Q

′′
1j], j = 1,2,3 and a contractible semi-bondS. We

may assume fori, j = 1,2,3 thatvi ∈ P ′′
1j iff i = j.

Case1. Supposev1 ∈ P ′′
21. Let

B1 = [(P′′
11∪ P′′

21) ∩ V(G), (Q′′
11∪Q′′

21) ∩ V(G)].
B1 is seen to be a non-trivial bond. In the same way as was done in the proof of Claim25,
one can show that ifB1 is non-contractible, then it is possible to construct a good pair of
bonds. Given this, we may assume thatB1 is a good bond.
Supposev2 ∈ P ′′

22. If |K13| = 5, then letG′′′
1 = (G′

1\{w113}) ∪ {v1v3}. We have that
G′′′
1 is triangle-free and has aG1-good decomposition consisting of twoG1-good bonds

B′′′
1j = [P′′′

1j,Q
′′′
1j], j = 1,2 wherevj ∈ P ′′′

1j , j = 1,2. We can now proceed in the same
manner as in section7 to show thatG has a good pair of bonds. Consequently, we may
assume that|K13| = 4 anddistG1(v1, v3) = 2. Let

B2 = [(P′′
12∪ P′′

22) ∩ V(G), (Q′′
12∪Q′′

22) ∩ V(G)].
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We see thatB2 is a non-trivial bond. Given thatB1 is assumed to be good, we may assume
thatB2 is non-contractible. SincedistG(v1, v2) = 2, we have that〈v1〉B2〈v2〉B2 is an edge
ofG/B2.We have that|K23| = 4, and consequently there is a pathP ⊂ K23\w1

23 from v2
to v3.We have thatV (P ) ⊂ Q′′

11 and this implies that〈v1〉B2 /∈ 〈P 〉B2, and there is a path
in 〈P 〉B2 from 〈v2〉B2 to 〈v3〉B2 which avoids〈v1〉B2. ThusG/B2 consists of two blocks;
one containing〈v1〉B2, 〈v2〉B2 and another containing〈v2〉B2, 〈v3〉B2.
Let G∗ = 〈G〉S, B∗

2 = 〈B2〉S, v∗
i , i = 1,2,3. We have thatG∗/B∗

2 consists of
two blocks; one containing〈v∗

1〉B∗
2
, 〈v∗

2〉B∗
2
and another containing〈v∗

2〉B∗
2
, 〈v∗

3〉B∗
2
. Using

the same methods as in the proof of Claim20 (whereB∗
2 plays the role ofB1 andG∗

plays the role ofG) we can construct a good pair of bonds, sayC∗
i , i = 1,2 such that

Ci = > C∗
i <S, i = 1,2, are non-trivial bonds. SupposeC1 is non-contractible inG.

Then Claim22 implies that〈v∗
i 〉C∗

1
= 〈v∗

j 〉C∗
1
for somei �= j and there is a path of length

3 betweenvi andvj in Kij . Since no such path exists other than fori = 2 andj = 3, we
deduce that〈v∗

2〉C∗
1

= 〈v∗
3〉C∗

1
if C1 is non-contractible. However, for the bondsC∗

i , i = 1,2
constructed it holds that〈v∗

2〉C∗
1

�= 〈v∗
3〉C∗

1
(see the remark following the proof of Claim

22 ). We conclude thatC1 is contractible, and the same applies toC2. ThusC1 andC2 are
a good pair of bonds.
If insteadv3 ∈ P ′′

22, then we letB2 = [(P ′′
13∪ P ′′

22) ∩ V (G), (Q′′
13∪ Q′′

22) ∩ V (G)].One
can show in a similar manner as to the above that eitherB2 is good (in which caseB1 and
B2 is a good pair), or one can construct another good pair of bonds. This completes the
proof for Case 1.

Case2: Supposev2 ∈ P ′′
21 andv3 ∈ P ′′

22. Let

B1 = [(P′′
12∪ P′′

21) ∩ V(G), (Q′′
11∪Q′′

21) ∩ V(G)],

B2 = [(P′′
12∪ P′′

22) ∩ V(G), (Q′′
12∪Q′′

22) ∩ V(G)].

If |K13| = 4, then using the same reasoning as in Case 1 withG∗ etc., one can show
that eitherB1 andB2 are a good pair of bonds or one can construct another such pair. We
may therefore assume that|K13| = 5. Again, using the same arguments as in Case 1 with
G∗ etc., one can show that eitherB2 is good, or one can construct a good pair of bonds
of G. We may therefore assume thatB2 is good andB1 is not contractible. We have that
〈v1〉B1〈v2〉B1 is an edge ofG/B1 and there is a path from〈v2〉B1 to 〈v3〉B1 in (G/B1)\〈v1〉B1.
ThusG/B1 consists of two blocks; one containing〈v1〉B1, 〈v2〉B1 and another containing
〈v2〉B1, 〈v3〉B1. Using the same technique as in the proof of Claim25, we can construct a
good pair of bonds. This completes Case 2.
The proof of the claim now follows from Cases 1 and 2 above.�

Claim 32. If {v1, v2, v3} is a minimal good separation which is of type2, then G has a
good pair of bonds.

Proof. The proof of the claim follows from Claims29–31. �
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11. Conclusion

In consideration of the results given in the previous sections, notably Claims19, 21, 28,
and32, one deduces that no minimal counterexampleH can exist, thereby concluding the
proof of main theorem (Theorem 1.4). We venture the following conjecture for matroids:

Conjecture 11.1. Let M be a connected binary matroid having cogirth at least4. If M is not
a circuit, and has no minor isomorphic toP10, M∗(K5), F ∗

7 , or R10, then M contains two
disjoint circuitsC1 andC2 such thatM\Ci, i = 1,2 are connected, but M/Ci, i = 1,2
are disconnected.
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