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Interleukin 17A-secreting T-helper 17 (Th17) cells are

pathogenic in inflammatory kidney diseases, but their

intrarenal regulation is poorly understood. In order to better

define Th17 cell dynamics during interstitial inflammation,

we utilized the mouse unilateral ureteral obstruction model

to analyze inflammatory cell subtypes by multicolor flow

cytometry and cell sorting and by effects on in vitro-

generated Th17 cells. Interleukin 17A expression localized to

CCR6þCCR4þ /�CD4þ T-cells and progressively increased in

obstructed kidneys. The number of CCR6þCD4þ T-cells

increased over 10-fold by 72 h, were enriched for interleukin

17A production, and were highly proliferative based on

in vivo bromodeoxyuridine incorporation. Secreted products

of leukocytes isolated from obstructed kidneys enhanced the

interleukin 17A production of in vitro-generated Th17 cells.

This Th17-enhancing activity was identified as interleukin-1

produced by renal dendritic cells and monocytes. The in vivo

validity of these findings was confirmed in mice lacking the

interleulin-1 receptor and in mice treated with a recombinant

interleukin-1 receptor antagonist, each of which exhibited

reduced intrarenal Th17 activity compared with control mice.

Thus, the inflamed kidney accumulates CCR6þ Th17 cells

that undergo activation and proliferation. Production of

interleukin 1 family cytokines by resident dendritic cells and

infiltrating monocytes enhances intrarenal Th17 activation

in acute kidney injury.
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Acute kidney injury (AKI) is characterized by increased
interstitial lymphocytes, mononuclear phagocytes, and neu-
trophils.1,2 Obstruction and ischemia represent 30–50% of
AKI and frequently progress to chronic kidney disease.3–5

During AKI and glomerulonephritis, CD4þ T-helper (Th)
cells participate in renal inflammation and fibrosis.6–10 Naı̈ve
Th cells differentiate into functionally distinct subsets
distinguished by signature effector cytokines.11,12 Th type 1
(Th1) cells produce interferon-gamma (IFN-g) and are
linked with tissue-destructive inflammation, whereas Th2
cells secrete interleukin (IL)-4, -5, and -13 and, under some
conditions, are anti-inflammatory.11,12 Recently some disease
processes, originally believed to be Th1 mediated, were
shown to be partly or predominantly driven by a proin-
flammatory CD4þ T-cell subtype, Th17, which is character-
ized by the production of IL-17 family cytokines.13–15

Interleukin-17A, the best characterized and most potent of
these, stimulates neutrophil migration to sites of inflamma-
tion and amplifies effects of other proinflammatory cytokines
on fibroblasts, epithelial, and mesangial cells.13,16,17 IL-17A-
producing cells are pathogenic in Crohn’s disease, multiple
sclerosis, rheumatoid arthritis,15 glomerulonephritis,9,18,19

and AKI.20,21

Th17 cells differ from Th1 and Th2 cells by cytokine
profile, chemokine receptor expression, and mechanisms of
differentiation and activation.14 In humans, Th17 cells
express CCR2, CCR4, CCR6, and CXCR4,22,23 whereas in
mouse they preferentially express CCR6, CCR4, and CCR7.24

Although Th17 cells express some trafficking receptors in a
tissue-specific manner, CCR6 appears to be uniformly
expressed.23 Th17 differentiation is incompletely understood
but transforming growth factor-b, IL-6, IL-21, and IL-23 are
implicated in both humans and mouse.15,25–27 IL-23
promotes the expansion of established Th17 populations
but does not induce Th17 differentiation in naı̈ve T-cell
precursors.28 IL-1 family cytokines are also critically required
for early Th17 cell programming and for Th17 cell-mediated
autoimmunity.14,29 In synergy with IL-6 and IL-23, IL-1
regulates Th17 cell differentiation and maintains IL-17A
expression in Th17 effectors.30 IL-1 also regulates activation
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of previously differentiated (effector memory) Th17 cells
during tissue-specific inflammation and autoimmunity31—a
process that may be of specific relevance to Th17 cell
involvement in renal inflammation.

Recently published studies have demonstrated the patho-
genic significance of IL-17A-producing cells in diverse renal
diseases.17,18,21,32–39 Drawing upon our prior observations
demonstrating the presence of renal effector memory Th17
cells in mouse unilateral ureteral obstruction (UUO),20 the
present study sought to define molecular species and their
cellular sources that underlie the presence of activated Th17
cells in the obstructed kidney, the key phenotypic character-
istics of these cells, especially as they relate to inflammatory
processes, and the functional significance of the identified
pathway accounting for the Th17 cell accumulation in the
obstructed kidney.

RESULTS
IL-17A is increasingly expressed in the renal cortex
following UUO and is localized to CD4þ T cells

Total leukocytes (CD45-enriched cells), prepared from mouse
kidneys at 24, 48, and 72 h following UUO and stimulated
with a low concentration of anti-CD3 antibody, produced
IL-17A that was of higher concentration from cells of
obstructed kidneys compared with non-obstructed (control)
kidneys, and increased progressively over time (Figure 1a).
The largest increment in anti-CD3-inducible IL-17A oc-
curred between 24 and 48 h. Cortical tissue from individual
kidneys was subjected to quantitative RT-PCR (qRT-PCR;
Figure 1b), demonstrating a progressive increase in IL-17A
mRNA in obstructed kidneys between 24 and 72 h, and
confirming in situ IL-17A expression following UUO.
Quantitative RT-PCR of magnetic bead-separated CD45þ

and CD45� cells from kidney digests indicated that IL-17A
mRNA was confined to the CD45þ leukocyte-enriched
fractions (Figure 1c). Fluorescence-activated cell sorting
(FACS) of 72-h kidney digests into four individual fractions
based on expression of CD45, the Th marker CD4, and the
dendritic cell (DC) marker CD11c demonstrated that IL-17A
mRNA was localized to the CD4þ fraction of obstructed
kidneys (Figure 1d). Thus, consistent with our previous
findings,20 a subset of T cells within obstructed but not
control kidneys are primed to secrete IL-17A in high amounts
following low-level T-cell receptor stimulation. Furthermore,
a progressive increase in intrarenal expression of IL-17A
occurs within 72 h of UUO and is localized to CD4þ

leukocytes.

Renal Th17 cells preferentially express CCR6 and
undergo progressive accumulation and proliferation
in obstructed kidneys

Chemokine receptor expression was examined as a means to
identify T-cell sub-populations enriched for Th17 activity.
Combined surface and intracellular staining of anti-CD3-
stimulated cells of 72-h obstructed kidney cells was analyzed
by multicolor flow cytometry. Cells were surface stained for

CD45, CD4, and one of several chemokine receptors (CCR2,
CCR4, CCR5, CCR6, CXCR3), and then intracellularly
stained for IL-17A (Figure 2a and b). IL-17AþCD4þ cells
were most readily distinguishable from IL-17A�CD4þ cells
by frequency of CCR6 expression (488% versus o9% in this
experiment, one of three performed). CCR4 expression was
also more frequent on IL-17AþCD4þ cells. Combined CD4/
CCR6/CCR4 staining indicated that IL-17Aþ cells consti-
tuted 30% of CCR6þCCR4� and 23% of CCR6þCCR4þ

CD4þ T cells but were rare among the CCR6� sub-
populations (Figure 3a). IL-17A staining level was highest
among the CCR6þCCR4� cells. Quantitative RT-PCR of
FACS-purified CD4þCCR6þ and CD4þCCR6� cells from
72-h obstructed and control kidneys confirmed that IL-17A
mRNA was most readily detectable in CD4þCCR6þ cells
(Figure 3b and Supplementary Figure S1 online). Impor-
tantly, whereas CD4þ /CCR6þ cells were present within
control kidneys and could be successfully purified, IL-17A
mRNA was undetectable in these cells.

Subsequently, CCR6 expression (±CCR4) was used to
analyze the dynamics of Th17 cells and other CD4þ T cells
within obstructed kidneys. Total CD4þCCR6þCCR4þ and
CD4þCCR6þCCR4� cell numbers were compared for
individual obstructed and control kidneys at 24, 48, 72,
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Figure 1 | Interleukin (IL)-17A expression in obstructed
kidneys. Mice were subjected to unilateral ureteral obstruction
(UUO) by left ureteral ligation for 24, 48, and 72 h (n¼ 3–5 per
group). (a) Production of IL-17A in culture supernatant of
CD45-enriched cells from obstructed (OK) and nonobstructed
(control, CK) kidneys following 24 h culture with low-dose anti-
CD3 stimulation. (b) Relative quantity (RQ) of IL-17A mRNA in
whole cortex of OK and CKs measured by quantitative RT-PCR
(qRT-PCR). (c) RQ of IL-17A mRNA in CD45-depleted (CD45�) and
CD45-enriched (CD45þ ) cells of OK and CK measured by qRT-PCR.
(d) RQ of IL-17A mRNA in fluorescence-activated cell sorting
(FACS)-purified cell populations from CK and OK prepared 72 h
after UUO. Sorted cell populations were CD4þ (CD4 T cells),
CD11cþ (dendritic cells), CD45þ (CD4�, CD11c�; all other
leukocytes), and CD45� (CD4�, CD11c�; nonleukocyte kidney
cells). Results are presented as means±s.d. wPo0.05 compared
with equivalent result for control kidneys; zPo0.05 compared
with 24-h OKs; #Po0.05 compared with equivalent result for
CD45� cells.
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and 96 h post UUO (Figure 4a). The numbers of both
increased early (24 h) in obstructed kidneys and continued
to increase, although at a slower rate, up to 96 h.
The proliferative activity of CCR6þ and CCR6� Th cells
accumulating in obstructed kidneys was compared by in vivo
bromodeoxyuridine (BrdU) labeling for 72 h after UUO
(Figure 4b and c). BrdU incorporation was detected in
greater proportions of both CD4þ T-cell subsets in
obstructed compared with control kidneys. However, the
proportion of BrdUþ cells among the CD4þCCR6þ subset
of obstructed kidneys was almost twice that of CD4þCCR6�

cells, indicating a greater rate of proliferation.

Renal leukocyte populations secrete Th17-activating
factors following UUO

As we had previously observed that liposomal clodronate
administration before UUO resulted in loss of intrarenal
CD4þ T cell priming for IL-17A production,20 we hypo-
thesized that intrarenal Th17 cell activity following UUO
is promoted by one or more factors produced locally by cells
of the mononuclear phagocyte system. To investigate further,
conditioned media (CM) were prepared from CD45þ and
CD45� cells of obstructed and control kidneys 24, 48, and

72 h post UUO and were added to in vitro-generated Th17
cells during restimulation with anti-CD3 antibody. IL-17A
production was quantified intracellularly by flow cytometry
(Figure 5a and Supplementary Figure S2 online) and in
supernatants by enzyme-linked immunosorbent assay (ELI-
SA) (Figure 5b). The results indicated that CM from CD45þ

cells of obstructed kidneys promoted IL-17A production by
CD4þ T cells. This IL-17A-enhancing effect on IL-17A
secretion was progressively greater for medium from CD45þ

cells prepared following 24, 48, and 72 h of UUO (Figure 5a
and b) and was also observed in the absence of T-cell receptor
stimulation (Supplementary Figure S3 online). The effect was
absent for CM from all other fractions. These observations
confirmed the production by intrarenal leukocytes of one or
more soluble factors capable of enhancing Th17 cell
activation. The expression of four candidate mediators—IL-
1a, IL-1b, IL-23, and IL-6—was analyzed by ELISA in CM of
CD11cþ (DC-enriched), CD45þCD11c� (non-DC leuko-
cytes), and CD45� (non-leukocyte) cells of obstructed and
control cells 72 h post UUO (Figure 6). Increased secretion of
IL-1a and IL-1b was observed for both DC-enriched and
DC-depleted leukocytes from obstructed kidneys. Increased
production of IL-23 at this time point was observed for
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DC-depleted leukocytes alone, and increased IL-6 was
predominantly confined to nonleukocyte renal cells. Con-
sistent results were also obtained by qRT-PCR carried out on
the same cell populations analyzed without in vitro culture
(Supplementary Figure S4a online). Moreover, addition of
CM from CD11cþ cells from obstructed kidneys to in vitro-
generated Th17 induced a similar enhancing effect on IL-17A
production to that observed for total CD45þ cells (Supple-
mentary Figure S4b and c online).

IL-1 is responsible for intrarenal Th17-enhancing
activity following UUO

The contribution of IL-1a/b and IL-23 to the Th17-
enhancing effect of CM from CD45þ cells of obstructed
kidney was examined using blocking antibodies against the
receptors for IL-1a/b and IL-23 (Figure 7). The induction of
IL-17A production by CM of CD45þ cells from obstructed
kidney was abolished by blockade of IL-1 receptor (IL-1R1/
CD121a) but not by blockade of IL-23 receptor. To confirm
the role of IL-1 in intrarenal Th17 activation, UUO was
carried out for 72 h in IL-1R1 knockout and wild-type
mice with Th17 activity analyzed by intracellular staining
(Figure 8a–c) and ELISA (Figure 8d) of anti-CD3-stimulated
cells from obstructed kidneys. Intra-renal Th1 responses were

similarly compared using assays for IFN-g. The results
revealed reduced Th17 activity in obstructed kidneys of IL-
1R1 knockout animals in the form of reduced mean
fluorescence intensity of anti-IL-17A staining among the
IL-17Aþ cells (Figure 8c) and reduced concentration of IL-
17A in culture supernatants (Figure 8d). In contrast,
obstructed kidneys from IL-1R1 knockout animals had
increased Th1 activity (Figure 8a–d). The obstructed and
control kidneys of IL-1R1 knockout mice did not have
reduced frequency of CD4þ or CD4þCCR6þ T cells
(Supplementary Figure S5 online). The results suggested that
signaling through the IL-1R1 is unnecessary for intrarenal
accumulation of CD4þCCR6þ cells following UUO, but
regulates the proportion of Th cells that are competent for
IL-17A secretion.

To elucidate the contribution of IL-1 to both proliferation
and activation of intrarenal Th17 cells in genetically normal
animals, groups of mice were administered the recombinant
IL-1R1 antagonist (IL-1Ra), anakinra, or vehicle for 72 h
post UUO along with continuous in vivo BrdU labeling.
IL-1Ra administration did not result in an overall reduc-
tion in the proportionate accumulation of CD45þ leukocytes
in obstructed kidneys (Figure 9a) or in the proportion of
intrarenal CD45þ that were BrdUþ (data not shown).
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Nevertheless, the proportion of CD4þ T cells among the
CD45þ cells was reduced in obstructed kidneys of IL-1Ra-
treated mice—primarily due to reduced proportion of
CD4þBrdUþ cells (Figure 9b). Intracellular staining of
anti-CD3-stimulated cells from obstructed kidneys demon-
strated that, for BrdUþ , but not for BrdU� CD4þ T cells,
IL-1Ra administration was associated with reductions in
the proportion that were IL-17Aþ , as well in the mean

fluorescence intensity of anti-IL-17A staining among the
IL-17Aþ cells (Figure 9c). Reduced Th17 activity in
obstructed kidneys of IL-1Ra-treated mice was also demon-
strated by IL-17A ELISA of anti-CD3-stimulated culture
supernatants and by qRT-PCR of renal cortical tissue for IL-
17A mRNA (Figure 9d). In contrast to results for IL-1R1-KO
mice, IL-1Ra therapy was not associated with evidence of
enhanced intrarenal Th1 activity (Supplementary Figure S6a
online). Analyses of splenic T cells indicated that there was
no extrarenal effect of IL-1Ra on proliferation rate of CD4þ

T cells or on anti-CD3-stimulated production of IL-17A and
IFN-g (Supplementary Figure S6b and c online). Histological
analysis of the kidneys from this experiment demonstrated a
modest protective effect of IL-1Ra therapy against tubular
dilatation and atrophy but not against interstitial inflamma-
tory cell infiltration (Supplementary Figure S7 online). In
keeping with Jones et al.,40 this observation indicated that
IL-1 family cytokines and their associated enhancement of
intrarenal Th17 activity are not the predominant drivers of
renal damage in this model.

Th17-enhancing IL-1 is produced by DCs and monocytes
in obstructed kidney

To more clearly identify cellular sources of Th17-enhancing
activity following UUO, four individual myeloid cell
populations were sorted to high purity by FACS from 72-h
obstructed and control kidneys based on surface expression
of CD11b, CD11c, F4/80, and Ly6C. These populations were
designated as follows: (1) F4/80þ DCs (CD11bþCD11cþF4/
80þLy6C�); (2) F4/80� DCs (CD11bþCD11cþF4/80�

Ly6C�); (3) inflammatory monocytes (CD11bþCD11c�Ly6-
Chi); (4) macrophages (CD11bþCD11c�Ly6Clo) (Supple-
mentary Figure S8 online). Coculture of F4/80þ DCs, F4/80�

DCs, and inflammatory monocytes (but not macrophages)
from obstructed kidneys with restimulated, in vitro-generated
Th17 cells resulted in enhanced IL-17A production (Figure
10a). Of interest, CM from total CD45þ cells and from
the sorted myeloid cell sub-populations did not enhance
IFN-g production by restimulated in vitro-generated Th1
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cells (Supplementary Figure S9 online). Quantitative RT-PCR
analysis and ELISA of culture supernatants from the sorted
populations confirmed elevated IL-1a expression by inflam-
matory monocytes and both F4/80þ and F4/80� DCs
(Figure 10b and c). A similar expression pattern was observed
for IL-23, whereas IL-6 expression was found to be highest in
macrophages purified from the obstructed kidney (Supple-
mentary Figure S10 online). Taken together, the results
indicate that IL-1a and/or IL-1b represent important
intrarenal Th17-enhancing factors and are produced within
the obstructed kidney both by resident (DCs) and infiltrating
(monocytes) myeloid cell populations.

DISCUSSION

To our knowledge, the present study is the first to identify the
basis for activation of Th17 cells within the injured kidney,
namely, locally produced IL-1 originating from DCs and
monocytes. Moreover, using mice deficient in IL-1R1 and
administration of IL-1Ra, we demonstrate the non-redun-
dant role of IL-1 as a mediator of Th17 cell activation and
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proliferation in vivo following UUO. As such, our studies
provide novel insights regarding the nature of the processes
that enable the accumulation and activation of Th17 cells in
the injured kidney.

In recent years, important roles for Th17 cells, their
dominant secreted product, IL-17A, and the factors respon-
sible for their differentiation and activation have been
demonstrated in a range of kidney diseases.18,19 Increased
intrarenal leukocyte expression of IL-17A has been
reported in human and rodent transplant rejection, lupus
nephritis, and crescentic glomerulonephritis, as well as in
human nephrotic syndrome and rodent ischemia–reperfusion
injury.17,21,32–36,39,41,42 Deficiency or blockade of IL-17A
ameliorates the severity of kidney disease in rodent models
of ischemia–reperfusion injury, nephrotoxic serum nephritis,
and anti-myeloperoxidase glomerulonephritis,17,21,37 whereas
the presence and/or frequency of intrarenal IL-17-producing
lymphocytes correlates with disease severity in human lupus
nephritis and chronic transplant rejection.36,39

Of interest, this recent literature indicates that the
potential cellular sources for pathogenic IL-17A within the
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kidney extend beyond conventional CD4þ T cells to include
neutrophils,21 CD4�CD8� (double-negative) T cells,33,34 and
gd-T cells.43 Nevertheless, our own prior observations in
UUO20 and those of others in glomerulonephritis17,44,45 and
transplant rejection39 confirm that diverse forms of progres-
sive renal immune/inflammatory disease are associated with
interstitial accumulation of bona fide Th17 cells expressing
markers of effector memory and activated phenotypes. In the
current study, we confirm that UUO produces a progressive
increase in IL-17A expression within obstructed renal cortex
over 72 h and, using magnetic cell separation and high-level
purification by FACS, we sequentially localize IL-17A mRNA
to CD45þ leukocytes, CD4þ T cells, and, finally, the
CCR6þCD4þ T-cell subfraction. The observation indicates
a degree of intrinsic activation of Th17 cells, as detectable
IL-17A transcript was absent in equivalent fractions from
non-obstructed kidneys. Given the presumed non-antigen-
specific nature of obstruction-associated inflammatory in-
jury, this finding is in keeping with so-called ‘bystander
activation’ of effector memory Th17 cells, although T-cell
receptor specificity for renal autoantigens remains an
intriguing possibility.46,47 In keeping with the recent findings
of Turner et al.45 in nephrotoxic serum nephritis, we find that
intrarenal Th17 cells in UUO are predominantly CCR6þ .

At 72 h, up to one-third of CD4þCCR6þ cells were capable
of rapid IL-17A production upon low-level T-cell receptor
stimulation. Notably, the number of CD4þCCR6þ Th cells
increased over 10-fold in obstructed kidneys between 24 and
96 h following UUO, with a high proportion of these having
incorporated BrdU by 72 h. Although this does not formally
identify the site of T-cell proliferation, the lower rate of
BrdU incorporation in the equivalent subset from the
non-obstructed kidneys provides evidence that intrarenal
proliferation is also an important mechanism of Th17 cell
accumulation in AKI.

Recently, a role has emerged for IL-23 in the differentia-
tion and activation of pathogenic Th17 cells and other
IL-17A-producing leukocytes in rodent models of glomer-
ulonephritis and ischemia–reperfusion injury and in human
antineutrophil cytoplasmic antibody-associated vasculi-
tis.17,21,32,38,48 In other autoimmune and inflammatory
conditions, IL-1 has been identified as an important local
mediator of pathogenic Th17-cell activation.29,43 In the
current study, we demonstrate the secretion of soluble
Th17-enhancing activity by cells from obstructed kidneys.
This activity was localized initially to CD45þ intrarenal
leukocytes (both CD11cþ and CD11c�) and next to F4/80þ

DCs, F4/80� DCs, and Ly6Chi (inflammatory) monocytes,
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although not to Ly6Clo macrophages. Interestingly, although
increased expression of both IL-1a/b and IL-23 were
observed in DCs and monocytes from obstructed kidneys,
IL-1 family cytokines, functioning via IL-1R1, were found to
be entirely responsible for this in vitro Th17-activating effect.
The in vivo relevance of this finding was validated in IL-1RI-
deficient mice in which Th17 cell activity was reduced in
obstructed kidneys compared with wild-type animals despite
comparable, or greater, accumulation of CD4þCCR6þ

T cells. Similarly, mice treated with IL-1Ra following UUO
demonstrated reduced intrarenal Th17 activity. In this
experiment, concomitant BrdU labeling indicated that
IL-1R blockade reduced Th17 activity among proliferative
(BrdUþ ) Th cells from obstructed kidneys. In contrast, BrdU
incorporation and IL-17A production by splenic Th cells was
unaffected. Thus, we convincingly show that both activation
and proliferation of intrarenal Th17 cells are positively
regulated by IL-1. Although this does not rule out a role for
IL-23 in other aspects of the triggering of Th17 cells during
intrarenal inflammation, it does emphasize the significance of
IL-1 in specifically promoting Th17-cell activation and
expansion at sites of localized ‘sterile’ inflammation.49,50

Given the growing interest in clinical application of
IL-1 antagonists and blocking antibodies to inflammatory
diseases,50,51 the potential to target pathogenic renal Th17
responses by this strategy merits consideration. Notably,
Timoshanko et al.52 observed attenuation of experimental
glomerulonephritis in mice lacking IL-1R1, IL-1a, or IL-1b,
and Furuichi et al.53 demonstrated reduced early severity of
renal ischemia–reperfusion injury in IL-1a/b-deficient mice,
as well as exacerbated injury in mice genetically lacking
IL-1Ra. In UUO, Jones et al.40 observed reduced intrarenal
pro-fibrotic activity at 7 (but not 14) days in IL-1R1-deficient
compared with wild-type mice, although T-cell infiltration
and Th activity was not analyzed in this study. In our own
experiments using IL-1Ra during the initial 72 h following
UUO, we observed only a mild protective effect against
tubular dilatation and atrophy by histological analysis, with
no overt reduction in the extent of interstitial cellular
infiltrates. Furthermore, despite the inhibition of Th17
activity, neutrophil infiltration of obstructed kidneys at this
time point was not reduced when analyzed by flow cytometry
(data not shown). Thus, although UUO has proven to be
of value as a model system in which to evaluate the dyna-
mics and activation factors for intrarenal Th17 cells during
kidney injury, our data suggest that IL-1 blockade and its
associated inhibition of localized Th17 activity may be of
limited benefit in obstructive renal injury. As Kitching
and Holdsworth18 have recently highlighted, cross-regulation
of Th17 and Th1 cells during inflammation could result in
augmentation of harmful Th1 responses following specific
Th17 targeting. However, although we observed increased
numbers of CD4þ IFN-gþ T cells in obstructed kidneys of
IL-1R1-KO compared with wild-type mice, this phenomenon
was not reproduced in IL1Ra-treated mice in which a trend
toward reduced Th1 activity in obstructed kidneys was
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observed in the form of lower anti-CD3-stimulated IFN-g
production (see Supplementary Figure S6a online). In this
experiment, it was not possible to accurately co-stain for
intracellular BrdU and IFN-g (data not shown). Thus,
although our findings clearly document the enhancing effect
of IL-1 on intrarenal Th17 activation and proliferation, its
role in regulating intrarenal Th1 (as well as other Th subsets)
remains unclear. In the broader sense, the lack of robust
benefit of IL-1 blockade and intrarenal Th17 suppression in
UUO likely reflects the general observation that therapeutic
approaches for inflammatory diseases based on targeting
of a single cytokine/chemokine have been less successful
than a multi-pronged approach. In contrast, antigen-driven,
immune-mediated kidney diseases in which Th17 cells
have been shown to have a major pathogenic role (e.g.,
antineutrophil cytoplasmic antibody-associated vasculitis
and crescentic glomerulonephritis) may prove to be more
responsive to IL-1 blockade either alone or in combination
with inhibition of other Th17-differentiation and -activation
factors such as IL-23, IL-6, and transforming growth factor-
b1. It should also be noted that Th17 cells represent only one
discrete target for locally produced IL-1 within the kidney and,
as shown by Timoshanko et al.52 in chimeric mice, the
responses of non-immune, resident renal cells to IL-1 contri-
bute significantly to tumor necrosis factor production and
glomerular injury in a model of crescentic glomerulonephritis.

In summary, we have used the UUO model as an
‘incubator’ of localized Th17 cell accumulation within the
inflamed kidney. Our findings favor the following conclu-
sions: (1) Effector memory CD4þ T cells preprogrammed for
IL-17A production accumulate in substantial numbers within
injured kidney through chemokine receptor-specific recruit-
ment and localized proliferation. (2) Even without antigenic
priming, acute renal inflammation induces local activation of
Th17 cells, of which IL-1, produced by DCs and inflamma-
tory monocytes, is a key mediator. Our findings will be of
value in better defining the dynamics and pathogenic
properties of intrarenal Th17 cells, their dependence upon
activation factors secreted locally within the kidney by cells of
the mononuclear phagocyte system, and the targets available
for inhibiting their effector functions during kidney disease.

MATERIALS AND METHODS
Experimental animals
Eight- to twelve-week-old female C57BL/6 (B6) mice were
purchased from Harlan Laboratories UK (Bicester, UK). Mice
genetically deficient in IL-1R1 on a B6 background, originally from
Jackson Laboratories, Bar Harbor, ME, were bred on-site. Animals
were housed in specific pathogen-free facilities. Procedures were
carried out under license from the Irish Department of Health and
Children and approved by the NUI Galway Animal Ethics
Committee.

Reagents
Antibodies, culture media, buffer solutions, ELISA reagents, and
other materials used in the study are detailed in Supplementary
Methods online.

Cell cultures
Cells were cultured in 96-well round-bottom plates at 106 cells/ml
with other additions as described for individual experiments. For
ELISA of secreted products, supernatants were withdrawn at 24 h.
For surface and intracellular staining of cultured cells, Brefeldin A
(GolgiPlug 1 ml/ml, BD Biosciences, Oxford, UK) was added 8 h
before analysis. For preparation of CM, magnetic column-purified
cells were placed in culture at 106 cells/ml for 24 h, following which
media were withdrawn and frozen at �20 1C before being used at 1:1
ratio with fresh medium as described for individual experiments.

UUO and preparation of kidney cell digests
Mouse UUO with preparation of cell suspensions between 24 and
96 h later by collagenase/DNase digestion was conducted as
previously described (see also Supplementary Methods online).20,54

In some experiments, mice received a bolus of BrdU intraperitoneally
at the time of surgery, followed by continuous exposure to
BrdU-containing water for 72 h. In some experiments, groups of
mice also received the IL-1R antagonist (IL-1Ra), anakinra, at a
concentration of 100 mg/kg i.p. in 250ml of phosphate-buffered saline
or phosphate-buffered saline alone by intraperitoneal injection at 0,
24, and 48 h following UUO.

Flow cytometry, fluorescence-activated cell sorting, and
magnetic column separation of kidney cells
Kidney cells suspended in 100ml aliquots of FACS buffer were
incubated with 3–5 fluorochrome-labeled and/or biotinylated
antibodies for 30 min at 4 1C, followed by washing in FACS buffer
and, if necessary, incubation with fluorochrome-labeled streptavidin
for 30 min at 4 1C and then resuspended in 4% paraformaldehyde
in phosphate-buffered saline. Intracellular staining was carried
out using the Cytofix/Cytoperm and BrdU detection kits (BD
Biosciences) according to the manufacturer’s instructions. Analysis
was performed using a BD Biosciences FACSCanto flow cytometer
and FlowJo software (TreeStar, Olten, Switzerland).

For FACS, cell suspensions from 3–5 kidneys were resuspended in
FACS sorting buffer with fluorochrome- and biotin-labeled mono-
clonal antibodies for 30 min at 4 1C, and then washed, filtered
through a 40-mm mesh and sorted using a BD Biosciences
FACSAriaII sorter with purity determined by post-sort analysis.

Magnetic column separations of kidney cell suspensions were
carried out in MACS buffer by manufacturer-recommended
protocols using MS columns and an OctoMACS separator (Miltenyi
Biotec, Auburn, CA). For individual experiments, positive and/or
negative column fractions were retained, washed in MACS buffer,
and used for culture and/or qRT-PCR. In some experiments, cell
suspensions were first subjected to anti-CD11c magnetic column
separation, and then the negative fractions were subjected to anti-
CD45 magnetic column separation to sequentially prepare CD11cþ ,
CD45þCD11c�, and CD45� cell fractions.

Cultures with in vitro-generated Th17 and Th1 cells
Th17- and Th1-skewed mouse CD4þ T-cell cultures were generated
over 10 days from splenocytes of healthy adult mice using standard
protocols (see Supplementary Methods online for details). For
restimulation experiments, CD4þ T cells were repurified from
differentiation cultures by magnetic column separation and then
plated in fresh culture medium 106 cells/ml with or without anti-
CD3 (1.0 or 0.1mg/ml) for 24 h. In individual experiments,
conditioned or control media were added at a 1:1 ratio with fresh
medium. In some experiments, previously optimized concentrations
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of blocking antibodies or relevant isotype control antibodies were
also added. In others, FACS-purified cells from non-obstructed and
obstructed kidneys were added at a 1:10 ratio. After 24 h,
concentrations of IL-17A and IFN-g were measured in culture
supernatants by ELISA.

RNA preparation and qRT-PCR
Total RNA was isolated from whole kidney or sorted cell populations
using RNeasy Mini or Micro kits (Qiagen, Valencia, CA; see also
Supplementary Methods online). RNA was converted to cDNA using
the High Capacity cDNA Reverse Transcription Kit with RNase
Inhibitor (Applied Biosystems, Carlsbad, CA). Equal amounts of
cDNA were analyzed by qRT-PCR using the TaqMan Master Mix
and commercial primer/probe sets for mouse GAPDH, IL-1a, IL-1b,
IL-17A, IL-6, and IL-23(p19) on a StepOne Plus Real Time PCR
System (all from Applied Biosystems). Relative quantifications were
performed using the comparative CT method with normalization to
GAPDH and results expressed as fold difference relative to a relevant
control sample.

Statistical analysis
Individual experiments were carried out between two and six times
to ensure reproducibility. For culture experiments, between three
and six replicates were initiated and individually analyzed for each
condition. Data are presented as mean±s.d. Statistical comparisons
between individual groups were performed by unpaired, two-tailed
t-tests using Microcal Origin V6.0 software (Northampton, MA)
with significance assigned at Po0.05.
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SUPPLEMENTARY MATERIAL
Figure S1. The gating strategy and purity of fluorescence-activated
cell sorting from 72-h obstructed kidneys for the purpose of
analyzing interleukin (IL-17A) mRNA expression is shown.
Figure S2. Examples of intracellular flow cytometric analysis of
in vitro-generated T-helper 17 (Th17) cells for interleukin (IL)-17A
following anti-CD3 stimulation with and without exposure to
conditioned media from CD45-depleted (CD45�) and CD45-enriched
(CD45þ ) cells of obstructed kidneys following 24, 48, and 72 h of
unilateral ureteral obstruction (UUO).
Figure S3. Soluble products of CD45þ cells of obstructed kidneys
induce increased interleukin (IL)-17A secretion by in vitro-generated
T-helper 17 (Th17) cells in the absence of anti-CD3 stimulation.
Figure S4. (A) qRT-PCR of various magnetic column-enriched kidney
cell populations for IL-1-a, IL-1-b, IL-23 p19 and IL-6.
(B) Enhancement of IL-17A production of in vitro-generated Th17 cells
by conditioned medium of CD11c+ cells of 72 h obstructed kidney.
Figure S5. CD4þ CCR6þ T cells are not proportionately diminished
in obstructed kidneys of IL-1R knockout (KO) mice compared with
wild type.
Figure S6. (A) Anti-CD3-stimulated IFN-gamma production and
cortical mRNA expression from kidneys of vehicle- and IL-1Ra-treated

mice. (B, C) In vivo BrdU incorporation and stimulated IL-17A and
IFN-gamma production by T-cells from spleens of vehicle- and IL-1Ra-
treated mice.
Figure S7. Histological scoring for tubulointerstitial injury in control
and obstructed kidneys of vehicle- and IL-1Ra-treated mice.
Figure S8. The gating strategy and purity of fluorescence-activated
cell sorting from 72-h obstructed kidneys for the purpose of isolating
individual myeloid cell populations is shown.
Figure S9. Renal myeloid cell populations do not enhance interferon-
gamma (IFN-g) production by in vitro-generated T-helper 1 (Th1) cells
following unilateral ureteral obstruction (UUO).
Figure S10. Quantitative RT-PCR results showing relative quantities
(RQs) of IL-23 (p19) and IL-6 mRNA in fluorescence-activated cell
sorting (FACS)-purified myeloid cell populations from control (CK)
and obstructed (OK) kidneys following 72 h of unilateral ureteral
obstruction (UUO).
Supplementary material is linked to the online version of the paper at
http://www.nature.com/ki
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