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Neural Mechanisms of Attention-Deficit/Hyperactivity
Disorder Symptoms Are Stratified by MAOA
Genotype

Charlotte Nymberg, Tianye Jia, Steven Lubbe, Barbara Ruggeri, Sylvane Desrivieres,
Gareth Barker, Christian Büchel, Mira Fauth-Buehler, Anna Cattrell, Patricia Conrod, Herta Flor,
Juergen Gallinat, Hugh Garavan, Andreas Heinz, Bernd Ittermann, Claire Lawrence, Karl Mann,
Frauke Nees, Angelica Salatino-Oliveira, Marie-Laure Paillère Martinot, Tomas Paus,
Marcella Rietschel, Trevor Robbins, Michael Smolka, Tobias Banaschewski, Katya Rubia,
Eva Loth, Gunter Schumann, and the IMAGEN Consortium
Background: Attention-deficit/hyperactivity disorder (ADHD) is characterized by deficits in reward sensitivity and response inhibition.
The relative contribution of these frontostriatal mechanisms to ADHD symptoms and their genetic determinants is largely unexplored.

Methods: Using functional magnetic resonance imaging and genetic analysis of the monoamine oxidase A (MAOA) gene, we
investigated how striatal and inferior frontal activation patterns contribute to ADHD symptoms depending on MAOA genotype in a
sample of adolescent boys (n ¼ 190).

Results: We demonstrate an association of ADHD symptoms with distinct blood oxygen level–dependent (BOLD) responses depending
on MAOA genotype. In A hemizygotes of the expression single nucleotide polymorphism rs12843268, which express lower levels of
MAOA, ADHD symptoms are associated with lower ventral striatal BOLD response during the monetary incentive delay task and lower
inferior frontal gyrus BOLD response during the stop signal task. In G hemizygotes, ADHD symptoms are associated with increased
inferior frontal gyrus BOLD response during the stop signal task in the presence of increased ventral striatal BOLD response during the
monetary incentive delay task.

Conclusions: Depending on MAOA genotype, ADHD symptoms in adolescent boys are associated with either reward deficiency or
insufficient response inhibition. Apart from its mechanistic interest, our finding may aid in developing pharmacogenetic markers for ADHD.
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Attention-deficit/hyperactivity disorder (ADHD) symptoms
include impulsivity, hyperactivity, and inattention. The
disorder is thought to be dimensional, with the most

extreme manifestations clinically diagnosed as ADHD according
to DSM-IV (1,2). Evidence from neuroimaging studies suggests
that impulsivity and hyperactivity are associated with striatal and
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frontal activation patterns during reward anticipation and
response inhibition, respectively (3–7). Despite the clinical rele-
vance of these neural mechanisms, we know little about how
reward anticipation and response inhibition jointly affect ADHD
symptoms.

Studies of ADHD patients frequently report reduced blood
oxygenation level–dependent (BOLD) response of the ventral
striatum (VS) during reward anticipation (6,8–11). This hypores-
ponsiveness of the VS has been observed during both immediate
and delayed rewards (11) in ADHD patients as well as in healthy
female subjects (12). However, there is conflicting evidence
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showing that there may also be a positive correlation of
impulsivity and VS activation during reward anticipation (13,14)
and during immediate compared with delayed rewards in the
normal population (15).

ADHD has been associated with poor response inhibition
resulting either from insufficient activation of the inferior frontal
gyrus (IFG) (5,16,17) or from a requirement for larger frontal
recruitment for optimal task performance (4,7,18,19). Rubia and
colleagues reported that the IFG of ADHD patients is hypoactivated
during inhibition trials of the stop signal task (SST) relative to the
IFG of healthy control subjects (20), but others have observed a
hyperactivation of the IFG during successful inhibition in ADHD
patients (4,7). Previous studies suggest that the right IFG in
particular is a crucial structure underlying response inhibition (21).

Thus it appears that BOLD responses of the subcortical
reward system and inferior frontal inhibitory mechanisms,
particularly the right IFG, are crucially related to ADHD symp-
toms (8,21). However, there is inconsistency regarding whether
they are associated with enhanced or decreased BOLD
responses in these two systems. Furthermore, because reward
processing and response inhibition have never been tested
together in adolescents, it is unclear whether ADHD symptoms
in the same individuals are associated with abnormalities in
either or both systems. We therefore interrogated both systems
and investigated potential determinants of brain activity in the
regions involved.

Because the mean heritability of ADHD is estimated at 76%
(22), we hypothesized that these determinants might include
genetic factors (23). ADHD symptoms are more commonly
observed in males than females with gender ratios varying from
3:1 to 9:1 (24,25). It has therefore been suggested that genes on
the X chromosome may be involved in the development of the
disorder. The monoamine oxidase A gene (MAOA) is localized on
the human X chromosome (26–28). MAOA encodes a mitochon-
drial enzyme, which degrades monoamines, including norepi-
nephrine, dopamine, and serotonin (29), which are thought to
underlie neural functions associated with ADHD. Several studies
have identified associations between specific MAOA polymor-
phisms and ADHD (26,27,30,31). Most recently, a screen of 23
candidate genes (including COMT DRD1-DRD4, DAT1, SNAP25,
MAOA, and MAOB) reported that MAOA was the most promising
candidate gene underlying ADHD out of the genes investigated
(27). Of 12 MAOA polymorphisms that were tested for association
with ADHD, rs12843268 showed the strongest association. A
haplotype analysis that included the MAOA single nucleotide
Table 1. Demographics Split by Gender and rs12843268 Genotype Groups, M

Boys

A G Total
(n ¼ 67) (n ¼ 123) (n ¼ 190)

Age (years) 14.5 � .4 14.5 � .4 14.5 � .4
(13.6–15.5) (13.6–15.6) (13.6–15.6)

VIQ 117.4 � 14.9 115.1 � 14.6 115.9 � 14.7
(83–150) (87–155) (83–155)

PIQ 107.2 � 13.7 107.0 � 12.5 107.0 � 12.9
(81–149) (79–135) (79–149)

ADHD 2.7 � 1.9 3.4 � 2.6 3.1 � 2.1
Symptoms (0–7) (0–10) (0–10)

We found no significant genotype differences in age, VIQ, PIQ (p � .05) in b
allele, girls are either AA homozygous, AG heterozygous, or GG homozygous

ADHD, attention-deficit/hyperactivity disorder; VIQ, verbal IQ; PIQ, nonverb
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polymorphism (SNP) rs12843268 reported an association with
adolescent ADHD and response inhibition in boys (32). Earlier
studies showed that a variable number tandem repeat (VNTR)
within the promoter of MAOA, which is linked to ADHD (33), was
also associated with inhibitory control (34) as well as novelty
seeking (35,36).

In a sample of 414 adolescents from the IMAGEN study who
did not achieve diagnostic criteria for ADHD, we investigated
whether MAOA genotype might be used for stratification by
testing the association between MAOA and ADHD symptoms. We
then carried out stratified analyses of brain activation in the key
reward area of VS and the principal inhibitory frontal area, the
right IFG. On the basis of etiologic models just described, we
hypothesized that there is 1) a significant association between
MAOA genotype and ADHD symptoms, 2) a significant association
between ADHD symptoms and VS and right IFG BOLD responses,
and 3) that the association between ADHD symptoms and brain
activation patterns during reward processing and inhibitory
control is stratified by MAOA genotype.
Methods and Materials

Participants
We used data from the first wave of IMAGEN (n = 648).

Individuals who had passed quality controls for genotyping, neuro-
imaging, and behavioral tests were included in the data set. Four
hundred and fourteen adolescents passed the inclusion criteria for
further analysis (190 boys, 224 girls). The mean age of the
participants was 14.4 years (SD: .4; range: 13.3–15.6 years; Table 1).

Participants were tested at eight IMAGEN assessment centres
(London, Nottingham, Dublin, Mannheim, Berlin, Hamburg, Paris,
and Dresden). Local ethics research committees at each site
approved the study. On the day of assessment, written consent
was obtained from the parent or guardian, and verbal assent was
obtained from the adolescent. A detailed description of recruitment
and assessment procedures and inclusion/exclusion criteria have
been published elsewhere (37). Three hundred and sixty-seven
participants were right-handed, and 47 participants were left-
handed or ambidextrous. Individuals with verbal (VIQ) or nonverbal
(PIQ) IQ �75 or missing IQ information were excluded (n ¼ 10).
Handedness and study site were controlled for in all analyses.

Out of the 190 boys who had completed the monetary
incentive delay (MID) task, 143 had also completed the SST
(Supplement 1).
ean � SD (Range)

Girls

AA AG GG Total
(n ¼ 16) (n ¼ 100) (n ¼ 108) (n ¼ 224)

14.5 � .4 14.4 � .4 14.4 � .5 14.4 � .04
(13.9–15.6) (13.3–15.4) (13.3–15.5) (13.3–15.6)

110.4 � 11.8 112.6 � 15.1 113.1 � 15.2 112.7 � 14.9
(88–130) (77–150) (77–152) (77–152)

111.8 � 12.9 111.4 � 12.1 109.3 � 12.8 110.9 � 12.7
(92–141) (86–146) (76–135) (76–147)
2.7 � 1.9 2.3 � 2.1 2.6 � 2.2 2.4 � 2.1
(0–7) (0–8) (0–10) (0–10)

oys or girls after controlling for study site. Boys carry one A allele or one G
for rs12843268.
al IQ.
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ADHD Symptoms (Strength and Difficulties Questionnaire)
ADHD symptoms were assessed using parental reports of the

Strength and Difficulties Questionnaire (SDQ), a brief 25-item
behavioral screening tool probing for ADHD-type problems
(hyperactivity, inattention, and impulsivity), emotional symptoms,
conduct problems, peer problems, and prosocial behavior (38).
Our sample of 414 consisted of 28 subjects (20 boys) who
“possibly” suffered from ADHD according to the SDQ. The SDQ
ADHD symptom scale can be subdivided into two subscales: a
hyperactivity/impulsivity subscale, composed of three items, and
an inattention subscale, composed of two items (39).

Genotyping
DNA purification and genotyping was performed by the

Centre National de Génotypage in Paris. DNA was extracted from
whole blood samples preserved in ethylene-eiamine-tetra-acetic
acid (EDTA) vacutainer tubes (BD, Becton, Dickinson and Com-
pany, Oxford, United Kingdom) using Gentra Puregene Blood Kit
(QIAGEN, Valencia, California) according to the manufacturer’s
instructions. Genotype information was collected at 582,982
markers using the Illumina HumanHap610 Genotyping BeadChip
(Illumina, San Diego, California) as part of a previous genome-
wide association study (37) (Supplement 1).

Effect of rs12843268 on MAOA Expression
Total RNA was extracted from whole blood cells using the

PAXgene Blood RNA Kit (QIAGEN). Labeled complementary RNA
(cRNA) from 369 individuals was generated. MAOA expression was
independently validated in 40 boys using quantitative polymer-
ase chain reaction (Supplement 1). The relative fold change in
expression was measured via the comparative method using the
formula 2-ΔΔCt (40).

Monetary Incentive Delay Task
The participants performed a modified version of the MID task

to study neural responses to reward anticipation and reward
outcome. The paradigm has been previously described (41)
(Supplement 1).

Stop Signal Task
Participants also performed an event-related SST designed to

study neural responses to successful and unsuccessful inhibitory
control (5,42). The task has been previously described (5,42)
(Supplement 1). The dependent variable of the task is the stop
signal reaction time (SSRT), which was calculated by subtracting
the mean stop signal delay (the average time between go and
stop signal, at which the subject managed to inhibit to 50% of
trials) from the mean reaction time to go trials (43). Because of
problems in the tracking algorithm, SSRT data was only available
for 73 subjects.

Magnetic Resonance Imaging Data Acquisition and Analysis
Structural and functional magnetic resonance imaging (fMRI)

data were acquired at eight IMAGEN assessment sites with 3T MRI
scanners of different manufacturers (Siemens, Munich, Germany;
Philips, Best, The Netherlands; General Electric, Chalfont St Giles,
UK; Bruker, Ettlingen, Germany). The scanning variables were
specifically chosen to be compatible with all scanners. The same
scanning protocol was used at all sites. In brief, high-resolution
T1-weighted three-dimensional structural images were acquired
for anatomical localization and coregistration with the functional
time series. Functional MRI BOLD images were acquired with a
gradient-echo, echo-planar imaging sequence. For the MID task,
300 volumes were acquired for each subject. For the SST, 444
volumes were acquired for each subject. For both tasks, each
volume consisted of 40 slices aligned to the anterior commission/
posterior commission line (2.4-mm slice thickness, 1-mm gap).
The echo time was optimized (echo time ¼ 30 msec, repetition
time ¼ 2200 msec) to provide reliable imaging of subcortical areas
(Supplement 1).

Functional MRI data were analyzed with SPM8 (Statistical
Parametric Mapping; http://www.fil.ion.ucl.ac.uk/spm). We extract-
ed regions of interest using the Marsbar toolbox (http://marsbar.
sourceforge.net). The IFG opercularis was extracted based on the
Montreal Neurological Institute Automated Anatomical Labeling.
Because the VS is not available in Automated Anatomical Label-
ing, it was created using Marsbar based on the peak of the
“anticipation high win versus no win” contrast (xyz ¼ �9, 11, �2,
9-mm radius; Figure S2 and Table S2 in Supplement 1). Averaged
beta values based on all voxels in the regions of interest were
used for all analyses.

Association Analyses
The general linear model was used to determine associations

among the SDQ measure, BOLD responses, and MAOA genotype.
Correlations between fMRI BOLD-responses and SSRT were
derived through Pearson correlations. All analyses were two-
sided. Permutations with 100,000 iterations were used to control
for hemisphere specific tests of VS BOLD response. Where
pcorrected is indicated, p values were corrected for statistical tests
performed in the left and right hemisphere.
Results

Identification and Characterization of MAOA SNP
We extracted eight SNPs covering the MAOA locus and

identified two haplotypes with a frequency greater than 5%,
which accounted for 92.3% of the variance of the gene (Table 2;
Figure S4 in Supplement 1). Among the SNPs segregating the two
haplotypes was rs12843268, which has previously been associ-
ated with ADHD symptoms (27,32). We therefore selected
rs12843268 for further analyses. G allele carriers of rs12843268
represent the major haplotype with a frequency of 63.4%,
whereas A allele carriers represent the minor haplotype with a
frequency of 28.9%. Gene expression data of MAOA from
peripheral blood were available from 171 boys and 198 girls of
the IMAGEN sample. In boys, we found significant differences
between genotype groups of rs12843268 (F1,162 ¼ 7.82, p ¼ .006),
with higher MAOA messenger RNA (mRNA) expression in the G
hemizygotes compared with A hemizygotes. The expression
analysis was not significant in girls (F1,189 ¼ .58, p ¼ .45). The
association was independently validated through quantitative
polymerase chain reaction in RNA from 40 boys, which showed
a relative fold change in expression between the two genotypes
of 6.34 (SE: .296) (Figure S5 in Supplement 1).

Effects of MAOA Genotype on ADHD Symptoms
Because of the X-linked nature of MAOA, we tested the

association between the SNP rs12843268 and ADHD symptoms
in boys and girls separately. We found a significant association of
SNP rs12843268 and ADHD symptoms in boys (F1,181 ¼ 4.12, p ¼
.044, partial η2: .022) with G hemizygotes (n ¼ 123) showing
significantly more ADHD symptoms compared with A hemi-
zygotes (n ¼ 67) (Table 1). Rs12843268 genotype accounted for
2.2% of the variance in ADHD symptoms in boys. We did not find
www.sobp.org/journal



Table 2. Haplotype Analysis of MAOA gene

rs1465108 rs909525 rs1800464 rs12843268 rs6610845 rs2235186 rs2072743 rs1137070 p Value Frequency

Haplotype 1 1 1 1 1 1 1 1 1 .016 .634
Haplotype 2 0 0 1 0 0 0 0 0 .063 .289
Total Frequency .923

Tagging single nucleotide polymorphism rs12843268 segregates haplotypes with a frequency of �5% and accounts for 92.3% of the variance of
the gene.
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a significant association between MAOA SNP rs12843268 and
ADHD symptoms in girls (F1,215 ¼ 1.47, p ¼ .23), suggesting that
the effects of MAOA are gender specific. On the basis of these
findings, we performed imaging genetic analyses in boys only.

Reward Anticipation
In boys, we investigated the effect of rs12843268 genotype

on fMRI BOLD response in the VS during reward anticipa-
tion using the MID task. G hemizygotes showed significantly
higher BOLD response than A hemizygotes in the left VS
(F1,180 ¼ 10.87, pcorrected ¼ .002, partial η2: .061; Figure 1A) and
in the right VS (F1,180 ¼ 6.80, pcorrected ¼ .015, partial η2: .045;
Figure 1B).

We next examined whether individual variability in VS BOLD
responses were correlated with ADHD symptoms in the full
sample of 190 boys. We found a trend toward a negative
correlation between the right VS BOLD response and ADHD
symptoms in the full sample of boys (r ¼ �.16, pcorrected ¼ .053).
This correlation was particularly driven by the impulsivity/hyper-
activity subscale of the SDQ (right VS: r ¼ �.18, puncorrected ¼
.014). No significant correlation was identified between VS
activation and the inattention subscale (right VS: r ¼ �.08,
puncorrected ¼ .30; left VS: r ¼ �.09, puncorrected ¼ .24).

We carried out an interaction analysis of right VS activa-
tion*SNP rs12843268 genotype on ADHD symptoms, which was
not significant (p ¼ .570) due to multicollinearity for VS*SNP
rs12843268, with a corresponding r ¼ .865. Orthogonalization
was not performed because it would either decompose or
integrate variables, thus changing their meaning for this study.
We then stratified our analyses by rs12843269 genotype and
found that the negative correlation observed between right VS
BOLD response and ADHD symptoms was driven by A hemi-
zygotes (right VS: r ¼ �.29, pcorrected ¼ .041; left VS r ¼ �.22,
pcorrected ¼ .14). We observed no significant correlation between
Figure 1. (A) Associations between MAOA genotype and left activation: MAOA
10.87, p ¼ .001, partial η2: .061). (B) Associations between MAOA genotype and
(F1,180 ¼ 6.80, p ¼ .007, partial η2: .045) during reward anticipation. (C) Coro
anticipation, suggesting that G hemizygotes of MAOA rs12843268 show higher
p � .01, uncorrected).
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VS BOLD responses and ADHD symptoms in G hemizygotes (right
VS: r ¼ �.15, pcorrected ¼ .17; left VS: r ¼ �.14, pcorrected ¼ .21)
(Figure 2). Differences between the correlation coefficients were
not significant when separated by genotype for the right VS (z ¼
.95, p ¼ .34) or the left VS (z ¼ .53, p ¼ .60). No significant
differences were found in reaction times (RT) during the MID task
(Table S4 in Supplement 1). Although we observed an association
of rs12843268 genotype and dorsal striatal activation, this was
not correlated with ADHD symptoms (Table S5 in Supplement 1).

The amount of variance of ADHD symptoms explained by
neural responses in the right VS without rs12843268 stratifica-
tion accounted for 2.6%. After stratification by genotype, the
variance in ADHD symptoms accounted for in A hemizygous boys
increased to 8.4%.

Although the negative correlations between the right VS BOLD
response and ADHD symptoms is consistent with a blunted
reward system (6,10), the absence of a significant association
between VS BOLD response and ADHD symptoms in G hemi-
zygous boys suggested that brain regions other than the VS
might mediate the effect of rs12843268 in this genotype group.
We hypothesized that G hemizygous boys may show an associ-
ation between ADHD symptoms and brain activation measured
during response inhibition (5,21). Therefore, we investigated
genotype-specific BOLD response of the right IFG during suc-
cessful response inhibition.

Successful Response Inhibition
We measured BOLD response of the right IFG using the SST in

143 of the 190 boys (Supplement 1). Whereas we did not observe
a significant association between right IFG and MAOA rs12843268
(F1,133 ¼ .02, p ¼ .88), we found a significant interaction between
MAOA genotype and right IFG activation on ADHD symptoms
(F1,131 ¼ 6.24, p ¼ .014). Upon stratification by MAOA rs12843268
genotype, we found a positive correlation between right IFG
rs12843268 is associated with left ventral striatum (VS) activation (F1,180 ¼
right VS activation: MAOA rs12843268 is associated with right VS activation
nal section showing genotype differences in VS activation during reward
activation of bilateral VS compared with A hemizygotes (xyz: �9, 11, �2,



Figure 2. (A) Correlation of ventral striatum (VS) activation and attention-deficit/hyperactivity disorder (ADHD) symptoms: the correlation between right
VS activation and ADHD symptoms were driven by A hemizygotes (r ¼ �.29, p ¼ .025). No significant association was found in the left VS or among G
hemizygotes in either left or right VS. However, the difference between correlation coefficients were not significant (right VS: z ¼ .95, p ¼ .34; left VS: z ¼
.53, p ¼ .60). (B) Coronal section showing the correlation between right VS activation and ADHD symptoms during reward anticipation in A hemizygotes
(xyz: 9, 11, �2, p � .05, uncorrected).
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BOLD response and ADHD symptoms (r ¼ .26, p ¼ .017) among G
hemizygotes, whereas in A hemizygotes, we found a negative
correlation between right IFG BOLD response and ADHD
symptoms (r ¼ �.30, p ¼ .049; Figure 3). The difference be
tween the correlation coefficients was significant (z ¼ 3.23,
p ¼ .001). Without MAOA rs12843268 stratification, the neural
responses in the right IFG accounted for 1.9% of the variance in
ADHD symptoms, whereas after stratification, the variance in
ADHD symptoms accounted for in G hemizygotes increased to
6.8% and the variance in ADHD symptoms accounted for in
A hemizygotes increased to 9%.

There was no significant difference between A hemizygotes
and G hemizygotes in SSRT (n ¼ 73) or Mean reaction time to go
trials, and no genotype-differences in the number of successfully
completed stop trials or go trials (Tables S6 and S7 in Supplement 1).
However, we found a negative correlation between SSRTs and right
IFG BOLD response (r ¼ �.28, p ¼ .02), indicating that higher BOLD
response of the right IFG during successful inhibition trials was
associated with lower SSRT. This association was significant
in G hemizygotes (r ¼ �.36, p ¼ .02) but not in A hemizygotes
(r ¼ �.15, p ¼ .44; Table S6 in Supplement 1).
Figure 3. (A) Correlation between right inferior frontal gyrus (IFG) activation
activation was positively correlated with ADHD symptoms in G hemizygotes
between right IFG activation and ADHD symptoms (r ¼ �.30, p ¼ .049). The dif
.001). (B) Coronal section showing the positive correlation between right I
hemizygotes (xyz: 55, 15, 10, p � .05, uncorrected). (C) Coronal section sho
symptoms during successful stop trials in A hemizygotes (xyz: 57, 16, 17, p �
To determine combined variance accounted for by right VS and
right IFG activation on ADHD symptoms, we performed additional
analyses in the sample of 143 boys, for whom both MID and SST
information was available. We found that right VS activation alone
accounts for 3.7% of the variance in ADHD symptoms (r2 ¼ .037,
p ¼ .021). When the right IFG was added to the model, an
additional 1.9% of variance in ADHD symptoms was accounted
for (combined r2 ¼ .056). This change in r2 was not significant
(p ¼ .095), indicating that the contribution of the IFG to ADHD
symptoms is indeed dependent on MAOA genotype as previously
suggested by the significant interaction term (Figure 3).

Discussion

In a population-based sample of 414 adolescent boys and
girls, we demonstrate that MAOA is associated with ADHD
symptoms in boys only. On the basis of these findings, we
investigated whether neural mechanisms thought to underlie
ADHD are affected by MAOA in boys. We found that ADHD
symptoms were correlated with distinct frontostriatal activation
patterns, depending on rs12843268 genotype.
and attention-deficit/hyperactivity disorder (ADHD) symptoms: right IFG
(r ¼ .26, p ¼ .017). In A hemizygotes, a negative correlation was found
ference between the correlation coefficients was significant (z ¼ 3.23, p ¼
FG opercularis and ADHD symptoms during successful stop trials in G
wing the negative correlation between right IFG opercularis and ADHD
.05, uncorrected).

www.sobp.org/journal
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In A hemizygotes of rs12843268, which express lower levels of
MAOA, ADHD symptoms are associated with lower VS BOLD
response, indicating lower reward-related activity in this region,
as well as reduced inhibition as measured by right IFG BOLD
response. This may suggest that ADHD symptoms in this group
arise from a blunted reward response coupled with lower
prefrontal inhibitory control, as postulated by the reward defi-
ciency syndrome hypothesis (44).

Conversely, in G hemizygotes, who express higher levels
of MAOA, ADHD symptoms were associated with increased right
IFG BOLD response in the presence of increased VS BOLD
response. The observed negative correlation of SSRT and right
IFG BOLD response in G hemizygotes indicates that higher VS
BOLD responses alone may not be a risk factor for ADHD
symptoms in this group but must be considered together with
the requirement for larger frontal recruitment for optimal task
performance (7).

Theories based on neuroimaging studies suggest two alter-
native mechanisms underlying ADHD symptoms: the impulsivity
hypothesis suggests that insufficient inhibitory control underlies
the disorder, whereas the reward deficiency syndrome hypothesis
proposes that impulsive behaviors compensate for blunted
sensitivity of the reward system (3,47,48). Our results suggest
that both mechanisms contribute to ADHD symptoms, depending
on MAOA genotype. Thus, while supporting recent reports that
provide genetic evidence for the contribution of dopaminergic
mechanisms to reward anticipation and ADHD (45,46), our study
is first to dissociate distinct neurobehavioral mechanisms of
ADHD symptoms by applying stratification by genotype. This
MAOA-dependent stratification may contribute to the resolution
of seemingly contradictory findings in the ADHD literature, which
report both over- or underactivation of the inhibitory control
network (4,5,7,16,18).

To understand how MAOA rs12843268 affects BOLD response
in our sample, we investigated the expression levels of MAOA in A
hemizygotes and G hemizygotes. We find allele specific gene
expression differences in peripheral blood with G hemizygotes
showing a sixfold increase in MAOA expression, compared with A
hemizygotes. This suggests that G hemizygotes have higher
MAOA mRNA levels, which might result in increased degradation
of monoamines and lower baseline levels of serotonin, dopamine,
and noradrenaline. A cis-acting effect of the VNTR promoter
polymorphism on a yet to be identified functional variant that is
in linkage disequilibrium (LD) with rs1137070 has recently been
reported (49). In our sample rs1137070 is in high linkage
disequilibrium (D′ ¼ 1; r2 � .9) with rs12843268. The increased
MAOA mRNA levels might reflect changes in transcriptional
activity due to an interaction of the promoter VNTR and
rs12843268 and may therefore result in differential activation in
the context of ADHD.

Reduced levels of serotonin are known to enhance premature
responding and are associated with higher impulsiveness (50).
Accordingly, G hemizygotes showed more ADHD symptoms than
A hemizygotes. In G hemizygotes, we found an association of
increased right IFG BOLD response and high ADHD symptoms as
well as a negative correlation between right IFG BOLD response
and shorter SSRTs. These results might suggest a requirement for
higher brain activity in the key inhibitory region to achieve similar
synaptic serotonin concentrations in G hemizygotes compared
with A hemizygotes and to inhibit inappropriate responses in the
SST to obtain similar behavioral results (4,7). Lower MAOA levels in
A hemizygotes might result in increased baseline levels of
monoamines in the VS relative to G hemizygotes. Because the
www.sobp.org/journal
motivational salience of a reward stimulus depends on the
relative increase in dopamine (51), as opposed to the absolute
level, an increased baseline might result in a smaller relative
increase due to a ceiling effect in dopamine response.

Our results indicate that stratification of neuroimaging phe-
notypes by MAOA genotype notably increases the amount of
variance explained. For example, BOLD response during reward
anticipation in the right VS of A hemizygotes accounts for 8.4% of
the variance in ADHD symptoms. This contrasts with 2.2% of the
variance accounted for by genotype on ADHD symptoms and
2.6% of the variance accounted for by right VS BOLD response on
ADHD symptoms, when both genotypes are considered jointly. In
the case of right IFG BOLD response, we found that associations
only became apparent upon stratification by MAOA genotype.
This might explain recent results (8) that, in the absence of
genetic analyses, failed to identify an association between ADHD
and IFG BOLD response during inhibition trials. However, our
findings also suggest a sizeable proportion of unexplained
variance, which can probably be accounted for by the influence
of multiple genes as well as additional brain functions underlying
ADHD symptoms.

It is noteworthy that this is one of the first studies to
investigate the association between neural responses and ADHD
symptoms, rather than ADHD. The mean number of ADHD
symptoms in our population-based sample is approximately
50% below the threshold for clinical ADHD (2.7 vs. 5). Although
this does not affect the interpretation of the association of ADHD
symptoms and neurobiological functions observed, it indicates
the normative character of our data, and the need for validation
in ADHD patients to fully assess their clinical applicability.

In conclusion, through stratification of ADHD symptoms by
MAOA genotype, we identified two distinct frontostriatal mech-
anisms that determine the manifestation of ADHD symptoms in
adolescent boys: one of blunted reward and inhibitory control
and another characterized by increased reward processing
coupled with enhanced efforts to recruit the top down frontal
inhibitory system.
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