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Abstract

We prove that for every compactukhand every integet > 2 there are a compactughof dim < n
and a surjectivé/ V*~1-mapr : Z — X having the property that:

for every finitely generated Abelian group and every integek > 2 such that dijp X <k <n
we have ding; Z < k andr is G-acyclic, or equivalently:

for every simply connected CW-complek with finitely generated homotopy groups such that
e-dimX < K we have e-din¥ < K andr is K-acyclic. (A space iX -acyclic if every map from the
space taK is null-homotopic. A map i -acyclic if every fiber isK -acyclic.)
0 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A spaceX is always assumed to be separable metrizable. The cohomological dimension
dimg X of X with respect to an Abelian groug is the least numben such that
H"t1(X, A; G) = 0 for every closed subset of X. The covering dimension dif
coincides with the integral cohomological dimension gdikhif X is finite dimensional.

In 1987 Dranishnikov [1] showed that there is an infinite dimensional compactum (
compact metric space) with finite integral cohomological dimension. In 1978 Edwards
discovered his resolution theorem [6,10] which shows that despite Dranishnikov’s example
the dimension functions dim and djjrare closely related even for infinite dimensional
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compacta. The Edwards resolution theorem says that a compactum pkdintan be
obtained as the image of a cell-like map defined on a compactum cfdinA compactum
X is cell-like if any mapf : X — K from X to a CW-complexX is null-homotopic. A map
is cell-like if its fibers are cell-like. The reducetech cohomology groups of a cell-like
compactum are trivial with respect to any gradp

Below are stated a few theorems representing main directions of generalizing the
Edwards resolution theorem. We recall some notions used in the theorems.

A space isG-acyclic if its reducedCech cohomology groups modut are trivial, a
map isG-acyclic if every fiber isG-acyclic. By the Vietoris—Begle theorem@@acyclic
map of compacta cannot raise the cohomological dimensiop dim

A compactumX is approximately:-connected if any embedding &finto an ANR has
the U V" -property, i.e., for every neighborhodd of X there is a smaller neighborhood
X c V C U such that the inclusiorV c U induces the zero homomorphism of the
homotopy groups in dinx n. An approximatelyn-connected compactum has trivial
reducedCech cohomology groups in disd n with respect to any grou. A map is
called aU V"-map if every fiber is approximatehrconnected.

Let K be a CW-complex. A space is said to Keacyclic if every map from the space
to K is null-homotopic and a map is said to Keacyclic if every fiber isk -acyclic.

Theorem 1.1[2]. Let p be a prime number and Iéf be a compactum witdimy,, X <n.

Then there are a compactumwith dimZ < » and aZp-acycIicUV”—l—mapr Z—>X
from Z onto X.

Theorem 1.2 [8]. Let G be an Abelian group and lef be a compactum witlimg X < n,
n > 2. Then there are a compactufiwith dimg Z < n anddimZ < n+1and aG-acyclic
mapr:Z — X fromZ onto X.

Theorem 1.3 [9]. Let X be a compactum witldimz X < n > 2. Then there exist a
compactumZ with dimZ < » and a cell-like map-:Z — X from Z onto X such for
every integek > 2 and every group such thatdimg X < k we havedimg Z < k.

Each of these theorems emphasizes different aspects of the Edwards resolution. The
special feature of Theorem 1.3 is that it takes care of all possible cohomological dimensions
bigger than 1. It is very natural to try to generalize Theorems 1.1 and 1.2 in the spirit of
Theorem 1.3. As a part of this project this paper is mainly devoted to proving the following
version of Theorem 1.1.

Theorem 1.4. Let X be a compactum. Then for every integee 2 there are a compactum
Z of dim < n and a surjectivel/ V"~1-mapr: Z — X having the property that for every
finitely generated Abelian grou@ and every integek > 2 such thadimg X <k <n we
have thatdimg Z < k andr is G-acyclic.

Theorem 1.4 can be reformulated in terms of extensional dimension [4,5]. The
extensional dimension of is said not to exceed a CW-compl&x written e-dimX < K,
if for every closed subsed of X and every mapf: A — K there is an extension of
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over X. It is well known that dimX < n is equivalent to e-diX < §" and din; X <n
is equivalent to e-dilY < K (G, n) whereK (G, n) is an Eilenberg—Mac Lane complex of
type (G, n).

The following theorem shows a close connection between cohomological and exten-
sional dimensions.

Theorem 1.5 [3]. Let X be a compactum and I& be a simply connectedW-complex.
Consider the following conditions

(1) e-dimX < K;
(2) dimg;x) X <i foreveryi > 1,
(3) dimy, (k) X < i for everyi > 1.

Then(2) and (3) are equivalent andql) implies both(2) and (3). If X is finite dimen-
sional then all the conditions are equivalent.

Theorems 1.4 and 1.5 imply

Theorem 1.6. Let X be a compactum. Then for every integer 2 there exist a compactum
Z with dimZ < n and a surjectivel V*~1-mapr:Z — X such that for every simply
connectedCW-complexk with finitely generated homotopy groups such graimX < K
we havee-dimZ < K andr is K-acyclic.

Proof. Let Z andr:Z — X be as in Theorem 1.4. Let a simply connected CW-complex
K with finitely generated homotopy groups be such that eXiga K. Then H,(K) are
finitely generated and by Theorem 1.5, diqx) X < i and dim, k) X < i for every
i > 1. Hence by Theorem 1.4, dignk)Z < i for every 1< i < n. Since dinZ < n,
dimy, (k) Z <i fori > n and it follows from Theorem 1.5 that e-dih< K.

Letx € X and letCr—1(x) and Xr—1(x) be the cone and the suspension-ot(x),
respectively. Ther'+3(Cr=1(x), r=1(x); i (K)) = HTHCr () /r~1(x); mi(K)) =
H Y Zr=Y(x); mi(K)) = H (r~(x); m:(K)). Recall that dim, () X < for everyi > 1
and hence, by Theorem 1.4,is 7; (K)-acyclic for 1< i < n. Then, since dinZ < n,
H(r~Y(x); 7;(K)) =0 for everyi > 1 and thereforé?'*1(Cr—1(x), r~1(x); 7;(K)) =0
for i > 1. SinceCr~1(x) is finite dimensional it follows from Obstruction Theory that
every map from—1(x) to K extends ove€r—1(x) and hence is null-homotopic. Thus we
showed that is K-acyclic. O

Theorem 1.6 is equivalent to Theorem 1.4. To show this we need to show that
Theorem 1.6 implies Theorem 1.4. L¥tbe a compactum, let > 2 and letr: Z — X
satisfy the conclusions of Theorem 1.6. Then for every finitely generated Abelian group
G with dimg X <k <n, k > 2 we have that dimZ < k. Let x € X. The K(G, k)-
acyclicity of r implies thatH*(r—1(x); G) = 0, the fact that- is UV"~! implies that
Hi(r~1(x); G) =0 fori < k — 1 and finally ding; Z < k implies thatd*(»~1(x); G) =0
fori > k. All this together implies that~1(x) is G-acyclic and hence Theorems 1.6 and 1.4
are equivalent.
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It is known that Theorem 1.4 does not hold for arbitrary groGpsven if we do not
require that is U V"1, see [7]. However allowing in Theorem 1.4 for the dimensio& of
to be raised ta + 1 one can drop the restrictions éhand obtain the following theorem
which we will state without a proof.

Theorem 1.7. Let X be a compactum. Then for every integer 2 there are a compactum
Z of dim < n + 1 and a surjectivel V*~1-mapr: Z — X having the property that for
every Abelian groug; and every integek > 2 such thatdimg X < k < n we have that
dimg Z < k andr is G-acyclic.

Finally let us note that it would be interesting to know if the restrictiop 2 in
Theorem 1.4 can be omitted.

2. Preliminaries

A map between CW-complexes is said to be combinatorial if the preimage of every
subcomplex of the range is a subcomplex of the domain.

Let M be a simplicial complex and léi*] be thek-skeleton ofM (= the union of all
simplexes ofM of dim < k). By a resolutionEW (M, k) of M we mean a CW-complex
EW (M, k) and a combinatorial map: EW (M, k) — M such thatw is 1-to-1 overM ]
Let f: N — K be amap of a subcomplék of M into a CW-complexX . The resolution is
said to be suitable fof if the mapf ow| -1y, €xtendsto a map’: EW(M,k) — K. We
call f aresolving map forf. The resolution is said to be suitable for a compachuihfor
every simplexa of M, e-dimX < w~1(A). Note thatifw: EW(M, k) — M is a resolution
suitable forX then for every mag : X — M thereisamap,: X - EW (M, k) such that
for every simplexa of M, (w o ¥)(¢~1(A)) C A. We callyy a combinatorial lifting ofp.

Let M be a finite simplicial complex and lef: N — K be a cellular map from
a subcomplexN of M to a CW-complexk such thatMX! ¢ N. A standard way
of constructing a resolution suitable fof is described in [9]. Such a resolution
w:EW(M, k) — M is called the standard resolution &f for f and it has the following
properties:

w is a map onto and for every simplex of M, w~1(A) is either contractible or
homotopy equivalent t& ;

the (integral) homology groups cEW (M, k) are finitely generated if so are the
homology groups ofk. This property can be derived from the previous one using the
Mayer—Vietoris sequence and induction on the number of simplex&s of

EW (M, k) is (k— 1)-connected if so ard/ andK;

for every subcompleX” of M, |17 EW(T, k) = o N(T) > T is the standard
resolution ofT for fiynr:NNT — K.

All groups are assumed to be Abelian and functions between groups are homomor-
phisms.P stands for the set of primes. L&t be a group angh € P. We say thag € G
is p-torsion if p¥g = 0 for some integek > 1. Tor, G stands for the subgroup of the
p-torsion elements of. G is p-torsion if Tor, G = G, G is p-torsion free if To, G =0
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andgG is p-divisible if for everyg € G there ish € G such thatph = g. G is p-local if it
is g-divisible andg-torsion free for every € P, g # p.

Let G be a group, letw:L — M be a surjective combinatorial map of a CW-
complexL and a finite simplicial compleX/ and letn be a positive integer such that
Hi(a"1(A); G)=0for everyi < n and every simplexi of M. One can show by induction
on the number of simplexes & using the Mayer-Vietoris sequence and the Five Lemma
thata, : H;(L; G) — H;(M; G) is an isomorphism foi < n. We will refer to this fact as
the combinatorial Vietoris—Begle theorem.

We need the following slightly more precise version of [9, Proposition 2.1(i)].

Proposition 2.1. Let2 < k < n, p € P and letM be an(n — 1)-connected finite simplicial
complex. Letw: EW (M, k) — M be the standard resolution for a cellular mgp: N —
K(Z,, k) from a subcomple¥ of M containingMX!. Thensw;(EW (M, k)) is p-torsion
foreveryl<i<n-—1.

Proof. Recall thatw is a combinatorial surjective map and for every simplexof M,
w~1(A) is either contractible or homotopy equivalentk@Z,, k). EW (M, k) is (k — 1)-
connected since so aM andK (Z,, k), andH.(EW (M, k)) is finitely generated since so
is Hy(K (Zp, k).

By the generalized Hurewicz theorem the grougK (Z,,k)), i > 1 are p-tor-
sion and thereforeH; (K (Z,,k)), i > 1 are p-local. Letg € P and g # p. From
the p-locality of H;(K(Zp,k)), i > 1 it follows that H;(K(Z,,k); Zs) =0, i > 1.
Since M is (n — 1)-connected, the combinatorial Vietoris—Begle theorem implies that
H(EW(M, k); Zq) =0, 1<i <n —1. Then from the universal coefficient theorem
it follows that H;(EW(M,k)) ® Z, =0 for 1<i <n —1 and everyg € P, g # p.
SinceH.(EW (M, k)) is finitely generated, the last property implies tha{EW (M, k)),
1<i<n-—1is p-torsion and by the generalized Hurewicz theorendE W (M, k)),
1<i<n—1isp-torsion. O

In the proof of Theorem 1.4 we will also use the following facts.

Proposition 2.2 [9]. Let K be a simply connecte@W-complex such thak has only
finitely many non-trivial homotopy groups. Létoe a compactum such thadimy, (k) X <i
fori > 1. Thene-dimX < K.

Let K’ be a simplicial complex. We say that mapsk — K’, g:L — L', a:L - K
ande’: L' — K’

LAK

|
L/ LK/
combinatorially commute if for every simplext of K’ we have that(a’ o g)((h o

a)~1(A)) C A. (The direction in which we want the mapsg, « anda’ to combinatorially
commute is indicated by the first map in the list. Thus saying that, g and «
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combinatorially commute we would mean th@t o o)((e’ o g)~1(A)) C A for every
simplex A of K'.) Recall that a map’: K — L’ is a combinatorial lifting ofz to L’ if
for every simplexA of K’ we have thata’ o h')(h=1(A)) C A.

For a simplicial complex anda € K, st(a) denotes the union of all the simplexes of
K containinga. The following proposition whose proof is left to the reader is a collection
of simple combinatorial properties of maps.

Proposition 2.3.

(i) LetacompactunX be represented as the inverse likit= lim K; of finite simplicial
complexesk; with bonding map’, : K; — K;. Fixi and Tetw: EW(K;, k) — K;
be a resolution oK; which is suitafnle foX. Then there is a sufficiently largesuch
thath; admits a combinatorial lifting t&EW (K, k).

(i) Leth:K - K',W:K — L' ando’: L’ — K’ be maps of a simplicial complek’
and CW-complexesk and L’ such thath and o’ are combinatorial and:’ is a
combinatorial lifting ofs. Then there is a cellular approximation sf which is also
a combinatorial lifting off.

(iii) Let K and K’ be simplicial complexes, let mapsK — K', g:L - L', a:L - K
anda’: L' — K’ combinatorially commute and létbe combinatorial.

Then
g(oe_l(st(x))) C o/_l(st(h(x))) and h(st(e(z))) Cst((e’ 0 g)(2))
foreveryx € K andz € L.

3. Proof of Theorem 1.4

If n > dimy X then Theorem 1.4 follows from Theorem 1.3 (see also a remark at the
end of this section). Hence we may assume thatdimy, X. Then for a finitely generated
Abelian groupG the condition ding; X < n implies thatG is torsion. Thus we may assume
that the group& considered in the theorem are torsion and therefore the Bockstein basis
o (G) of G consists only of groups of tygg, (p is always assumed to be a prime number).

RepresentX as the inverse limitX = Ii(r_n (K;, h;) of simplicial complexesK; with
combinatorial bonding maps1: K;+1 — K; and the projectiong; : X — K; such that
for every simplexa of K;, dian(pi_l(A)) < 1/i. We will construct by induction simplicial
complexed.; and mapg;+1:Li+1 — L;, «; : L; — K; such that

(@ L; = K" ande; : L; — K; is the embedding. The simplicial structure bf is
induced fromKE”] and the simplicial structure df;, i > 1 is defined as a sufficiently
small barycentric subdivision at ). We will refer to this simplicial structure while
constructing standard resolutions bf. It is clear thaty; is always a combinatorial
map;

(b) thepmapshiﬂ, gi+1, aj+1 anda; combinatorially commute. Recall that this means
that for every simplex of K, (¢ o gi+1)((hi41 0 2jr1)"1(A)) C A.



M. Levin / Topology and its Applications 135 (2004) 101-109 107

We will constructZL; in such a way thaZ = Ii(m (L;, g) willadmitamapr:Z — X
such thatzZ andr satisfy the conclusions of the theorem. Assume that the construction is
completed foii. We proceed té + 1 as follows.

Let dimz, X <k, 2<k<n and let f:N — K(Zp, k) be a cellular map from a

subcomplexV of L;, Ll[.k] C N.Letw,:EW(L;, k) — L, be the standard resolution bf
for f. We are going to construct fromy, : EW (L;, k) — L; aresolutionn: EW(K;, k) —
K; of K; suitable forX. Ifdm K; <k seto=«; owr : EW(K;, k) = EW(L;, k) > K;.

IfdimK; > k setwy =aj owy : EWr(K;, k) = EW(L;, k) — K; and we will construct
by induction resolutions; : EW;(K;, k) — K;, k+1< j <dimK; suchthatt W;(K;, k)
is a subcomplex oEW; 1(K;, k) andw;,1 extendsw; for everyk < j < dimK;. Note
that saying that atm + 1)-cell is attached to a CW-complex by a map of degreee mean
that the cell is attached by a mapfrom the boundarg” of the cell to the CW-complex
such thaw factors through a map' — S" of degreep.

Assume that; : EW;(K;, k) — K;, k < j <dimK; is constructed. For every simplex
A of K; of dim= j + 1 consider the subcomplexj‘l(A) of EW;(K;, k). Enlarge
(I)j_l(A) by attaching cells of dim=n 4+ 1 by maps of degree in order to kill the
elements o, (w;~1(A)) = {pa: a € m,(w;~1(A))} and attaching cells of dins n + 1
in order to get a subcomplex with trivial homotopy groups in dim. Let EW; 1(K;, k)
be EW;(K;, k) with all the cells attached for a{lj + 1)-dimensional simplexed of K;
andletw;1: EW;1(K;, k) — K; be an extension ab; sending the interior points of the
attached cells to the interior of the corresponding

Finally denoteEW (K;,k) = EW;(K;,k) andw = w;: EW;(K;, k) - K; for j =
dimK;. Note that since we attach cells only of dimn, the n-skeleton of EW (K;, k)
coincides with the:-skeleton ofEW (L;, k).

Let us show thatEW (K;, k) is suitable forX. Fix a simplexA of K; and denote
T = ai_l(A). First note that7 is (n — 1)-connectedw1(A) is (k — 1)-connected,
(@~ 1(4)) is p-torsion, 7 (w~1(A)) = 0for j > n + 1 andr; (0 1(A)) = 7j (0] X(T))
forj <n-—1.

By Proposition 2.1,7rj(a)zl(T)) is p-torsion for j <n — 1. Thennj(a)‘l(A)) is
p-torsion fork < j < n. Therefore by Bockstein Theory djmw_l(m) X <dimg, X <k,
k < j <n and hence by Proposition 2.2, e-dfn< w=1(A).

Thus we have shown th&tW (K;, k) is suitable forX. Now replacingK; 1 by K ; with
a sufficiently largej we may assume by (i) of Proposition 2.3 that there is a combinatorial
lifting of h;+1t0 h}, ,: Kit1 — EW(K;, k). By (i) of Proposition 2.3 we repladg , , by
its cellular approximation preserving the propert;hgr)l1 of being a combinatorial lifting
Of ]’li_;,_]_.

Then i, sends then-skeleton ofK;,1 to the n-skeleton of EW(K;, k). Recall
that then-skeleton of EW (K;, k) is contained inEW (L;, k) and hence one can define
git1=wp 0 h;+1|1<;[i]1 ‘Lit1 = K|} — L;. Finally define a simplicial structure afy 11

to be a sufficiently small barycentric subdivisionfof!; such that

(© diamgl.jH(A) < 1/i for every simplexA in L;11 andj <i wheregij =gj4+108j420
--cogitL; —)Lj.
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It is easy to check that the properties (a) and (b) are satisfied.

DenoteZ = Ii(r_n (L;, gi) and letr; : Z — L; be the projections.

Clearly dimZ < n. For constructind.; 1 we used an arbitrary map: N — K(Z,, k)
such that dim, X <k, 2<k <n andN is a subcomplex of; containinngU‘]. By a
standard reasoning described in detail in the proof of Theorem 1.6, [9] one can show that
choosingZ, and f in an appropriate way for ea¢hwve can achieve that diim) Z < k for
every integer 2< k < n and everyZ, such that dim, X < k. Then by the Bockstein
theorem ding Z < k for every finitely generated torsion Abelian grodp such that
dimg X <k,2<k<n.

By (iii) of Proposition 2.3, the property (b) implies that for evarg X andz € Z the
following holds:

(d1) gira(ey 5 (SUpisa(x)))) C oy H(st(pi(x))), and
(d2) hira(St(@i41 0 1i41)(2))) C St(@; 017)(2).

Define a map: Z — X by r(z) = N{p; 2t 0 r:)(2))): i = 1,2,...}. Then (d2)
implies thatr is indeed well-defined and continuous.
The properties (d1) and (d2) also imply that for every X

r—l(x) = |I(I'_n (ai_l(st(pi (x))), gi lai_l(st(pi(x))))’

where the mag;|... is considered as a mapdg)‘_ll(st(p,-_l(x))).
Sincer—1(x) is not empty for every € X, r is a map onto. Fixc € X and let us
show that-—1(x) satisfies the conclusions of the theorem. First note Miat st(p; (x))
is contractible . Sincd; = oei_l(Mi) is homeomorphic to the-skeleton of stp; (x)), T;
is (n — 1)-connected and heneel(x) is approximatelyn — 1)-connected as the inverse
limit of (n — 1)-connected finite simplicial complexes.
LetZ, be such that dim, X <k, 2< k <n and assume thdt; 1 is constructed with
helpof f: N — K(Z,, k). ConsiderT; 1 as then-skeleton ofM; 1 and denote

B =theinclusionT; 1 — M;1,

T=h gl T — o N (T,

y =hjql. M1 — 0~ (M;) and

x = the inclusion w, () — = X(M;).

Clearlyy o 8 = k o t. Denote byg*, t*, y* and«* the induced homomorphisms of
the n-dimensional cohomology groups modulg, of the corresponding spaces. Recall
that the(n 4 1)-cells of w~1(M;) not contained inw; *(7;) are attached to; }(7;) by
maps of degre@. Thenx™ is an isomorphism. Sinc&f; 1 is contractible 8* is the zero
homomorphism. Thus we obtain that must also be the zero homomorphism. Then, since
gi+1l..: Ti+1 — T; factors through, the mapg;+1/... induces the zero homomorphism of
H'(T;; Z,) and H"(T;+1; Z,,). Now we may assume thdt, appears in the construction
for infinitely many indices. ThenH" (r1(x); Z,)=0and since ~1(x) is approximately
(n — 1)-connected and of dirg n we get that—1(x) is Z,-acyclic.
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Let G be a finitely generated torsion Abelian group such thatgdkn< n. By the
Bockstein theorem dig), X < n for everyZ, € o(G). Then rl(x) is Zp-acyclic for

everyp such that Toy G # 0. Hencer—1(x) is G-acyclic and the theorem follows.O

Remark. It is easy to see that the proof of Theorem 1.4 also workZfoeegarded ag.,
with p = 0. This way one can avoid the use of Theorem 1.3 in the proof of Theorem 1.4
and make the proof self-contained.
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