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Abstract

We prove that for every compactumX and every integern� 2 there are a compactumZ of dim � n

and a surjectiveUV n−1-mapr :Z→X having the property that:
for every finitely generated Abelian groupG and every integerk � 2 such that dimGX � k � n

we have dimGZ � k andr isG-acyclic, or equivalently:
for every simply connected CW-complexK with finitely generated homotopy groups such t

e-dimX�K we have e-dimZ �K andr isK-acyclic. (A space isK-acyclic if every map from the
space toK is null-homotopic. A map isK-acyclic if every fiber isK-acyclic.)
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A spaceX is always assumed to be separable metrizable. The cohomological dime
dimGX of X with respect to an Abelian groupG is the least numbern such that
Ȟ n+1(X,A;G) = 0 for every closed subsetA of X. The covering dimension dimX
coincides with the integral cohomological dimension dimZX if X is finite dimensional
In 1987 Dranishnikov [1] showed that there is an infinite dimensional compactum=
compact metric space) with finite integral cohomological dimension. In 1978 Edw
discovered his resolution theorem [6,10] which shows that despite Dranishnikov’s ex
the dimension functions dim and dimZ are closely related even for infinite dimension
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compacta. The Edwards resolution theorem says that a compactum of dimZ � n can be
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obtained as the image of a cell-like map defined on a compactum of dim� n. A compactum
X is cell-like if any mapf :X→K fromX to a CW-complexK is null-homotopic. A map
is cell-like if its fibers are cell-like. The reduceďCech cohomology groups of a cell-lik
compactum are trivial with respect to any groupG.

Below are stated a few theorems representing main directions of generalizin
Edwards resolution theorem. We recall some notions used in the theorems.

A space isG-acyclic if its reduceďCech cohomology groups moduloG are trivial, a
map isG-acyclic if every fiber isG-acyclic. By the Vietoris–Begle theorem aG-acyclic
map of compacta cannot raise the cohomological dimension dimG.

A compactumX is approximatelyn-connected if any embedding ofX into an ANR has
theUV n-property, i.e., for every neighborhoodU of X there is a smaller neighborhoo
X ⊂ V ⊂ U such that the inclusionV ⊂ U induces the zero homomorphism of t
homotopy groups in dim� n. An approximatelyn-connected compactum has trivi
reducedČech cohomology groups in dim� n with respect to any groupG. A map is
called aUV n-map if every fiber is approximatelyn-connected.

LetK be a CW-complex. A space is said to beK-acyclic if every map from the spac
toK is null-homotopic and a map is said to beK-acyclic if every fiber isK-acyclic.

Theorem 1.1 [2]. Letp be a prime number and letX be a compactum withdimZp X � n.
Then there are a compactumZ with dimZ � n and aZp-acyclicUV n−1-mapr :Z→X

fromZ ontoX.

Theorem 1.2 [8]. LetG be an Abelian group and letX be a compactum withdimGX � n,
n� 2. Then there are a compactumZ with dimGZ � n anddimZ � n+1 and aG-acyclic
mapr :Z→X fromZ ontoX.

Theorem 1.3 [9]. Let X be a compactum withdimZX � n � 2. Then there exist a
compactumZ with dimZ � n and a cell-like mapr :Z→ X from Z ontoX such for
every integerk � 2 and every groupG such thatdimGX � k we havedimGZ � k.

Each of these theorems emphasizes different aspects of the Edwards resolutio
special feature of Theorem 1.3 is that it takes care of all possible cohomological dime
bigger than 1. It is very natural to try to generalize Theorems 1.1 and 1.2 in the sp
Theorem 1.3. As a part of this project this paper is mainly devoted to proving the follo
version of Theorem 1.1.

Theorem 1.4. LetX be a compactum. Then for every integern� 2 there are a compactum
Z of dim � n and a surjectiveUV n−1-mapr :Z→X having the property that for ever
finitely generated Abelian groupG and every integerk � 2 such thatdimGX � k � n we
have thatdimGZ � k andr isG-acyclic.

Theorem 1.4 can be reformulated in terms of extensional dimension [4,5].
extensional dimension ofX is said not to exceed a CW-complexK, written e-dimX�K,
if for every closed subsetA of X and every mapf :A→ K there is an extension off
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overX. It is well known that dimX � n is equivalent to e-dimX � S
n and dimGX � n
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is equivalent to e-dimX �K(G,n) whereK(G,n) is an Eilenberg–Mac Lane complex
type(G,n).

The following theorem shows a close connection between cohomological and
sional dimensions.

Theorem 1.5 [3]. LetX be a compactum and letK be a simply connectedCW-complex.
Consider the following conditions:

(1) e-dimX �K;
(2) dimHi(K) X � i for everyi > 1;
(3) dimπi(K) X � i for everyi > 1.

Then(2) and (3) are equivalent and(1) implies both(2) and (3). If X is finite dimen-
sional then all the conditions are equivalent.

Theorems 1.4 and 1.5 imply

Theorem 1.6. LetX be a compactum. Then for every integern� 2 there exist a compactum
Z with dimZ � n and a surjectiveUV n−1-map r :Z → X such that for every simpl
connectedCW-complexK with finitely generated homotopy groups such thate-dimX �K

we havee-dimZ �K andr isK-acyclic.

Proof. Let Z andr :Z→X be as in Theorem 1.4. Let a simply connected CW-com
K with finitely generated homotopy groups be such that e-dimX � K. ThenH∗(K) are
finitely generated and by Theorem 1.5, dimHi(K) X � i and dimπi(K) X � i for every
i > 1. Hence by Theorem 1.4, dimHi(K) Z � i for every 1< i � n. Since dimZ � n,
dimHi(K) Z � i for i > n and it follows from Theorem 1.5 that e-dimZ �K.

Let x ∈ X and letCr−1(x) andΣr−1(x) be the cone and the suspension ofr−1(x),
respectively. ThenȞ i+1(Cr−1(x), r−1(x);πi(K)) = Ȟ i+1(Cr−1(x)/r−1(x);πi(K)) =
Ȟ i+1(Σr−1(x);πi(K))= ˜̌

Hi(r−1(x);πi(K)). Recall that dimπi (K) X � i for everyi > 1
and hence, by Theorem 1.4,r is πi(K)-acyclic for 1< i � n. Then, since dimZ � n,
Ȟ i(r−1(x);πi(K))= 0 for everyi > 1 and thereforeȞ i+1(Cr−1(x), r−1(x);πi(K))= 0
for i > 1. SinceCr−1(x) is finite dimensional it follows from Obstruction Theory th
every map fromr−1(x) toK extends overCr−1(x) and hence is null-homotopic. Thus w
showed thatr isK-acyclic. ✷

Theorem 1.6 is equivalent to Theorem 1.4. To show this we need to show
Theorem 1.6 implies Theorem 1.4. LetX be a compactum, letn � 2 and letr :Z→ X

satisfy the conclusions of Theorem 1.6. Then for every finitely generated Abelian
G with dimGX � k � n, k � 2 we have that dimGZ � k. Let x ∈ X. TheK(G,k)-
acyclicity of r implies thatȞ k(r−1(x);G) = 0, the fact thatr is UV n−1 implies that
˜̌
Hi(r−1(x);G)= 0 for i � k − 1 and finally dimGZ � k implies thatȞ k(r−1(x);G)= 0
for i > k. All this together implies thatr−1(x) isG-acyclic and hence Theorems 1.6 and
are equivalent.
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It is known that Theorem 1.4 does not hold for arbitrary groupsG even if we do not
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require thatr isUV n−1, see [7]. However allowing in Theorem 1.4 for the dimension oZ
to be raised ton+ 1 one can drop the restrictions onG and obtain the following theorem
which we will state without a proof.

Theorem 1.7. LetX be a compactum. Then for every integern� 2 there are a compactum
Z of dim � n + 1 and a surjectiveUV n−1-map r :Z→ X having the property that fo
every Abelian groupG and every integerk � 2 such thatdimGX � k � n we have that
dimGZ � k andr isG-acyclic.

Finally let us note that it would be interesting to know if the restrictionk � 2 in
Theorem 1.4 can be omitted.

2. Preliminaries

A map between CW-complexes is said to be combinatorial if the preimage of
subcomplex of the range is a subcomplex of the domain.

LetM be a simplicial complex and letM [k] be thek-skeleton ofM (= the union of all
simplexes ofM of dim � k). By a resolutionEW(M,k) of M we mean a CW-comple
EW(M,k) and a combinatorial mapω :EW(M,k)→M such thatω is 1-to-1 overM [k].
Letf :N→K be a map of a subcomplexN ofM into a CW-complexK. The resolution is
said to be suitable forf if the mapf ◦ω|ω−1(N) extends to a mapf ′ :EW(M,k)→K. We
callf ′ a resolving map forf . The resolution is said to be suitable for a compactumX if for
every simplex∆ ofM, e-dimX � ω−1(∆). Note that ifω :EW(M,k)→M is a resolution
suitable forX then for every mapφ :X→M there is a mapψ :X→EW(M,k) such that
for every simplex∆ of M, (ω ◦ψ)(φ−1(∆))⊂∆. We callψ a combinatorial lifting ofφ.

Let M be a finite simplicial complex and letf :N → K be a cellular map from
a subcomplexN of M to a CW-complexK such thatM [k] ⊂ N . A standard way
of constructing a resolution suitable forf is described in [9]. Such a resolutio
ω :EW(M,k)→M is called the standard resolution ofM for f and it has the following
properties:
ω is a map onto and for every simplex∆ of M, ω−1(∆) is either contractible o

homotopy equivalent toK;
the (integral) homology groups ofEW(M,k) are finitely generated if so are th

homology groups ofK. This property can be derived from the previous one using
Mayer–Vietoris sequence and induction on the number of simplexes ofM;
EW(M,k) is (k − 1)-connected if so areM andK;
for every subcomplexT of M, ω|ω−1(T ) :EW(T , k) = ω−1(T )→ T is the standard

resolution ofT for f |N∩T :N ∩ T →K.
All groups are assumed to be Abelian and functions between groups are hom

phisms.P stands for the set of primes. LetG be a group andp ∈ P . We say thatg ∈G
is p-torsion if pkg = 0 for some integerk � 1. Torp G stands for the subgroup of th
p-torsion elements ofG.G is p-torsion if Torp G=G,G is p-torsion free if Torp G= 0
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andG is p-divisible if for everyg ∈G there ish ∈G such thatph= g. G is p-local if it
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is q-divisible andq-torsion free for everyq ∈P , q �= p.
Let G be a group, letα :L → M be a surjective combinatorial map of a CW

complexL and a finite simplicial complexM and letn be a positive integer such th
H̃ i (α

−1(∆);G)= 0 for everyi < n and every simplex∆ ofM. One can show by inductio
on the number of simplexes ofM using the Mayer–Vietoris sequence and the Five Lem
thatα∗ : H̃ i(L;G)→ H̃ i (M;G) is an isomorphism fori < n. We will refer to this fact as
the combinatorial Vietoris–Begle theorem.

We need the following slightly more precise version of [9, Proposition 2.1(i)].

Proposition 2.1. Let 2 � k � n, p ∈ P and letM be an(n− 1)-connected finite simplicia
complex. Letω :EW(M,k)→M be the standard resolution for a cellular mapf :N→
K(Zp, k) from a subcomplexN ofM containingM [k]. Thenπi(EW(M,k)) is p-torsion
for every1� i � n− 1.

Proof. Recall thatω is a combinatorial surjective map and for every simplex∆ of M,
ω−1(∆) is either contractible or homotopy equivalent toK(Zp, k). EW(M,k) is (k − 1)-
connected since so areM andK(Zp, k), andH∗(EW(M,k)) is finitely generated since s
isH∗(K(Zp, k)).

By the generalized Hurewicz theorem the groupsHi(K(Zp, k)), i � 1 are p-tor-
sion and thereforeHi(K(Zp, k)), i � 1 are p-local. Let q ∈ P and q �= p. From
the p-locality of Hi(K(Zp, k)), i � 1 it follows that Hi(K(Zp, k);Zq) = 0, i � 1.
SinceM is (n − 1)-connected, the combinatorial Vietoris–Begle theorem implies
Hi(EW(M,k);Zq) = 0, 1 � i � n − 1. Then from the universal coefficient theore
it follows that Hi(EW(M,k)) ⊗ Zq = 0 for 1 � i � n − 1 and everyq ∈ P , q �= p.
SinceH∗(EW(M,k)) is finitely generated, the last property implies thatHi(EW(M,k)),
1 � i � n − 1 is p-torsion and by the generalized Hurewicz theoremπi(EW(M,k)),
1 � i � n− 1 isp-torsion. ✷

In the proof of Theorem 1.4 we will also use the following facts.

Proposition 2.2 [9]. Let K be a simply connectedCW-complex such thatK has only
finitely many non-trivial homotopy groups. LetX be a compactum such thatdimπi(K) X � i

for i > 1. Thene-dimX �K.

LetK ′ be a simplicial complex. We say that mapsh :K→K ′, g :L→ L′, α :L→K

andα′ :L′ →K ′

L
α

g

K

h

L′ α′
K ′

combinatorially commute if for every simplex∆ of K ′ we have that(α′ ◦ g)((h ◦
α)−1(∆))⊂∆. (The direction in which we want the mapsh,g,α andα′ to combinatorially
commute is indicated by the first map in the list. Thus saying thatα′, h, g and α
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combinatorially commute we would mean that(h ◦ α)((α′ ◦ g)−1(∆)) ⊂ ∆ for every
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simplex∆ of K ′.) Recall that a maph′ :K→ L′ is a combinatorial lifting ofh to L′ if
for every simplex∆ of K ′ we have that(α′ ◦ h′)(h−1(∆))⊂∆.

For a simplicial complexK anda ∈K, st(a) denotes the union of all the simplexes
K containinga. The following proposition whose proof is left to the reader is a collec
of simple combinatorial properties of maps.

Proposition 2.3.

(i) Let a compactumX be represented as the inverse limitX = lim← Ki of finite simplicial
complexesKi with bonding mapshij :Kj → Ki . Fix i and letω :EW(Ki, k)→ Ki
be a resolution ofKi which is suitable forX. Then there is a sufficiently largej such
thathij admits a combinatorial lifting toEW(Ki, k).

(ii) Let h :K→ K ′, h′ :K → L′ andα′ :L′ → K ′ be maps of a simplicial complexK ′
and CW-complexesK and L′ such thath and α′ are combinatorial andh′ is a
combinatorial lifting ofh. Then there is a cellular approximation ofh′ which is also
a combinatorial lifting ofh.

(iii) LetK andK ′ be simplicial complexes, let mapsh :K→K ′, g :L→ L′, α :L→K

andα′ :L′ →K ′ combinatorially commute and leth be combinatorial.

Then

g
(
α−1(st(x)

))⊂ α′−1(st
(
h(x)

))
and h

(
st
(
α(z)

))⊂ st
(
(α′ ◦ g)(z))

for everyx ∈K andz ∈L.

3. Proof of Theorem 1.4

If n � dimZX then Theorem 1.4 follows from Theorem 1.3 (see also a remark a
end of this section). Hence we may assume thatn < dimZX. Then for a finitely generate
Abelian groupG the condition dimGX � n implies thatG is torsion. Thus we may assum
that the groupsG considered in the theorem are torsion and therefore the Bockstein
σ(G) ofG consists only of groups of typeZp (p is always assumed to be a prime numb

RepresentX as the inverse limitX = lim← (Ki,hi) of simplicial complexesKi with
combinatorial bonding mapshi+1 :Ki+1→Ki and the projectionspi :X→Ki such that
for every simplex∆ ofKi , diam(p−1

i (∆))� 1/i. We will construct by induction simplicia
complexesLi and mapsgi+1 :Li+1→ Li , αi :Li→Ki such that

(a) Li = K [n]i and αi :Li → Ki is the embedding. The simplicial structure ofL1 is

induced fromK [n]1 and the simplicial structure ofLi , i > 1 is defined as a sufficientl

small barycentric subdivision ofK [n]i . We will refer to this simplicial structure whil
constructing standard resolutions ofLi . It is clear thatαi is always a combinatoria
map;

(b) the mapshi+1, gi+1, αi+1 andαi combinatorially commute. Recall that this mea
that for every simplex∆ of Ki , (αi ◦ gi+1)((hi+1 ◦ αi+1)

−1(∆))⊂∆.
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We will constructLi in such a way thatZ = lim (Li, gi) will admit a mapr :Z→ X
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such thatZ andr satisfy the conclusions of the theorem. Assume that the construct
completed fori. We proceed toi + 1 as follows.

Let dimZp X � k, 2 � k � n and let f :N → K(Zp, k) be a cellular map from a

subcomplexN of Li ,L
[k]
i ⊂N . LetωL :EW(Li, k)→Li be the standard resolution ofLi

for f . We are going to construct fromωL :EW(Li, k)→ Li a resolutionω :EW(Ki, k)→
Ki of Ki suitable forX. If dimKi � k setω= αi ◦ ωL :EW(Ki, k)=EW(Li , k)→Ki .

If dimKi > k setωk = αi ◦ωL :EWk(Ki, k)=EW(Li, k)→Ki and we will construct
by induction resolutionsωj :EWj(Ki, k)→Ki , k+1� j � dimKi such thatEWj(Ki, k)

is a subcomplex ofEWj+1(Ki, k) andωj+1 extendsωj for everyk � j < dimKi . Note
that saying that an(n+1)-cell is attached to a CW-complex by a map of degreep we mean
that the cell is attached by a mapφ from the boundarySn of the cell to the CW-comple
such thatφ factors through a mapSn→ S

n of degreep.
Assume thatωj :EWj(Ki, k)→Ki , k � j < dimKi is constructed. For every simple

∆ of Ki of dim = j + 1 consider the subcomplexωj−1(∆) of EWj(Ki, k). Enlarge
ωj
−1(∆) by attaching cells of dim= n + 1 by maps of degreep in order to kill the

elements ofpπn(ωj−1(∆))= {pa: a ∈ πn(ωj−1(∆))} and attaching cells of dim> n+ 1
in order to get a subcomplex with trivial homotopy groups in dim> n. LetEWj+1(Ki, k)

beEWj (Ki, k) with all the cells attached for all(j + 1)-dimensional simplexes∆ of Ki
and letωj+1 :EWj+1(Ki, k)→Ki be an extension ofωj sending the interior points of th
attached cells to the interior of the corresponding∆.

Finally denoteEW(Ki, k) = EWj (Ki, k) and ω = ωj :EWj(Ki, k)→ Ki for j =
dimKi . Note that since we attach cells only of dim> n, the n-skeleton ofEW(Ki, k)
coincides with then-skeleton ofEW(Li, k).

Let us show thatEW(Ki, k) is suitable forX. Fix a simplex∆ of Ki and denote
T = α−1

i (∆). First note thatT is (n − 1)-connected,ω−1(∆) is (k − 1)-connected
πn(ω

−1(∆)) is p-torsion,πj (ω−1(∆))= 0 for j � n+ 1 andπj (ω−1(∆))= πj (ω−1
L (T ))

for j � n− 1.
By Proposition 2.1,πj (ω

−1
L (T )) is p-torsion for j � n − 1. Thenπj (ω−1(∆)) is

p-torsion fork � j � n. Therefore by Bockstein Theory dimπj (ω−1(∆)) X � dimZp X � k,

k � j � n and hence by Proposition 2.2, e-dimX� ω−1(∆).
Thus we have shown thatEW(Ki, k) is suitable forX. Now replacingKi+1 byKj with

a sufficiently largej we may assume by (i) of Proposition 2.3 that there is a combinat
lifting of hi+1 to h′i+1 :Ki+1→EW(Ki, k). By (ii) of Proposition 2.3 we replaceh′i+1 by
its cellular approximation preserving the property ofh′i+1 of being a combinatorial lifting
of hi+1.

Then h′i+1 sends then-skeleton ofKi+1 to the n-skeleton ofEW(Ki, k). Recall
that then-skeleton ofEW(Ki, k) is contained inEW(Li, k) and hence one can defin
gi+1 = ωL ◦ h′i+1|K [n]i+1

:Li+1 =K [n]i+1→ Li . Finally define a simplicial structure onLi+1

to be a sufficiently small barycentric subdivision ofK [n]i+1 such that

(c) diamgji+1(∆)� 1/i for every simplex∆ in Li+1 andj � i wheregji = gj+1 ◦ gj+2 ◦
· · · ◦ gi :Li→Lj .
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It is easy to check that the properties (a) and (b) are satisfied.
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DenoteZ = lim← (Li, gi) and letri :Z→ Li be the projections.
Clearly dimZ � n. For constructingLi+1 we used an arbitrary mapf :N→K(Zp, k)

such that dimZp X � k, 2 � k � n andN is a subcomplex ofLi containingL[k]i . By a
standard reasoning described in detail in the proof of Theorem 1.6, [9] one can sho
choosingZp andf in an appropriate way for eachi we can achieve that dimZp Z � k for
every integer 2� k � n and everyZp such that dimZp X � k. Then by the Bockstein
theorem dimGZ � k for every finitely generated torsion Abelian groupG such that
dimGX � k, 2� k � n.

By (iii) of Proposition 2.3, the property (b) implies that for everyx ∈X andz ∈ Z the
following holds:

(d1) gi+1(α
−1
i+1(st(pi+1(x))))⊂ α−1

i (st(pi(x))), and
(d2) hi+1(st((αi+1 ◦ ri+1)(z)))⊂ st((αi ◦ ri)(z)).

Define a mapr :Z→ X by r(z) =⋂{p−1
i (st((αi ◦ ri )(z))): i = 1,2, . . .}. Then (d2)

implies thatr is indeed well-defined and continuous.
The properties (d1) and (d2) also imply that for everyx ∈X
r−1(x)= lim←

(
α−1
i

(
st
(
pi(x)

))
, gi |α−1

i (st(pi(x)))

)
,

where the mapgi |... is considered as a map toα−1
i−1(st(pi−1(x))).

Sincer−1(x) is not empty for everyx ∈ X, r is a map onto. Fixx ∈ X and let us
show thatr−1(x) satisfies the conclusions of the theorem. First note thatMi = st(pi(x))
is contractible . SinceTi = α−1

i (Mi) is homeomorphic to then-skeleton of st(pi(x)), Ti
is (n− 1)-connected and hencer−1(x) is approximately(n− 1)-connected as the invers
limit of (n− 1)-connected finite simplicial complexes.

Let Zp be such that dimZp X � k, 2� k � n and assume thatLi+1 is constructed with
help off :N→K(Zp, k). ConsiderTi+1 as then-skeleton ofMi+1 and denote

β = the inclusion :Ti+1→Mi+1,

τ = h′i+1|... :Ti+1→ ω−1
L (Ti),

γ = h′i+1|... :Mi+1→ ω−1(Mi) and

κ = the inclusion :ω−1
L (Ti)→ ω−1(Mi).

Clearly γ ◦ β = κ ◦ τ . Denote byβ∗, τ ∗, γ ∗ andκ∗ the induced homomorphisms
the n-dimensional cohomology groups moduloZp of the corresponding spaces. Rec
that the(n + 1)-cells ofω−1(Mi) not contained inω−1

L (Ti) are attached toω−1
L (Ti) by

maps of degreep. Thenκ∗ is an isomorphism. SinceMi+1 is contractible,β∗ is the zero
homomorphism. Thus we obtain thatτ ∗ must also be the zero homomorphism. Then, si
gi+1|... :Ti+1→ Ti factors throughτ , the mapgi+1|... induces the zero homomorphism
Hn(Ti;Zp) andHn(Ti+1;Zp). Now we may assume thatZp appears in the constructio
for infinitely many indicesi. ThenȞ n(r−1(x);Zp)= 0 and sincer−1(x) is approximately
(n− 1)-connected and of dim� n we get thatr−1(x) is Zp-acyclic.
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Let G be a finitely generated torsion Abelian group such that dimGX � n. By the

1.4
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Bockstein theorem dimZp X � n for every Zp ∈ σ(G). Then r−1(x) is Zp-acyclic for
everyp such that Torp G �= 0. Hencer−1(x) isG-acyclic and the theorem follows.✷
Remark. It is easy to see that the proof of Theorem 1.4 also works forZ regarded asZp
with p = 0. This way one can avoid the use of Theorem 1.3 in the proof of Theorem
and make the proof self-contained.
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