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Abstract Prion diseases are characterised by severe neural le-
sions linked to the presence of an abnormal protease-resistant
isoform of cellular prion protein (PrPc). The peptide PrP(106–
126) is widely used as a model of neurotoxicity in prion diseases.
Here, we examine in detail the intracellular signalling cascades
induced by PrP(106–126) in cortical neurons and the participa-
tion of PrPc. We show that PrP(106–126) induces the activation
of subsets of intracellular kinases (e.g., ERK1/2), early growth
response 1 synthesis and induces caspase-3 activity, all of which
are mediated by nicotinamide adenine dinucleotide phosphate
hydrogen-oxidase activity and oxidative stress. However, cells
lacking PrPc are similarly affected after peptide exposure, and
this questions the involvement of PrPc in these effects.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Infectious prion pathologies are characterised by profound

neural lesions linked to amyloid deposits of an abnormal iso-

form (PrPsc or PrPres) of cellular copper-binding cellular

prion protein (PrPc) [1,2]. Neuronal death in prion encepha-

lopathy is believed to be triggered by the activation of amyloid
Abbreviations: Ac-DEVD-AFC, Ac-Asp-Glu-Val-Asp-7amino 4triflu-
oromethyl coumarin; AkT, protein kinase B; Egr1, early growth res-
ponse 1; EMMA, European mouse mutant archive; ERK1/2,
extracellular signal-regulated kinase; FYN, protein tyrosine kinase
p59; GSK3, glycogen synthase kinase 3; JNK, c-Jun N-terminal
kinase; MAPK, mitogen-activated protein kinase; MEK, Mapk Erk-
activating kinase; NAC, N-acetyl-LL-cysteine; NADPH, nicotinamide
adenine dinucleotide phosphate hydrogen; PI3K, phosphoinositide-3
kinase; Prnp, prion protein gene; PrPc, cellular prion protein; PrPres,
protease-resistant form of prion protein; PrPsc, prion protein scrapie
form; RIPA buffer, radioimmunoprecipitation lysis buffer 1; ROS,
reactive oxygen species; SDS–PAGE, sodium dodecyl sulphate–poly-
acrylamide gel electrophoresis; SFK, Src-family kinase; TPA, phorbol-
12-myristate-13-acetate
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plaque formation and glial reactivity [3]. A synthetic peptide

homologous to region 106–126 of PrPc has been used in vitro

and in vivo to elicit toxic effects to cells [4–6]. Several kinases,

along with the generation of reactive oxygen species (ROS),

are involved in this process in a number of cell types [7,8].

However, the relevance of PrP(106–126) as a model of prion-

induced cell effects and the role of PrPc expression in PrPsc

and PrP(106–126)-induced effects have both been subject to de-

bate [5,9–13]. Thus, in this study we examined intracellular sig-

nalling cascades, the participation of PrPc and the relevance of

ROS production in the neurotoxic effects induced by exposure

to PrP(106–126) in cortical cultures with normal PrPc levels

and in Prnp�/� cells. Our results indicate that high doses

(80 lM) of PrP(106–126) activate phosphoinositide-3 kinase

(PI3K)/Akt, extracellular signal-regulated kinase (ERK1/2)

and glycogen synthase kinase 3 (GSK3) kinases, but not c-

Jun N-terminal kinase (JNK) or P38, and also increase synthe-

sis of the early transcription gene early growth response 1

(Egr1). However, low doses of PrP(106–126) switched on

GSK3 without any notable activation of ERK1/2. These intra-

cellular events are typical hallmarks of oxidative stress. Indeed,

we show that ROS generation in which nicotinamide adenine

dinucleotide phosphate hydrogen (NADPH)-oxidase activity

plays an important role after PrP(106–126) exposure is respon-

sible for activation of intracellular kinases and cell death.

Lastly, we found that these intracellular effects are not linked

to the cellular expression of PrPc.
2. Materials and methods

2.1. Mice
PrP-deficient mice (Prnp�/�) were purchased from EMMA (Italy).

Sixty-two OF-1 pregnant mice (Iffa Credo, France) were also used.
Genotyping of Prnp�/� mice was done using two PCRs (A and B),
as indicated by Bueler and co-workers [14]. Mating day was considered
to be embryonic day 0 (E0). All procedures were performed in accor-
dance with the guidelines of the Spanish Ministry of Science and Tech-
nology, following European standards.

2.2. Antibodies
Antibodies were obtained from the following sources: Akt antibody

was obtained from Santa Cruz Biotechnology (Santa Cruz, USA),
while Akt pserine-473, ERK1/2 pthreonine-202/ptyrosine-204, JNK,
JNK-pthreonine-183/ptyrosine-185, p38 and p38 pthreonine-180/pty-
rosine-182 were from Cell Signaling Technology (Beverly, USA).
panERK was from Transduction Laboratories (Lexington, USA)
blished by Elsevier B.V. All rights reserved.
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and GSK3 (clone 4G-1E), GSK3 ptyrosine-279/216 (clone 5G-2F) and
GSK3 pserine-9 (clone 2D3) were from Upstate Biotechnology Inc.
(Lake Placid, USA). Tau was from Calbiochem (Missouri, USA)
and PHF-1 and 9G3 antibodies against Tau pserine-396/404 and
Tau ptyrosine-18 were gifts from Jesús Avila (CBM-UAM, Spain)
and Gloria Lee (Iowa, USA), respectively. The SAF61 monoclonal
antibody was from Spi-Bio&Cayman Chemical (Massy Cedex,
France). A monoclonal antibody against class bIII-tubulin isoform
(TUJ-1, Babco, USA), was used to detect the cytoskeletal protein
expressed by post-mitotic neurons.

2.3. Primary embryonic neuronal cultures
E15-16 mouse embryo brains were dissected and washed in ice-cold

0.1 M PBS containing 6.5 mg/ml glucose. The meninges were removed
and the cortical lobes isolated. Tissue pieces were trypsinized for
15 min at 37 �C. After addition of horse serum and centrifugation, cells
were dissociated by trituration in 0.1 M PBS containing 0.025%
DNAse with a polished pipette. Dissociated cells were plated at
�3000 cells/mm2 on plates (Nunc, Denmark) coated with poly-DD-lysine
(Sigma, UK). The culture medium was Neurobasal supplemented with
2 mM glutamine, 6.5 mg/ml glucose, antibiotics and B27 (Invitrogen-
Life Technologies, Belgium). Cultures contained up to 95% neurons
(TUJ-1+) and were used after 4–7 days in vitro.

2.4. Immunocytochemical procedures
For immunocytochemistry primary cortical cultures were left to

grow for 4–7 days on coverslips (12 mm B) coated with poly-LL-Orni-
tine and Laminin (Sigma–Aldrich) in serum-free medium. Cultures
were fixed with 2% phosphate-buffered paraformaldehyde for 1 h at
4 �C. Coverslips were then processed for the immunocytochemical
detection of TUJ-1 and ERK1/2 pthreonine-202/ptyrosine-204 using
Alexa-Fluor 488 and 568 tagged secondary antibodies (Molecular
Probes, USA). After rinsing, cell nuclei were stained with Bisbenzimide
(Hoechst 32444, 1 lM in PBS 0.1 M, 10 min) and the coverslips were
mounted in Fluoromount (Vector Labs, Burlingame, USA).

2.5. Specific kinase inhibitors and activators
Src-family kinase (SFK) tyrosine kinase inhibitors, PP2, Emodin

and Herbimycin A, SU6656 came from Calbiochem, as did Mapk
Erk-activating kinase (MEK)1/2 inhibitor PD98509. MEK1/2 inhibi-
tor U0126 was obtained from Promega (Madison, USA). PI3K inhib-
itors LY294002 and Wortmannin were from Sigma. Tyrosine kinase
inhibitor Genistein was also from Sigma, as were NADPH-oxidase
inhibitor DPI, N-acetyl-LL-cysteine (NAC) and phorbol-12-myristate-
13-acetate (TPA), a PKC activator.

2.6. Prion peptide treatments, caspase-3 activity assay and

immunoblotting
PrPsc was prepared from the brains of terminally ill RML-inoculated

mice. Human prion protein fragment 106–126 and scrambled peptide
were from Sigma. Peptides (1 lg/ll) were dissolved in 0.1 M PBS and
left to aggregate at room temperature for between 5 and 24 h. After
aggregation, fibrillar PrP(106–126) or scrambled peptides were added
to the cultures for various time periods (from 5 min to 4 days) or with
0.1% brain homogenates for 15 min to 4 days. RML-treated cells were
collected after 15 min or 4, 10 and 15 days in vitro. In contrast,
PrP(106–126)-treated cells were collected after peptide treatments. Cells
were then scraped in radioimmunoprecipitation lysis (RIPA) buffer con-
taining 1· protease inhibitor cocktail and phosphatase inhibitors. The
caspase-3 activity assay was performed as previously described [15],
with Ac-Asp-Glu-Val-Asp-7amino 4trifluoromethyl coumarin (Ac-
DEVD-AFC) (Sigma) as substrate. Cell extracts were boiled in Laemmli
sample buffer at 100 �C for 5 min, followed by 6–10% SDS–PAGE elec-
trophoresis, electrotransferred to nitrocellulose membranes for 6 h at
4 �C and processed for immunoblotting using primary antibodies and
the ECL-plus kit (Amersham-Pharmacia Biotech, UK). In our experi-
ments, each nitrocellulose membrane was used for detecting both phos-
phorylated and total kinase levels.

2.7. Determination of GSK3 activity
GSK3 assays were carried out as described elsewhere [16]. Cultured

cell extracts were prepared after peptide treatments. Cells were col-
lected with a scraper and homogenized in a buffer containing 20 mM
HEPES, pH 7.4, 100 mM NaCl, 100 mM NaF, 1 mM sodium ortho-
vanadate and 5 mM EDTA. The soluble fraction was immunoprecip-
itated with the GSK3 antibody (see above). Samples of 10 ll were
incubated in a buffer containing 25 mM HEPES, pH 7.5, 1 mM
DTT, 10 mM MgCl2 and a specific GSK3 substrate peptide (pGSK3
peptide-2, Upstate Biotechnology Inc) at a final concentration of
0.75 mg/ml, and in the presence of c32P-ATP. After 30 min, the reac-
tion was stopped with 1% H3PO4. The difference between kinase activ-
ity in the presence or absence of the GSK3 inhibitor LiCl (20 mM) was
considered to reflect GSK3 kinase activity.
3. Results

3.1. PrP(106–126) activates stress-associated kinases in

primary cortical cultures

Peptide aggregation prior to treatment was corroborated by

electron microscope observations (see Fig. 3C). PrP(106–126)

(80 lM) induced a strong stimulation of ERK1-2 and a low,

but significant, activation of PI3K/Akt 15 and 30 min after

peptide treatment (Fig. 1); there was no such effect on JNK

(Fig. 1A) or P38 (not shown) (Fig. 1A and B). Similar treat-

ment with scrambled peptide did not activate any of the stud-

ied kinases (not shown). In contrast, doses lower than 40 lM
did not induce any notable ERK1/2 (Fig. 2B), PI3K, JNK or

P38 kinase activation (not shown). In parallel experiments,

cultures incubated with brain extracts obtained from RML-

inoculated mice also increased ERK1/2 phosphorylation after

15 min (Fig. 1C), while brain extracts from healthy control ani-

mals did not (Fig. 1C). Neither PrP(106–126) nor RML brain

extracts induced the accumulation of detectable levels of Pro-

teinase-K resistant PrP in our cultures at 4, 10 and 15 days (not

shown). Elk1 and the early gene transcription factor Egr1 are

direct targets of ERK1/2 [17]. We showed that whereas a slight

increase in pElk1 was observed at 30 min, Egr1 protein levels

increased at 30 min and, especially, one day after treatment

(Fig. 1D). Double immunolabelling using pERK1/2 and

TUJ-1 antibodies revealed that pERK1/2 increased in dying

neurons (TUJ-1+), disrupted neurites being displayed after

treatment with 80 lM of PrP(106–126) (Fig. 1E–G).

We next determined the participation of the ERK1/2 path-

way in the activation or otherwise of PI3K/Akt (Fig. 1H-I).

PrP(106–126)-induced serine phosphorylation of Akt was im-

peded by the presence of Ly294002 (10 lM) +Wortmannin

(10 lM), but not when incubated with MEK1/2 inhibitors

(PD98509 (50 lM) and U0126 (50 lM)) (Fig. 1). Conversely,

PD98509 + U0126 treatment blocked ERK1/2 induction, but

not Akt phosphorylation after PrP(106–126) treatment. Thus,

Akt activation paralleled but did not overlap with ERK1/2

activation after PrP(106–126) incubation, and ERK1/2 activa-

tion induced by the peptide may therefore be dependent on

MEK2 activity. Parallel pharmacological studies using SFK

inhibitors pointed to members of the Src kinase family (Yes,

Lyn and probably Fyn) as being responsible for ERK1/2 acti-

vation after PrP(106–126) peptide incubation (see Suppl. Fig. 1

for details).
3.2. GSK3 activation and Tau phosphorylation are induced by

PrP(106–126) in a concentration-dependent manner

The intracellular kinase GSK3 plays a crucial role in several

neurodegenerative diseases [18,19]. Its activity depends on the

tyrosine and serine phosphorylation state of the kinase [20].

We explored both types of GSK3 phosphorylation after



Fig. 1. Activation of ERK1/2 and Akt by PrP(106–126) in primary cortical cultures. (A–D) Cells were treated with 80 lM PrP(106–126) (A,B,D) for
the indicated time periods or with 0.1% brain homogenate containing PrPsc (RML) or non-inoculated brain extract (Con) for 15 min; the
phosphorylated forms of kinases, Elk and protein levels of Egr1 were analysed by Western blotting. Membranes were re-probed with antibodies
against total ERK, Akt JNK or actin for standardisation. Quantitative results from three experiments are shown at the bottom as the fold increase
from time 0 and in the graph in (C). (E,F) Examples of double-labelled neurons (TUJ-1 + pERK1/2) in control (E) and after 80 lM PrP(106–126)
exposure (F,G). Whereas healthy neurons (asterisk in F) have pale pERK1/2 labelling, dying neurons (arrows) display disrupted neurites (open
arrows) and notable pERK1/2 labelling. (H and I) Cortical primary cultures were incubated for 30 min as in (A), in the presence or absence of kinase
inhibitors (e.g., 10 lM Wortmannin + 10 lM Ly294002) before and during PrP(106–126) treatment. Densitometric values after pre-incubation with
kinase inhibitors at time 0 were standardised with time 0 in untreated cultures. The fold density modification after PrP(106–126) treatment for 0–
30 min in each case is then shown. Scale bars in (E) and (F) are 30 lM.
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treatment with PrP(106–126) peptide. Our results show that

80 lM PrP(106–126) increased the ratio of tyrosine/serine

phosphorylation by 40% after 30 min (Fig. 2A). Surprisingly,

this increase does not correlate with higher levels of phosphor-

ylated Tau measured with the PHF1 antibody in Western blots

(Fig. 2A). In contrast, 5 lM of PrP(106–126) increased GSK3

activity, as measured by both enzymatic assay and densitome-

try after Western blot (Fig. 2B and C) and Tau phosphoryla-
tion (Fig. 2B), without any apparent ERK1/2 kinase

activation (Fig. 2B).

3.3. PrP(106–126)-induced intracellular kinase activation is

independent of PrPc

It is assumed that Prnp�/� mice develop intrinsic resistance

to prion infections and cell death (e.g., [21]). However, recent

studies have reported that PrPsc are neurotoxic in Prnp�/�



Fig. 2. (A,B) GSK3 activation and Tau phosphorylation after 80 (A) or 5 (B) lM PrP(106–126) incubation. Cortical cultures were treated with the
peptide for indicated time periods. The activation of ERK1-2, GSK3 and the phosphorylation of Tau were analysed by Western blotting, as indicated
in Fig. 1. Membranes were re-probed with antibodies against total GSK3, ERK1-2 and Tau for protein standardisation. Note the increase of GSK3
activity and Tau phosphorylation in the absence of notable ERK1-2 activation in (B). (B) Histogram illustrating the phosphorylation levels of a
GSK3-specific substrate (see Section 2 for details of the enzymatic assay) in neuronal cultures treated with 5 lM PrP(106–126) for 0–120 min. GSK3
activity is the difference between the kinase activities in the presence or absence of LiCl. GSK3 activity rises shortly after PrP(106–126), and the
increased activity lasts for 120 min.
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cultures [13]. Thus, we explored whether the intracellular cas-

cade activation induced by PrP(106–126) is PrPc-dependent,

using cell cultures from Prnp�/� embryos. Prnp�/� genotype

of cultured cells was corroborated by individual PCR genotyp-

ing (Fig. 3A). Surprisingly, ERK1-2 and the PI3K/Akt signal-

ling cascades were also activated after 30 and 60 min of peptide

exposure in Prnp�/� derived cortical cultures (Fig. 3B). Thus,

the absence of PrPc does not prevent or modify the intracellu-

lar events induced by exposure to PrP(106–126).

On the other hand, PrPc aggregation at the cell surface by

antibodies (e.g., SAF61) activated Fyn and other ERK1/2 ki-

nases in vitro [22,23]. Our previous experiments indicated that

PrP(106–126)-mediated intracellular effects are independent of

PrPc. To corroborate whether PrPc-induced intracellular sig-

nalling pathways are different to those mediated by PrP(106–

126) exposure, we treated Prnp+/+ cultures with the SAF61

antibody. Our results showed that ERK1-2 kinases became

activated 15 min after treatment with the SAF61 antibody,

but that there was no effect on PI3K/Akt activity (Fig. 3C).

Moreover, it has been reported that Fyn activation induces

phosphorylation of the tyrosine/18 residue of Tau, which is de-

tected by the 9G3 antibody [24]. We showed that the SAF61

antibody induced specific and transient phosphorylation of

Tau tyrosine/18. In contrast, Tau phosphorylation revealed

by the 9G3 antibody was not observed after PrP(106–126)

treatment, which suggests that the notable activation of Fyn

in 80 lM PrP(106–126) is unlikely and reinforces the hypothe-

sis of different signalling mechanisms (Fig. 3D).

3.4. NADPH-oxidase and ROS production regulate intracellular

kinase activation induced by PrP(106–126)

It is known that oxidative stress and other cell insults acti-

vate members of SFK (e.g., Yes or Lyn), as well as other intra-

cellular cascades [25–28]. We incubated primary cortical

cultures with the fluorescent probe Dihydroethidium (DIE,

Sigma, 1 lg/ml concentration) to monitor ROS generation

after PrP(106–126) treatment [29]. PrP(106–126) increased

ROS generation in treated cultures, assessed by the number
of DPI-labelled nuclei (Fig. 4A–E). In addition, 30 lM DPI

(a NADPH-oxidase inhibitor) decreased and 20 mM NAC

treatment completely blocked both ERK1/2 and PI3K/Akt ki-

nase induction (Fig. 4F), while 20 mM NAC inhibited GSK3

activation (not shown) 30 min after 80 lM PrP(016-126) treat-

ment. This ERK1/2 inhibition was corroborated by a decrease

in Egr1 protein levels (Fig. 4G). These results demonstrate that

NADPH-oxidase and ROS generation are crucial to both ki-

nase activation and Egr1 synthesis induced by PrP(106–126).

We next studied whether ROS-dependent kinase activation

led to any considerable caspase-3 activation and the participa-

tion of PrPc in this process. PrP(106–126) exposure increased

caspase-3 activity after 4 days of treatment in both Prnp+/+

and Prnp�/� cultures (Fig. 4H), which correlates with the

appearance of picnotic nuclei in treated cells (not shown). In-

deed, incubation of 20 lM NAC 3 days impeded caspase-3

activity induced by 80 lM PrP(106–126) (not shown). In par-

allel experiments, we observed that the incubation of SU6656

(30 nM) or U0126 (50 nM) for 3 days also reduced caspase-3

activity after 80 lM PrP(106–126) treatment (Fig. 4J). Both

inhibitors blocked ERK1/2 activation in acute (Suppl. Fig. 1)

and/or long-duration PrP(106–126) incubation experiments

(Fig. 4I). Taken together, these results indicate that ROS gen-

eration with the participation of NADPH-oxidase is responsi-

ble for ERK1/2 and Akt activation and further Egr1 synthesis

after PrP(106–126) exposure. In addition, our results suggest

that the ERK1/2 kinase pathway plays an important role in

the caspase-3 activation and cell death observed after four days

of 80 lM PrP(106–126) treatment in primary cortical cultures.
4. Discussion

4.1. PrP(106–126) peptide induces intracellular kinase

activation independently of PrPc-expression

There is evidence that neurons derived from Prnp�/� mice

are resistant to the toxicity of PrP(106–126) [30], and that

the toxicity of PrPsc and PrPc fragments depends on neuronal



Fig. 3. (A) PCR identification of Prnp gene expression in tissue samples from embryos used in the experiments (see [14] for genotyping details and
primer sequences). (B) Prnp�/� cultures were treated with 80 lM PrP(106–126) for indicated time periods and kinases were analysed by Western
blotting. (C,D) Cells from wild-type (Prnp+/+) mice were incubated with the SAF 61 antibody and kinases were analysed by Western blotting as
above. Quantitative results of band analysis and fold increase are as in Fig. 1. (D) Cells from Prnp+/+ mice were incubated with SAF61 or with 80 lM
PrP(106–126). The phosphorylated form of Tau recognised by the 9G3 antibody (Fyn-dependent) or the PHF1 antibody were analysed by Western
blotting. No labelling was obtained with the 9G3 antibody after PrP(106–126) incubation. Membranes were re-probed with antibodies against actin
and total Tau for standardisation.
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expression of PrPc [5,21,31]. Thus, a protein–protein interac-

tion between PrP(106–126) or PrPsc with PrPc, which may ren-

der cells more susceptible to oxidative stress by impairing

copper homeostasis, was postulated [32]. Our results showed

that kinase activation, caspase-3 activation and cell death oc-

cur in Prnp�/� cultures, which argues against any participation

of PrPc in the toxic effects induced by 80 lM PrP(106–126). In

this respect, contradictory data about PrPc-expression levels

and PrP(106–126) or PrPsc-associated toxicity have been re-

ported [9,33,34]. Indeed, PrPsc may cause neurotoxicity in

Prnp�/� cells [13]; in addition, neuronal colocalization of

PrP(106–126) and PrPc failed in vitro [9]. Moreover, our re-

sults show that PrPc- and PrP(106–126)-mediated ERK1/2

activation are different. Thus, not only are the mechanisms
involved in prion neurotoxicity still unclear (see [35] for com-

ments), but PrP(106–126) may also reflect the full repertoire

of intracellular signals associated with prion diseases.

4.2. High doses of PrP(106–126)-induced kinase activation by

oxidative stress

Increased generation of ROS by microglial cells in a PrPc-

dependent way has mainly been reported in in vitro experi-

ments using PrP(106–126) [21,36]. However, PrP(106–126)

alone increases the generation of hydrogen peroxide and reac-

tive hydroxyl radicals in a cell-free system [37], and reduces

glutathion levels and glutathione reductase or copper/zinc

superoxide dismutase activity, thus increasing susceptibility

to oxidative insults, in cultured cells [38,39]. Although 80 lM



Fig. 4. (A–D) Fluorescence (A–C) and parallel phase contrast views (B,D) of cultures incubated with dihydroethidium (1 lg/ml) in control (A,B) and
after PrP(106–126) treatment (C,D). (E) Histogram illustrating quantitative results of (A). Histograms represent the mean ± SEM of three
independent experiments. (F,G) Cortical primary cultures were incubated with PrP(106–126), except that cells were pre-incubated in the presence or
absence of the NADPH-oxidase inhibitor DPI (F), NAC (F,G) and PrP(106–126). Densitometry values after pre-incubation with inhibitors at time 0
are standardised with time 0 in untreated cultures. The variation after PrP(106–126) treatment from 0 to 30 min in each case is then shown. (H–J).
Analysis of caspase-3 activation in both culture types, as determined by fluorimetry. Caspase-3 activation is expressed as an arbitrary unit and
represents mean ± S.D. of duplicates from two independent experiments (in H and J). (I) Cortical cultures from wild-type were incubated with
PrP(106–126) for 4 days in the presence of 10 nM SU6656 and 50 nM U0126. (K) Model of PrP(106–126)-mediated intracellular effects after
interaction with cell membrane. The main results of the pharmacological inhibitory treatments are also indicated. Lower PrP(106–126)
concentrations increase GSK3 activity leading to cell death, as indicated [50], by interacting with unknown membrane proteins or receptors (A) where
the participation of PrPc is unknown. In contrast, high concentrations of PrP(106–126) leading to large b-sheet aggregates may induce a
destabilization of the cellular membrane leading to cell death through different mechanisms that are likely to be associated with oxidative stress.
Asterisks in E,H,J indicate statistical significance (\\P < 0.01, ANOVA).
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PrP(106–126) is less neurotoxic than H2O2 [38], both treat-

ments activate similar kinases in different cell types such as

PC-12 cells or neuronal cultures [40]. In spite of this, we

showed that 80 lM PrP(106–126) increases ROS production

that further activates ERK1/2 (MEK2-dependent) and PI3K/

Akt, increases Egr1 levels and induces GSK3 activation. The

participation of NADPH-oxidase is relevant in these pro-

cesses. In this regard, the MEK2 pathway has been linked to

NADPH-oxidase and superoxide production under cellular

stress [41], and oxidative stress has been reported to induce

apoptosis by ERK1/2 activation through a Ras/Raf-dependent

mechanism [42], which may support our data.

We also found that prolonged aggregation times of PrP(106–

126) peptides at concentrations higher than 13 lM increased

caspase-3 activation and cell death, as reported by Brown

and co-workers using a MTT colorimetric assay [5]. In addi-
tion, filtered PrP(106–126) did not affect cell viability in our

experiments (not shown). In contrast, the activation of p38

in neuroblastoma cells without apparent fibril formation has

been described recently [43], and, surprisingly, PrP(106–126)

has been considered non-neurotoxic by some authors [10].

Our data indicate that the aggregated peptide is toxic in pri-

mary neuronal cultures, as shown in other culture types or

neurons [7,44–47]. However, we believe that the neurotoxic ef-

fects of PrP(106–126) depend on both its conformation and

membrane interaction, as reported for other amyloid peptides

including PrPsc or Ab [5]. For example, both different neuro-

toxic potential and binding properties of Ab gith membrane

proteins depend on its aggregation form [48,49]. Moreover,

low doses (5 lM) of PrP(106–126) activate GSK3 that, in turn,

hyperphosphorylates Tau, which may lead to cell death with-

out apparent activation of ERK1/2 [50] (see also present
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results). This indicates that cell signalling elicited by different

concentrations of PrP(106–126) may trigger different neuro-

toxic cascades in affected neurons (see Fig. 4K for hypothesis).

Recent experiments by Zambrano and co-workers [51] demon-

strate that oxidative stress induced by H2O2 decreases Tau

phosphorylation through enhanced phosphatase activity,

which could be prevented by NAC treatments. These findings

may explain our different Tau phosphorylation results at sev-

eral doses of PrP(106–126). 80 lM PrP(106–126), in contrast

to lower doses, induced cell membrane destabilization and in-

creased intracellular ROS production, thereby initiating both

kinase and phosphatase (such as PP1) activities [52]. However,

another possibility is that GSK3 might be activated by un-

known signalling mechanisms at lower PrP(106–126) concen-

trations (e.g., by binding of the peptide to particular

membrane receptor/s, as suggested elsewhere [53]), although

this condition would be insufficient to activate cellular phos-

phatases and further Tau dephosphorylation, which may in-

duce abnormal neuronal functioning and cell death. In

conclusion, taking together, we believe the use of high doses

of PrP(106–126) in vitro should not be regarded per se as a

good experimental model for prion research.
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