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ABSTRACT Viscous dissipation inside the erythrocyte during its aspirational entry into a micropipette is analyzed. The
motion of the intracellular fluid is approximated by a flow into the micropipette orifice from a half space (the portion of
the erythrocyte outside the micropipette). The stream function and intracellular pressure (p) in the half space are
obtained as a function of radial and axial positions near the orifice. Solution of the boundary value problem for a
uniform stream entering a circular hole gives p = 274,Q/x R}, where ny is the intracellular viscosity, Q is the total
discharge, and R, is the pipette radius. The results indicate that the moving erythrocyte membrane helps to drive the
intracellular fluid into the orifice. For normal erythrocytes, p is only ~0.5% of the total aspiration pressure (AP). The
contribution of p to AP, however, may become significant when there is a large increase in n,; due to a markedly elevated
intracellular hemoglobin concentration or an alteration of the physical state of hemoglobin.

INTRODUCTION

There have been considerable advances in studies on the
viscoelastic properties of the red cell membrane (Evans
and Skalak, 1980; Fung, 1981). With the use of the
micropipette aspiration technique, the nonlinear viscoelas-
tic response of the erythrocyte membrane has been investi-
gated (Evans and Hochmuth, 1976; Chien et al., 1978;
Tozeren et al., 1982). In these studies the deformation of a
portion of an erythrocyte during aspirational entry into a
micropipette was analyzed. The theoretical basis of their
analysis is the approximation of the cell membrane as an
infinite plane membrane undergoing deformations at con-
stant surface area. The results of the experiments by Chien
et al. (1978) imply the absence of any static frictional
forces between the cell membrane and the pipette for short
durations. However, to account for the energy dissipation
they point out several sources of viscous losses: (a) the
viscous behavior of the cell membrane, (b) Poiseuille flow
in the pipette, (c) viscous flow in the thin lubrication layer
between the cell membrane and the wall of the pipette, and
(d) the flow of hemoglobin in the erythrocyte.

In this paper, the viscous dissipation inside the erythro-
cytes in micropipette experiments has been analyzed. The
pattern of flow of the intracellular hemoglobin solution
before and after entry into the pipette is quite different.
For the portion of the erythrocyte already in the pipette,
except for a short entry region, the hemoglobin moves like
a rigid body with the cell membrane. For the portion of the
erythrocyte outside the pipette, a creeping flow is set up in

BIOPHYS. J. © Biophysical Society
Volume 45 June 1984 1179-1184

0006-3495/84/06/1179/06 $1.00

the hemoglobin solution by the application of the pressure
difference and by the motion of the membrane. A first
approximation to this motion is the flow into an orifice (the
micropipette) from an half-space (the portion of the eryth-
rocyte outside the pipette). This approximation is quite
reasonable if two conditions are satisfied. (@) In the
experiments, the radius of the pipette must be very small
compared with the radius of the erythrocyte, and (b) in the
orifice flow, contribution to viscous dissipation from
regions outside a small vicinity of the orifice must be
negligible. For uniform efflux velocities at the orifice, this
condition is valid because the velocities approach zero very
rapidly as radial distance from origin increases.

The governing equations of the orifice flow and proper
boundary conditions are given in the Formulation section.
Solutions for velocities and pressure are obtained in the
Numerical Results section. A simple formula is developed
to estimate the time constant due to fluid dissipation
recently introduced by T6zeren et al. (1982). It is shown
that this time constant is directly proportional to the
viscosity of the hemnoglobin n;; and the radius of the pipette
R, and decreases with the increasing initial elastic
response of the membrane. These conclusions agree with
those reported by Hochmuth et al. (1984) at a recent
meeting.

FORMULATION

Consider the aspiration of an erythrocyte into a micropipette with radius
R, (Fig. 1). The cell membrane is assumed to be an infinite plane
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FIGURE 1 Schematic drawing to show the aspiration of an erythrocyte
into a micropipette.

membrane, a small portion of which is aspirated into the tube (see
Tozeren et al., 1982). The deformations of the membrane are assumed to
occur at constant surface area. Accordingly, the magnitude of the radial
membrane velocity outside the pipette, V, which is directed toward the
pipette axis, is

R, .
V=7!;"D,, a)

where i), is the rate of displacement of the portion of the membrane
aspirated into the pipette.

The motion in the erythrocyte is assumed to be a slow, steady flow of a
viscous incompressible fluid (see Fig. 2). A first approximation to this
motion is the flow into an orifice (the micropipette) from an half space
(the portion of the erythrocyte outside the pipette). The inertial terms are
neglected in the Navier-Stokes equations and introducing an axisymmet-
ric stream function ¢, the equation governing the axisymmetric steady
creeping flow through the orifice is obtained:

E*E*y =0 2
where the differential operator E? is
& 19 a
Ele—s—-=—+-—5 3)

In terms of ¥, the velocity components are given as

1 oy 10y
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FIGURE 2 Flow of intracellular fluid through an orifice as the erythro-
cyte membrane is aspirated into the micropipette.
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The velocities are subject to the following boundary conditions.

at0 <R <R, (5)

Vg = vaR=0y

u,=o,uk=7e-"b,, atR>R, (6)

The boundary condition, Eq. 5, implies that axial velocities are uniform at
the orifice. According to Eq. 6 the fluid at the boundary moves with the
membrane undergoing deformations at constant surface area.

A general solution of Eq. 2 is given by Parmet and Saible (1965):

V=R .[ " A, (Rt)e* dt

+zR j; " B(t)J,(Rt)e~"dt  (T)

where J,(Rt) is the Bessel function of first order, and A(¢) and B(¢) are
unknown functions determined by the boundary conditions of Eqgs. 5 and

Another physical variable of interest is the pressure. Total pressure
difference (applied aspiration pressure) AP is made up of two parts: (@)
the pressure difference across the two faces of the membrane, and (b) the
pressure drop in the fluid. The present paper is concerned with the
determination of the pressure drop inside the erythrocyte, p.

An expression giving pressures in the fluid is found by integrating the
following differential equations given by Happel and Brenner (1965):

p 7y 0 ap mm 9
————— (EW), %~ " R3R (E*) (3)

where 7y is the viscosity of the intracellular hemoglobin solution.
Applying the differential operator E? to ¢ given by Eq. 7, we obtain

E¥=-2 fo " Rt B(t) J,(Rt) e~"dt. )
Differentiating Eq. 9 gives

ap ® 42 -zt

35~ —2m ./o' £ B(1) J,(Rt) e~"dt

ap ® 22 -

= —2m fo 12 B(t) Jo(Rt) e~"dt (10)

where JoR(?) is the Bessel function of zero order. The total pressure
differential is

dp dp
dp—aRdR+azdz. a1

Substitution of Eq. 10 into 11 and using

J,(R)R = — %dj"df') dR,
e ¥ dz = — ;ad;e"‘dz,
we obtain
dp = 29y d[ j; ¢ B(t) Jo(Rt) e"dt (12)
Integrating from infinity to an arbitrary point (R, z):
p = 2n [t B(t) Jo(Re) e~dt. (13)

Velocities and pressure are determined as a superposition of solutions of
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two boundary value problems: (@) uniform stream entering a circular hole
with constant velocity D,

vg = 0, and

Dp, 0<R<R,

v, = g(R) = ,  atz=0  (14)

0, R>R,

and (b) flow due to the radial motion of the membrane subject to constant
area deformations:

v, = 0,and
0, 0<R<R,

vr=f(R) = .
—-R,D,/R, R>R,

, atz =0. (15)

As outlined in the Appendix, two sets of functions 4(7) and B(z) are
determined by using the boundary conditions (Eq. 14) and (Eq. 15),
respectively. These functions are then substituted into Eq. 7 and 13 to
obtain the solution of the present orifice problem. For the boundary value
problem in (a) given by Eq. 14 we obtain:

e—zl

dt
t

VIBR) = [~ 1ROLR,)
+ Rz fo “L(ROJ(R,1) e*dt  (17)

P/D,R) = 2 [Tt (ROI(R) e*dt (18)

and for the boundary value problem in (b) given by Eq. 15 we derive

VDR, = 2R [~ IR (R)e ™z (19)

P/D,R,) = —2 [t Ju(R)Io(R) ez, (20)

Note that the streamlines and the fluid pressure corresponding to orifice
flow with boundary conditions given by Eqs. (5) and (6) are obtained by
adding the solutions from Eqs. 17 and 19 and Egs. 18 and 20,
respectively.

NUMERICAL RESULTS

The values of pressure and stream function at some selected points can be
obtained by numerical integration. The ¢ and p presented in these figures
are made dimensionless by dividing the dimensional variables by D,R}
and ny D,/R,, respectively.

In the first boundary value problem given by Eq. 14, uniform efflux
velocities are specified at the orifice (rigid body motion of the fluid starts
upon the entry into the pipette). The velocities elsewhere on the boundary
are zero. The second boundary value problem formulates the flow due to
radial motion of the membrane in the half space. Radial and axial
velocities are taken as zero at the orifice (no discharge into the pipette).
Superposition of these solutions give the velocities and pressures for the
flow in the erythrocytes. The results obtained by specifying uniform efflux
velocities at the orifice are presented in Figs. 3-5. In Fig. 3 the streamlines
are given for several values of . Streamlines intersect the boundary
perpendicularly giving zero radial velocities as specified by the boundary
conditions. Consider the surface obtained by rotating a curve connecting a
point on the z axis to a point on a streamline about z axis. The value of the
stream function on this streamline times 2x, 2xy, gives the discharge
through this surface. For the uniform stream entering the orifice we
have

2xy = xRV, atz=0,0<R/R,< 1. 21

It can be seen from Fig. 3 that this relation holds in the present case.

TOZEREN ETAL. Viscous Dissipation in Erythrocytes
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FIGURE 3 Streamlines for uniform efflux velocity at orifice.

Streamlines for a sink positioned at the origin are straight lines passing
through the origin. Fig. 3 shows that the streamlines for flow into the
orifice approach the streamlines for the sink, one or two tube radii away
from the origin. This shows that the velocity distribution at the orifice has
little effect on the flow at some distance from the origin. The total
discharge determines flow variables at these points.

Isobar curves are given in Fig. 4. The pressure drop occurs mainly in
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FIGURE 4 Isobar curves for uniform efflux velocity.
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FIGURE 5 Pressure vs. R/R, at several levels of —z/R,.

the vicinity of the pipette orifice, where the major contribution of viscous
dissipation takes place. Pressures are not constant at the orifice, as can be
seen from this figure and Fig. 5. The average pressure at the orifice is
slightly more negative than the pressure at the origin. Fig. 5 gives pressure
vs. R/ R, curves for several values of z/R,.

The solutions for the boundary conditions (in Eq. 15) are presented in
Fig. 6. According to the boundary conditions, motion is created by the
radial motion of the membrane, but no discharge is allowed into the
pipette. Streamlines are close to each other near the boundary (higher
velocities). Away from this source of momentum velocities fall down. This
explains why the distances between streamlines increase at greater values
of z. The streamline = 0.5 gets as close as the point R = 2, z = 1 to the
origin. This is equal to the total discharge driven into the pipette by the
pressures in the first boundary value problem. This shows that a
considerable amount of fluid is driven near the orifice by the radial motion
of the membrane.

The solution of the boundary value problem (from Eq. 14) presented in
Eqgs. 17 and 18 gives a pressure drop between the origin and infinity as

- 211HQ

3
TR,

(22)

where Q is the total discharge. The pressure drop between the origin and
infinity corresponding to the boundary value problem of Eq. 15 can be
shown to be equal to zero by analytical integration of Eq. 20. Hence, the
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FIGURE 6 Streamlines for flow due to the radial motion of the
membrane (boundary condition for Eq. 15).
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pressure drop for the combined problem corresponding to Eq. 5 and 6 is
also given by Eq. 22. Because Q = xR3D,, Eq. 22 can be written as

_ 204D,

R (23)

14

As shown in Fig. 5, pis not uniform in 0 < R < R, and it has a peak value
towards the edges.

Eq. 23 is simple and useful because it allows the estimation of the
contribution of viscous cell dissipation to the suction pressure analytically
as a function of the time rate of change of aspiration length. However Eq.
23 must be considered as a lower bound, because the presence of the
opposing wall of the cell membrane is not taken into account in the
present treatment. The presence of the cell contour may retard considera-
bly the radial velocity component in the region near the pipette. Our
computational results, based on the infinite fluid region bounded by a
plane wall, indicate that radial velocity component decreases sharply in a
spherical region of radius 2R,. Note that the shortest distance between
the tip of the pipette and opposing membrane wall is ~2.6R, when R, =
0.5 um. Numerical estimation of viscous dissipation inside an erythrocyte
during aspiration into a micropipette by using the finite element method is
presently under consideration. In such computations, the aspiration
length and its time rate of change must be specified along with the cell
contour. The results will allow us to assess how closely Eq. 23 describes
cell dissipation during micropipette aspiration.

The solution of the orifice problem assuming constant pressures
(p = po at 0 < R < R,) at the orifice is given by Happel and Brenner
(1965). In this case a parabolic distribution of axial velocities is obtained:
v, = V[1 — (R*/RY)] at 0 < R < R, The pressure-discharge relation is

37IHQ
Po=%R -

(24)

This shows that the present model, which takes into account the-role of the
moving membrane in driving fluid through the orifice, has a smaller
coefficient, 2/x in Eq. 22, for p than the coefficient, 3/2 in Eq. 24, for p,.
As a result, the average p value is lower than p;.

Finally, we compute the time constant 7 introduced by Tézeren et al.
(1982, Eq. 16) to account for the dissipation inside the erythrocytes.

7t = p/[2A G*(0)u/R;] (25)

where A is a parameter related to the rate of change of member area in
the pipette, 4 = (2xR,D,)/(xR2) = 2D,/ R,, G*(0) is a material constant
and p is the shear modulus of elasticity of the membrane. Substitution
into Eq. 25 and using Eq. 23 gives

1 nHRp
L. By 26
TT26*0)u (26)

Typical values for the physical variables involved in micropipette
aspiration experiments are AP = 5 mm H,0 = 480 dyn/cm?, R, = 0.5 um
and D, = 10 um/s (Chien et al., 1978). For normal human erythrocytes,
74 = 6 x 1072 dyn-s/cm? (Cokelet and Meiselman, 1968). Under these
conditions, to drive the erythrocyte content into the pipette at a rate D,,
we need an applied pressures p of only 2.4 dyn/cm? according to Eq. 23.
Comparison of this value of p with the pressure drop (AP = 480 dyn/cm?)
found experimentally shows that the contribution of viscous losses in the
normal erythrocyte is negligible (~0.5% of total pressure drop) compared
with losses due to other factors. Similarly, for this case, the time constant
7, computed by using Eq. 26 is ~0.35 ms (g = 4.2 x 1073 dyn/cm, Chien
et al., 1978). This value is much smaller than the time constant 7 observed
in actual experiments during the rapid phase of deformation (20
ms =< 7 < 100 ms). This conclusion is in agreement with that reached in
earlier estimations of the order of magnitude of the viscous losses inside
the erythrocyte during micropipette aspiration (Evans and Hochmuth,
1976; Chien et al., 1978) and a recent quantitative analysis using a similar
approach (Hochmuth et al., 1984).
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Although the present study indicates that intracellular viscous loss is
negligible in comparison with membrane viscosity in micropipette aspira-
tion for normal erythrocytes with a low »y;, it may become a significant
factor when 7, is elevated, e.g., following erythrocyte shrinkage in a
hypertonic medium. Calculation based on Eq. 23 indicates that p would
be 5-10% of AP when ny is raised to 1 dyn-s/cm?, which can be attained
with a mean corpuscular hemoglobin concentration (Cy) of ~44 g/dl or
an osmolality of 480 mOsm (Sung and Chien, unpublished observations).
For p to be one-half of AP, ny needs be =10 dyn-s/cm?, which can be
attained when C, is raised above 50 g/dl in a hypertonic medium of >600
mosM. Another condition in which the intracellular viscous dissipation
can be important is where there is an alteration of the physiochemical
state of the hemoglobin, e.g., when sickle cells are subjected to deoxygena-
tion. In this case there is not only an increase of ny, but also the
appearance of elastic behavior in the intracellular content as hemoglobin
S undergoes gelation (Briehl, 1980; Chien et al., 1982).

In summary, several boundary value problems involving flow into an
orifice from an half-space are considered as a model of flow in erythro-
cytes in micropipette experiments. It is found that the pressure drop
between the origin and infinity substantially decreases if the motion of the
membrane is taken into account. This shows that considerable amount of
fluid is driven into the pipette by the motion of the membrane. According
to the results, major contribution to viscous dissipation in orifice flows
takes place in a small vicinity of the orifice. However, it is found that the
dissipation inside normal erythrocytes is negligible compared to other
sources of dissipation. The dissipation inside the cell would become
significant when the intracellular fluid viscosity is raised to 1 dyn-s/cm?
or higher.

APPENDIX

Computation of the
Velocities and Pressure

In this section, velocities and pressure are determined as a superposition of
solutions of two boundary value problems: (@) uniform stream entering a
circular hole with constant velocity D,

vg = 0,and
D,,

0, R>R,

0<R<R,
s atz=0

v, = g(R) = (A1)

and (b) flow due to the radial motion of the membrane subject to constant
area deformations

v, = 0, and
0, 0<R<RP

vr=f(R) = . . atz =0.
-R,D,,/R, R>R,

(A2)

The general solution for velocities are obtained by taking proper
derivatives of y according to Eq. 3. These are

o= [ (BO) - AW (Ro)e™ e
—z fo “tB(t)J(Rt)e=*dt  and
v, = _{ " tA(t)J(Rt)e ™ dt
yz fo ® tB(8)J,(Rt)e* dt. (A3)

TOZEREN ET AL. Viscous Dissipation in Erythrocytes

At z = 0 (at the boundary) these expressions reduce into

o= [ 1B - 1AOV(R) dr,  and

o= [ tA@)I(R) dr. (A%)

Consider (@) uniform efflux velocities (boundary conditions in Eq. Al).

According to Eq. A4 and v = O at z = 0, B(z) = tA(t) and A(¢) is the
Hankel transform of g (R):

g(R) = f0 " tJo(Rt) A(t) dt.

The inverse transform gives

A@) = _[ " RJ,(Rt) g(R) dR. (A5)
Substituting g (R) from Eq. Al and integrating
. 1
A(t) = D,R, 7 Ji(R,Y). (A6)

Using this form of A4(?), ¥ and p become

-zt

. ® e
VIDR,) = Ro || " T(ROI(Ryt) —

+ Rz [T L(ROJ(R)e dt (AT)
p/(uD,R,) = 2 _/(; TR OI(Redr. (A8)

If radial velocities are specified as the boundary condition of Eq. A2,
from Eq. A4 and v, = 0 at z = 0, we have A(t) = 0 and V; = f; B(1)

Ji(Rt) dt, at z = 0. At z = O (the boundary) vy is given by Eq. A2.
Therefore, B(t)/t must be the Hankel transform of f(R):

- 1
S(R) = j; tJi(Rt) [; B(t)] de

and the inverse transform gives

(A9)

BW)/t - [ "RI(R1) f(R)IR

R.D
"t R Jo(Ryt). (A10)

--rRD, [ " U(ROAR -
This choice of A(t) and B(¢) yields

¥/(D,R,) = —zR fo “D(Ry1) Jy(Re) edt - (AlD)
p/(nHDPRP) =-2 ./(;ub tJo(Rpt) Jo(Rt) e ¥ dr. (Alz)

The definite integrals Eqs. A7, A8, All, Al2 are numerically
integrated to give stream function and pressures at some selected points.
The results are given in Fig. 2—-6.
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