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Abstract

Most of the work conducted so far in the field of logic programming has focused on representing
static knowledge, i.e., knowledge that does not evolve with time. To overcome this limitation, in a
recent paper, the authors introduced dynamic logic programming. There, they studied and defined the
declarative and operational semantics of sequences of logic programs (or dynamic logic programs).
Each program in the sequence contains knowledge about some given state, where different states
may, for example, represent different time periods or different sets of priorities.

But how, in concrete situations, is a sequence of logic programs built? For instance, in the domain
of actions, what are the appropriate sequences of programs that represent the performed actions
and their effects? Whereas dynamic logic programming provides a way for, given the sequence,
determining what should follow, it does not provide a good practical language for the specification
of the sequence of updates which may be conditional on the intervening states.

Here we define the language LUPS—“Language for dynamic updates”—designed for specifying
changes to logic programs. Given an initial knowledge base (as a logic program) LUPS provides a
way for sequentially updating it. The declarative meaning of a sequence of sets of update actions
in LUPS is defined by the semantics of the dynamic logic program generated by those actions.
Additionally, we provide a translation of the sequence of update statements sets into a single logic
program written in a meta-language, in such a way that the stable models of the resulting program
correspond to the previously defined declarative semantics. Finally, we exhibit the usage of LUPS in
several application domains.  2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Several authors [3,23,24] have addressed the issue of updates of logic programs
and deductive databases, most of them following the so called “interpretation update”
approach. This approach, proposed in [17,26], is based on the idea of reducing the problem
of finding an update of a knowledge base DB by another knowledge base U to the
problem of finding updates of its individual interpretations or models. More precisely, a
knowledge base DB′ is considered to be the update of a knowledge base DB by U if the
set of models of DB′ coincides with the set of updated models of DB. As pointed out
in [1], the approach of [17,26], while adequate for the purpose of updating theories in
classical propositional logic (for which it was targeted), when applied to non-monotonic
theories suffers from several important drawbacks: first, it requires the computation of
all models of DB before computing the update; second, the resulting knowledge base
DB′ is only indirectly characterized (as one whose models are all the updated models of
the original DB)—no direct definition of DB′ is provided; last, and most importantly, it
leads to counterintuitive results when the intensional part of the knowledge base (i.e., the
set of rules) changes. In [3] the authors eliminated the first two drawbacks by showing
how to, given a program P , construct another program P ′ whose models are exactly the
interpretation updates of the models of P . However the last, and most important, drawback
still remained: no method to update logic programs consisting of rules, not just extensional
facts, was provided.

Example 1. Consider the logic program:

free← not jail
jail ← abortion

whose only stable model is M = {free}. Suppose now that the update U states that
abortionbecomes true, i.e., U = {abortion←}. According to the interpretation approach
to updating, we would obtain {free,abortion} as the only update of M by U . However, by
inspecting the initial program and the update, we are likely to conclude that, since freewas
true only because jail could be assumed false, and that was the case because abortionwas
false, now that abortionbecame true jail should also have become true, and freeshould be
removed from the conclusions.

Suppose now that the law changes, so that abortion no longer implies jail. That could,
for example, be described by the new (update) program:

U2 = {not jail← abortion}
We should now expect jail to become false and so free to become true (again).

This example suggests that the principle of inertia should be applied not just to
individual literals but rather to the whole rules of the knowledge base, as originally pointed
out in [20]. It also suggests that the update of a knowledge base by another one should not
just depend on their semantics, it should also depend on their syntax. It also illustrates the
need for some way of representing negative conclusions.
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In [1], the authors investigated the problem of updating knowledge bases represented by
generalized logic programs1 and proposed a new approach to this problem that eliminates
the drawbacks of previously proposed solutions. It starts by defining the updateof a
generalized programP by another generalized programU , P⊕U . The semantics of P ⊕U
avoids the above mentioned problems by applying the inertia principle not just to atoms but
to entire program rules. This notion of updates is then extended to sequences of programs,
thereby defining the so-called dynamic logic programming. A dynamic logic program is
a (finite or infinite) sequence P0 ⊕ · · · ⊕ Pn ⊕ · · ·, representing consecutive updates of
logic programs by logic programs. The semantics defined in [1] assigns meaning to such
sequences.

However, dynamic logic programming does not by itself provide a proper language
for specifying (or programming) changes of logic programs. If knowledge is already
represented by logic programs, dynamic programs simply represent the evolution of
knowledge. But how is that evolving knowledge specified? What makes knowledge evolve?
Since logic programs describe knowledge states, it’s only fit that logic programs describe
transitions of knowledge states as well. It is natural to associate with each state a set of
transition rules to obtain the next state. As a result, an interleaving sequence of states
and rules of transition will be obtained. Imperative programming specifies transitions and
leaves states implicit. Logic programming, up to now, could not specify state transitions.
With the language of dynamic updates LUPS we make both states and their transitions
declarative.

Usually updates are viewed as actions or commands that make the knowledge base
evolve from one state to another. This is the classical view, e.g., in relational databases: the
knowledge (data) is expressed declaratively via a set of relations; updates are commands
that change the data. In [1], updates were viewed declaratively as a given update store
consisting of the sequence of programs. They were more in the spirit of state transition
rules, rather than commands. Of course, one could say that the update commands were
implicit. For instance, in Example 1, the sequenceP ⊕U⊕U2 could be viewed as the result
of, starting from P , performing first the update command assert abortion, and then the
update command assert not jail← abortion. But, if viewed as a language for (implicitly)
specifying update commands, dynamic logic programming is quite poor. For instance, it
does not provide any mechanism for saying that some rule (or fact) should be asserted
only whenever some conditions are satisfied. This is essential in the domain of actions,
to specify direct effects of actions. For example, suppose we want to state that wake_up
should be added to our knowledge base whenever alarm_rings is true. As a language for
specifying updates, dynamic logic programming does not provide a way of specifying
such an update command. Note that the command is distinct from assert wake_up←
alarm_rings. With the latter, if the alarm stops ringing (i.e., if not alarm_rings is later
asserted), wake_up becomes false. In the former, we expect wake_up to remain true (by
inertia) even after the alarm stops ringing. As a matter of fact, in this case, we don’t want
to add the rule saying that wake_up is true whenever alarm_rings is also true. We simply

1 I.e., logic programs which allow default negation not only in rule bodies but also in their heads.
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want to add the fact wake_upas soon as alarm_rings is true. From there on, no connection
between wake_up and alarm_rings should persist.

This simple one-rule example also highlights another limitation of dynamic logic
programming as a language for specifying update commands: one must explicitly say to
which program in the sequence a rule belongs to. Sometimes, in particular in the domain of
actions, there is no way to know a priori to which state (or program) a rule should belong
to. Where should we assert the fact wake_up? This is not known a priori because we don’t
know when alarm_rings.

In this paper we define, in Section 3, a language for specifying logic program
updates: LUPS—“Language of dynamic updates”. The object language of LUPS is that
of generalized logic programs. A sentence U in LUPS is a set of simultaneous update
commands (or actions) that, given a pre-existing sequence of logic programs P0⊕· · ·⊕Pn
(i.e., a dynamic logic program), whose semantics corresponds to our knowledge at a
given state, produces a sequence with one program more, P0 ⊕ · · · ⊕ Pn ⊕ Pn+1, that
corresponds to the knowledge resulting from the previous sequence after performing all
the new simultaneous commands. A program in LUPS is a sequence of such sentences.

Given a LUPS program, its semantics is first defined, in Section 4, by means of
a dynamic logic program generated by the sequence of commands. In Section 5, we
furthermore describe a translation of any LUPS program into a single generalized logic
program, whose stable models exactly correspond to the semantics of the original LUPS
program.

In Section 6, we argue that the new language LUPS represents a natural, powerful
and expressive tool for representing dynamically changing knowledge. We do so by
demonstrating the applicability of LUPS to several broad knowledge representation
domains. Finally, in Section 7, we make some concluding remarks and discuss future work.

2. Object language

In order to represent negativeinformation in logic programs and their updates, we
require more general logic programs, allowing for default negation notA not only in the
premises of rules but also in their heads. In updates a notA head means atom A is deleted
if the body holds (cf. [2]). Deleting A means that A is no longer true, not necessarily that it
is false. When some form of closed world assumption (CWA) is adopted as well, then this
deletion causes A to be false. In the updates setting, as we will make clear in Section 4,
the CWA must be explicitly encoded from the start, by making all notA false in the initial
program being updated. That is, the two concepts, deletion and CWA, are orthogonal and
must be separately incorporated. Thus, in general, using logic programs extended with
explicit negation [12] wouldn’t be adequate, because explicitly negated heads express the
negated is false, not just deleted.

In the stable models [16,21] and well-founded semantics [7] of single generalized
programs, the CWA is adopted ab initio, and default negation in the heads is conflated
with non-provability because there is no updating and thus no deletion. Note however
that, unlike with single generalized programs (cf. [16]), in updates the head not’s cannot
be moved freely into the body, to obtain simple denials: there is inescapable pragmatic
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information in specifying exactly which not literal figures in the head, namely the one
being deleted when the body holds true. It is not indifferent that any other (positive) body
literal in the denial would be moved to the head. Example 9 shows just that.

In this section we recall the semantics of single generalized logic programs, as defined
in [1,2]. The class of generalized logic programs can be viewed as a special case of yet
broader classes of programs, introduced earlier in [16] and in [21]. As shown in [2], their
semantics coincides with the stable models semantics [11] for the special case of normal
programs. Moreover, the semantics also coincides with the one in [21] (and, consequently,
with the one in [16]) when the latter is restricted to the language of generalized programs.

For convenience, generalized logic programs are syntacticallyrepresented as propo-
sitional Horn theories. In particular, default negation notA is represented as a standard
propositional variable (atom). Suppose that K is an arbitrary set of propositional vari-
ables whose names do not begin with a “not”. By the propositional language LK gener-
ated by the set K we mean the language whose set of propositional variables consists of
{A: A ∈ K} ∪ {notA: A ∈ K}. Atoms A ∈K, are called objective atomswhile the atoms
notA are called default atoms. From the definition it follows that the two sets are disjoint.
By “literals” we mean objective or default atoms in LK.

Definition 2 (Generalized logic program). A generalized logic programP in the language
LK is a (possibly infinite) set of propositional rules of the form

L←L1, . . . ,Ln

where L,L1, . . . ,Ln are literals.
If none of the literals appearing in heads of rules of P are default ones, then we say that

the logic program P is normal.

By a (2-valued) interpretationM of LK we mean any set of atoms from LK satisfying
the condition that for any A in K, precisely one of the atoms A or notA belongs to M .
Given an interpretationM we define:

M+ = {A ∈K: A ∈M} and
M− = {notA: notA ∈M} = {notA: A /∈M}

By a (2-valued) model M of a generalized logic program we mean a (2-valued)
interpretation that satisfies all of its clauses. As usual, a clause is satisfied in an
interpretation if whenever its body belongs to the interpretation its head does too.

Definition 3 (Stable models of generalized logic programs). An interpretationM of LK is
a stable model of a generalized logic program P if M is the least model of the Horn theory
P ∪M−, or, equivalently, if:

M = {L: L is a literal and P ∪M− L}

3. Language for updates

In our update framework, knowledge evolves from one knowledge state to another as a
result of update commands stated in object language.
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Knowledge states KSi represent dynamically evolving states of our knowledge. They
undergo change due to update actions. Without loss of generality (as will become clear
below) we assume that the initial knowledge state, KS0, is empty and that in it all predicates
are falseby default. This is the default knowledge state. Given the current knowledge state
KS, its successor knowledge state KS[U ] is produced as a result of the occurrence of a
non-empty set U of simultaneous updates. Each of the updates can be viewed as a set of
(parallel) actionsand consecutive knowledge states are obtained as

KSn = KS0[U1][U2] . . . [Un]
where Ui ’s represent consecutive sets of updates. We also denote this state by:

KSn =U1⊗U2 ⊗ · · · ⊗Un
So defined sequences of updates will be called update programs. In other words, an
update program is a finite sequence U = {Us : s ∈ S} of updates indexed by the set
S = {1,2, . . . , n}. Each updates is a set of update commands. Update commands (to be
defined below) specify assertionsor retractionsto the current knowledge state. By the
current knowledge state we mean the one resulting from the last update performed.

Knowledge can be queried at any state q � n, where n is the index of the current
knowledge state. A query will be denoted by:

holds B1, . . . ,Bk,notC1, . . . ,notCm at q?

and is true iff the conjunction of its literals holds at the state KBq . If q = n, we simply skip
the state reference “at q”.

3.1. Update commands

Update commands cause changes to the current knowledge state leading to a new
successor state. The simplest command consists of adding a rule to the current state:
assertL←L1, . . . ,Lk . For example, when a law stating that abortion is punished by jail is
approved, the knowledge state might be updated via the command: assert jail← abortion.

In general, the addition of a rule to a knowledge state may depend upon some
precondition. To allow for that, an assert command in LUPS has the form:

assert L← L1, . . . ,Lk when Lk+1, . . . ,Lm (1)

The meaning of such assert rule is that if the precondition Lk+1, . . . ,Lm is true in the
current knowledge state, then the rule L← L1, . . . ,Lk should belong to the successor
knowledge state. Normally, the so added rule persists, or is in force, from then on by
inertia, until possibly defeated by some future update or until retracted. This is the case for
the assert-command above: the rule jail ← abortion remains in effect by inertia from the
successor state onwards unless later invalidated.

However, there are cases where this persistence by inertia should not be assumed. Take,
for instance, the alarm_ring discussed in the introduction. This fact is a one-time event that
should not persist by inertia, i.e., it is not supposed to hold by inertia after the successor
state. In general, facts that denote names of events or actions should be non-inertial. Both
are true in the state they occur, and do not persist by inertia for later states. Accordingly, the



J.J. Alferes et al. / Artificial Intelligence 138 (2002) 87–116 93

rule within the assert command may be preceded with the keyword event, indicating that
the added rule is non-inertial. Assert commands are thus of the form (1) or of the form:2

assert event L←L1, . . . ,Lk when Lk+1, . . . ,Lm (2)

While some update commands, such as assert republican_congress, represent newly
incoming information, and are thus one-time non-persistent update commands (whose
effect, i.e., the truth of republican_congress, may nevertheless persist by inertia), some
other update commands are liable to be persistent, i.e., to remain in force until cancelled.
For example, an update like:

assert jail← abortionwhen rep_congress, rep_president

or

assert wake_upwhen alarm_sounds

might be always true, or at least true until cancelled. Enabling the possibility of such
updates allows our system to dynamically change without any truly new updates being
received. For example, the persistent update command:

assert set_hands(T ) when get_hands(C), get_time(T ), (T −C) >∆
defines a perpetually operating clock whose hands move to the actual time position
whenever the difference between the clock time and the actual time is sufficiently large.

In order to specify such persistent updates commands (which we call laws) we introduce
the syntax:

always L← L1, . . . ,Lk when Lk+1, . . . ,Lm (3)

and:

always event L← L1, . . . ,Lk when Lk+1, . . . ,Lm (4)

For cancelling persistent update commands, we use:

cancel L←L1, . . . ,Lk when Lk+1, . . . ,Lm (5)

The first two statements mean that, in addition to any new set of arriving update commands,
the persistent update command keep executing with them too. In the first case without, and
in the second one with the event keyword. The third statement cancels execution of this
persistent update, once the conditions for cancellation are met.

The existence of persistent update commands requires a “trivial” update, which does
not specify any truly new updates but simply triggers all the already defined persistent
updates to fire, thus resulting in a new modified knowledge state. Such “no-operation”
update ensures that the system continues to evolve, even when no truly new updates are
specified, and may be represented by assert true. It stands for the tick of the clockthat
drives the world being modeled.

To deal with the deletion of rules, we introduce the retractioncommands:

retract L← L1, . . . ,Lk when Lk+1, . . . ,Lm (6)

2 In both cases, if the precondition is empty we just skip the whole when subclause.
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and:

retract event L← L1, . . . ,Lk when Lk+1, . . . ,Lm (7)

meaning that, subject to precondition Lk+1, . . . ,Lm, the rule L← L1, . . . ,Lk is either
retracted from now on (in (6)), or just retracted temporarily in the next state (in (7)). The
latter represents a non-inertial retract, i.e., an event of retraction, triggered by the event
keyword.

The cancelling of an update command is not equivalent to retracting a rule. Cancelling
an update just means it will no longer be added as a command to updates, it does not cancel
the inertial effects of its previous application(s). However, retracting an update causes any
of its inertial effects to be cancelled from now on, as well as cancelling a persistent law.
Also, note that “retract event . . .” does not mean the retracting of an event, because events
persist only for one state and thus do not require retraction. It represents a temporary
removal of a rule from the successor state (a temporary retraction event).

Definition 4 (LUPS). An update program in LUPS is a finite sequence of updates, where
an update is a set of commands of the form (1)–(6).

Example 5. Consider the following scenario:

• once Republicans take over both Congress and the Presidency they establish a law
stating that abortions are punishable by jail;
• once Democrats take over both Congress and the Presidency they abolish such a law;
• in the meantime, there are no changes in the law because always either the President

or the Congress vetoes such changes;
• performing an abortion is an event, i.e., a non-inertial update.

Consider the following update history: (1) a Democratic Congress and a Republican
President; (2) Mary performs abortion; (3) Republican Congress is elected (Republican
President remains in office); (4) Kate performs abortion; (5) a Democrat is elected
President; (6) Ann performs abortion; (7) a Democrat is elected President and Democratic
Congress is in place; (8) Susan performs abortion.

The specification in LUPS would be:3

Persistent update commands:

always jail(X)← abt(X) when repC, repP
always not jail(X)← abt(X) when not repC, not repP

Alternatively, instead of the second clause, in this example, we could have used a retract
statement

retract jail(X)← abt(X) when not repC, not repP

Note that, in this example, since there is no other rule implying jail , retracting the rule is
safely equivalent to retracting its conclusion.

3 Where the rules with variables simply stand, as usual, for all the ground rules that result from replacing the
variables by all the ground terms in the language.
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The above rules state that we are always supposed to update the current state with the
rule jail(X)← abt(X) provided repCand repPhold true and that we are supposed to assert
the opposite provided not repCand not repPhold true. Such persistent update commands
should be added to U1.

Sequence of non-persistent update commands:

U1: assert repP
assert not repC

U2: assert event abt(mary)
U3: assert repC
U4: assert event abt(kate)

U5: assert not repP
U6: assert event abt(ann)
U7: assert not repC
U8: assert event abt(susan)

Of course, in the meantime we could have a lot of trivial update events representing
ticks of the clock, or any other irrelevant updates.

Intuitively, the results of this LUPS program should be the following:

• Initially, there is no rule about going to jail or not whenever an abortion is performed.
The rules asserted in U1 do not change this.
• When, in U2, Mary opts for abortion, since there is no rule concerning it, jail(mary)

does not become true, and so should be false by default.
• With the rule asserted in U3, both repCand repPbecome true (repP is true because it

was true before, and remains so by inertia). Thus, by the first persistent command, the
rule jail(X)← abt(X) must be asserted.
• When Kate undergoes an abortion (in U4) the above rule is in force, and so jail(kate)

becomes true.
• With the fact asserted in U5, none of the when-conditions of the two persistent

commands hold. So, none of the two rules, jail(X)← abt(X) and not jail(X)←
abt(X), are to be asserted here. However, note that the rule asserted in U3 remains
true by inertia.
• Now Ann chooses abort and, since the rule asserted in U3 holds by inertia, jail(ann)

becomes true.
• When not repC is asserted, in U7, the when-conditions of the second persistent

command become true and, consequently, not jail(X)← abt(X) is asserted.
• When Susan subjects herself to an abortion, the rule asserted in U7 is in force by

inertia. Moreover this rule, being the more recent, is used to “reject” the rule introduced
in U3. Accordingly, not jail(susan) is true in this state.

We come back to this example after the definition of the declarative semantics for LUPS,
and then show that these intuitive results are indeed obtained.

4. Semantics of LUPS

In this section we provide update programs with a meaning, by translating them into
dynamic logic programs. The semantics of an update program is then determined by the
semantics of the so obtained dynamic program.
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For clarity, we start by briefly describing the language and semantics of dynamic
logic programs of [1]. We recall that a dynamic program is a sequence P0 ⊕ · · · ⊕ Pn
(also denoted

⊕
P , where P is a set of generalized logic programs indexed by 1, . . . , n

and P0 = {}). Intuitively such a sequence may be viewed as the result of, starting with
program P1, updating it with program P2, . . . , and updating it with program Pn. In such
a view, dynamic logic programs are to be used in knowledge bases that evolve.4 New
rules (coming from new, or newly acquired, knowledge) can be added at the end of
the sequence, bothering not whether they conflict with previous knowledge. The role of
dynamic programming is to ensure that these newly added rules are in force, and that
previous rules are still valid (by inertia) as far as possible, i.e., that they are kept for as long
as they do not conflict with more recent ones.

The semantics of dynamic logic programs is defined according to the rationale above.
Given a model M of the last program Pn, start by removing all the rules from previous
programs whose head is the complement of some later rule with true body in M (i.e., by
removing all rules which conflict with later ones). All others persist through, by inertia.
Then, as for the stable models of a single generalized program, add facts notA for all
atoms A which have no rule at all with true body in M , and compute the least model. If M
is a fixpoint of this construction,M is a stable model of the sequence up to Pn.

Definition 6 (Rejected rules). Let
⊕{Pi : i ∈ S} be a dynamic logic program, let s ∈ S, and

let M be a model of Ps . Then:

Rejects (M) = {L0← Body∈ Pi | ∃ notL0← Body′ ∈ Pj ,
i < j � s ∧M |= Body′}

where notL0 denotes the complement of the literal L0 (i.e., denotes notA if L0 is an atom
A, and denotesA if L0 is a default literal notA) , and both Bodyand Body′ are conjunctions
of literals.

Note that, according to this definition, even rules with false body might be rejected.
In fact, the condition for rejection does not impose Body to be true in M . However, as
we remark below, the rejection of rules with false body does not influence the resulting
semantics. So, to simplify the definition, we do not impose M |= Body.

Definition 7 (Default rules). Let M be a model of a generalized logic program P . Then:

Default(P,M)= {notA |� ∃ A←L1, . . . ,Ln ∈ P : M |= L1, . . . ,Ln}

4 Instead of viewing programs in the sequence as different stages of knowledge in the linear evolution of the
knowledge base, these can also be viewed as different time points in possible future evolutions of the knowledge,
or even as knowledge of ever more specific objects organized in a hierarchy (see [6] for more on this view). Since
our goal here is simply to recap dynamic programming for the purpose of better understanding LUPS, we do not
develop these other views herein.
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To allow for querying a dynamic program at any state s, the definition of stable model
is parameterized by the state:

Definition 8 (Stable models of a DLP at states). Let
⊕

P =⊕{Pi : i ∈ S} be a dynamic
logic program, let s ∈ S, and let U =⋃

i�s Pi . A modelM of Ps is a stable model of
⊕

P
at state s iff:

M = least
([
U −Rejects(M)

]∪Default(U,M)
)

If some literal or conjunction of literals φ holds in all stable models of
⊕

P at state
s, we write

⊕
s P |=smφ. If φ holds in one stable model of

⊕
P at state s, we write⊕

s P |=∃smφ.

Mark here that, as noted after Definition 6, the rejection of rules with false body in M
do not affect the resulting semantics. In fact, adding or removing such rules does not affect
the result of least.

Example 9. Consider the DLP P1 ⊕P2, where P1 and P2 are:

P1: c ← P2: nota← c

a ← notb

The only stable model at P2 is M = {c,nota,notb}. In fact, Default(P1 ∪ P2,M) =
{notb}, Reject2(M)= {a← notb}, and:

M = {c,nota,notb} = least
((
P1 ∪P2 − {a← notb})∪ {notb})

Note here that, as mentioned in Section 2, in DLPs the head not’s cannot be moved
freely into the body, to obtain denials. The rule in P2 includes the pragmatic information
that a is to be deleted if c is true, information that would be lost with the denial. Intuitively
that rule makes a different statement from that of the rule notc← a, which however yields
the same denial. And this difference is reflected by the definition of stable models for DLPs.
In fact, if the rule in P2 is replaced by this other one, the only stable model at P2 would be
{notc, a,notb} instead.

The reader can check that if the rule in P2 is replaced by u← a, c,notu (which, under
the stable models semantics, is equivalent to the denial) the results are also different from
the ones above: with this rule instead, there is no stable model at P2.

Comparisons between dynamic programs and related frameworks can be found in [9].
In [2] a transformational semantics for dynamic programs is also presented. According to
this equivalent definition, a sequence of programs is translated into a single generalized
program (with one new argument added to all predicates) whose stable models are
in one-to-one correspondence with the stable models of the dynamic program. This
transformational semantics, here presented in Appendix A, is the basis of an existing
implementation of dynamic logic programming.

The translation of an update program into a dynamic program is obtainable by induction,
starting from the empty program P0, and for each update Ui , given the already built
dynamic program P0⊕ · · ·⊕Pi−1, determining a resulting program P0⊕ · · ·⊕Pi−1⊕Pi .
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To cope with persistent update commands we will further consider, associated with every
dynamic program in the inductive construction, a set containing all currently active
persistent commands, i.e., all those that were not cancelled, up to that point in the
construction, from the time they were introduced. To be able to retract rules, we need
to uniquely identify each such rule. This is achieved by augmenting the language of the
resulting dynamic program with a new propositional variable “rule(L← L1, . . . ,Ln)” for
every rule L← L1, . . . ,Ln appearing in the original LUPS program.5

Definition 10 (Translation into dynamic programs). Let U = U1 ⊗ · · · ⊗Un be an update
program. A corresponding dynamic program Υ (U) = P = P0 ⊕ · · · ⊕ Pn is obtained by
the following inductive construction, using at each step i an auxiliary set of persistent
commands PCi :

Base step: P0 = {} with PC0 = {}.
Inductive step: Let Pi = P0 ⊕ · · · ⊕ Pi with the set of persistent commands PCi

be a translation of Ui = U1 ⊗ · · · ⊗ Ui . A translation of Ui+1 = U1 ⊗ · · · ⊗ Ui+1 is
Pi+1 = P0 ⊕ · · · ⊕ Pi+1 with the set of persistent commands PCi+1, where:

PCi+1 = PCi ∪
∪ {assert R when C: always R when C ∈ Ui+1}
∪ {assert event R when C: always event R when C ∈ Ui+1}
−

{
assert [event] R when C: cancel R when D ∈Ui+1 ∧

⊕
i

Pi |=∃smD

}

−
{

assert [event] R when C: retract R when D ∈ Ui+1 ∧
⊕
i

Pi |=∃smD

}

NUi+1 = Ui+1 ∪PCi+1

Pi+1 =
{
R, rule(R): assert [event] R when C ∈NUi+1 ∧

⊕
i

Pi |=∃smC

}

∪
{

not rule(R): retract [event] R when C ∈NUi+1 ∧
⊕
i

Pi |=∃smC

}

∪
{

not rule(R): assert event R when C ∈NUi ∧
⊕
i−1

Pi−1 |=∃smC

}

∪
{

rule(R): retract event R when C ∈NUi ∧
⊕
i−1

Pi−1 |=∃smC, rule(R)

}

where R denotes a generalized logic program rule, and C and D a conjunction of
literals. assert [event] R when C and retract [event] R when C are used for notational
convenience, and stand for either the assert or the assert-event command (respectively

5 Note that, by definition, all such rules are ground and thus the new variable uniquely identifies the rule,
where rule/1 is a reserved predicate.
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retract and retract-event). So, for example in the first line of the definition of Pi+1, R and
rule(R) must be added if there exists either a command assert R when C or a command
assert event R when C obeying the conditions C there.

In the inductive step, if i = 0 the last two lines are omitted. In that case NUi does not
exist.

Definition 11 (Stable model of an update program). Let U be an update program. M is a
stable model of U iff M is a stable model of Υ (U) for some translation of U .

Definition 12 (LUPS semantics). Let U be an update program, and let Uq be the sequence
of U up to state q .

A query holdsL1, . . . ,Ln at q is true in U iff for every translation of Uq
⊕

q Υ (Uq) |=sm

L1, . . . ,Ln.

Example 13. Recall the LUPS program of Example 5, which consisted in the following
two persistent update commands (added to U1):

always jail(X)← abt(X) when repC, repP

always not jail(X)← abt(X) when not repC, not repP

plus the sequence of non-persistent commands:

U1: assert repP
assert not repC

U2: assert event abt(mary)
U3: assert repC
U4: assert event abt(kate)

U5: assert not repP
U6: assert event abt(ann)
U7: assert not repC
U8: assert event abt(susan)

It is easy to check that

Υ (U1)= {} ⊕ {repP← rule1; not repC← rule2; rule1←; rule2←}6
Thus, according to the DLP semantics, except for repP, everything else is false by default
at U1.

In U2, Υ (U1 ⊗U2)= Υ (U1)⊕ {abt(mary)← rule3; rule3←}. Thus, at U2 repPand
abt(mary) are true and everything else false by default.

At state U3, repC is added, and the rule added via the assert event of U2 must be
retracted. Accordingly:

Υ (U1 ⊗U2 ⊗U3)= Υ (U2)⊕ {repC← rule4; rule4←; not rule3←}
and repPand repCare true at U3.

Now, since both repPand repCare true at U3, then by the first persistent command, the
rule jail(X)← abt(X) must be added, and so:

Υ (U1 ⊗ · · · ⊗U4) = Υ (U3)⊕
{
jail(X)← abt(X), rule5(X); rule5←;
abt(kate)← rule6; rule6←

}

6 To simplify notation, instead of using the whole rule as a quoted atom as argument of the predicate rule, we
index the rule names in this example with unique numbers.
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Thus, at state U3, jail(kate) is true.
The addition of not repCand of abt(ann) in states U5 and U6, respectively, yields:

Υ (U1 ⊗ · · · ⊗U6) = Υ (U4)⊕ {not repP← rule7; rule7←; not rule6}
⊕ {

abt(ann)← rule8; rule8←
}

According to the semantics of this DLP program, jail(ann) is true at state U6.
After the addition of not repC, in U7, both repC and repP are false, and so the rule

not jail(X)← abt(X) is added. Thus:

Υ (U1 ⊗ · · · ⊗U8) = Υ (U6)⊕ {not repC← rule9; rule9←; not rule8}
⊕ {

not jail(X)← abt(X), rule10; rule10←;
abt(susan)← rule11; rule11←

}
The reader can check that the semantics of this DLP program entails that not jail(susan)
is true at state U8. In particular note how, in the only stable model at state U8, the rule
jail(X)← abt(X), added in U4, is rejected.

From the results on dynamic programs in [1], it is clear that LUPS generalizes the
language of updates of “revision programs” defined in [23]:

Proposition 14 (LUPS generalizes revision programs). Let I be an interpretation andR a
revision program. LetU =U1 ⊗U2 be the update program where:

U1 = {assert A: A ∈ I }
U2 =

{
assert A← B1, . . . ,notBn: in(A)← in(B1), . . . ,out(Bn) ∈ R

}
∪ {

assert notA← B1, . . . ,notBn: out(A)← in(B1), . . . ,out(Bn) ∈ R
}

Then,M is a stable model ofΥ (U) iff M is an interpretation update ofI byR in the sense
of [23].

Proof. This proposition follows easily from Theorem 5.1 of [1] (whose proof may be
found in [2]). The afore mentioned theorem states that the stable models of the dynamic
logic program P1 ⊕ P2 exactly correspond to the interpretation updates of I by R, where
P1 is just the set of facts in I , and P2 includes the rules:

A← B1, . . . ,notBn for every in(A)← in(B1), . . . ,out(Bn) ∈ R
notA← B1, . . . ,notBn for every out(A)← in(B1), . . . ,out(Bn) ∈ R. ✷

5. Translation into generalized logic programs

The previous section established the semantics for LUPS. However, its definition is
based on translations into dynamic logic programs, and is not purely syntactic. Indeed, to
obtain all translated dynamic programs, one needs to compute, at each step of the inductive
process, the stable models of the previous one.
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In this section we present a translation of update programs and queries, into normal logic
programs written in a meta-language. The translation is purely syntactic, and is correct in
the sense that a query holds in an update program iff the translation of the query holds
in all stable models of the translation of the update program. This translation also directly
provides a mechanism for implementing update programs: with a pre-processor performing
the translations, query answering is reduced to that over normal logic programs.7

The translation presented here assumes the existence of a sequence of consecutive
updates. Nevertheless, it is easy to see that the translation is modular (i.e., adding an extra
update does not modify what has been already translated). Thus, in practice, the various
updates can be iteratively translated, one at a time.

Note that the translation presented below is not necessary for understanding the example
applications shown in the next section. Thus, a reader less interested in the implementation
of LUPS, and more interested in its applications, can skip this section without loss of
continuity.

The translation uses a meta-language generated by the language of the update programs.
For each objective atom A in the language of the update program, and each special
propositional symbol ruleL←Body or cancelL←Body (where these symbols are added to the
language for each rule L← Body in the update program8), the meta-language includes
the following symbols: A(s, t), Au(s, t), A(s, t), and Au(s, t), where s and t range over
the indexes of the update program. Intuitively, these new symbols mean, respectively: A is
true at state s considering all states until t ; A is true due to the update program at state s,
considering all states until t ; A is false at state s considering all states until t ; notA is true
due to the update program at state s, considering all states until t .

Intuitively, the first index argument added to atoms stands from the update state where
the atom has been introduced. So, according to the transformation below, in non-persistent
asserts the first argument of atoms in the head of rules is instantiated with the index of the
update state where the rule was asserted. In persistent asserts, the argument ranges over the
indexes where the rule should be asserted (i.e., all those greater than the state where the
corresponding alwayscommand is).

The second index argument stands for the query state. Accordingly, when translating
(non-event) asserts, the second argument of atoms in the head of rules ranges over all
states greater than that where the rule was asserted. For event asserts, the second argument
is instantiated with the index of the update state where the event was asserted. This is so in
order to guarantee that the event is only true when queried in that state (it does not remain,
by inertia, to subsequent query states).

Inertia rules are added to allow for the usage of rules asserted in states before the query
one. Such rules say that one way to prove L at state s with query state t , is to prove L
at state s − 1 with the same query state (unless its complement is proven at state s, thus
blockingthe inertia of L).

Literals in the body of asserted rules are translated such that both arguments are
instantiated with the query state. This guarantees that body literals are always evaluated

7 See Section 7 for more information about such an implementation.
8 Recall that, according to Definition 2, programs are possibly infinite sets of propositional rules. Thus, the

special propositional symbols are added for every such propositional rule.
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in the query state. Literals in the when clause have both arguments instantiated with the
state prior to that when the rule was asserted. This guarantees that those literals are always
evaluated considering that state as the query state.

Definition 15 (Translation of update programs). By the translation of an update program
U =U1⊗· · ·⊗Un in the language L, Tr(U), we mean the normal logic program consisting
of the following rules, in the meta-language above:

Default knowledge state rules. For all objective atomsA ∈ L, andt � 0:

A(0, t)

These rules state that in the initial state all objective atoms are false.

Update rules. For all objective atomsA ∈ L, ands, t � 0:

A(s, t)←Au(s, t)

A(s, t)←Au(s, t)

These update rules state thatA is true (respectively false) at states if A (respectively
notA) is true due to the update program at states.

Inertia rules. For all objective atomsA ∈ L, ands, t > 0:

A(s, t)←A(s − 1, t),notAu(s, t)

A(s, t)←A(s − 1, t),notAu(s, t)

Inertia rules say thatA is true (respectively false) if it is true (respectively false) in the
previous state and its complement is not true due to the update ats.

Translation of asserts. For all update commands

assert L← B1, . . . ,notBk when C1, . . . ,notCm ∈ Us
for any1 � s � n andt > s:

ruleuL←B1,...,notBk
(s + 1, t)← C1(s, s), . . . ,Cm(s, s)

TL← B1(t, t), . . .Bk(t, t), ruleL←B1,...,notBk (t, t),C1(s, s), . . . ,Cm(s, s)

where TL= Au(s + 1, t) if L is an objective atomA, and TL= Au(s + 1, t) if L is a
default atom notA. The ruleL←B1, . . . ,notBk is added at states+1 provided condition
C1, . . . ,notCm holds at states (considering only states tills). It will remain true by
inertia for all t � s + 1 unless the literal ruleL←B1,...,notBk (t, t) becomes false. Moreover,
beginning at states + 1, ruleL←B1,...,notBk (t, t) is true(and so remains by inertia).

Translation of retracts. For all update commands

retract L← B1, . . . ,notBk when C1, . . . ,notCm ∈ Us
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for any1 � s � n andt > s:

ruleuL←B1,...,notBk
(s + 1, t)← C1(s, s), . . . ,Cm(s, s)

canceluL←B1,...,notBk
(s + 1, t)← C1(s, s), . . . ,Cm(s, s)

The ruleL←B1, . . . ,notBk is retracted at states + 1 provided that conditionC1, . . . ,

notCm holds at states. Retractions also cancel persistent update rules.

Translation of persistent asserts. For all update commands

always L← B1, . . . ,notBk when C1, . . . ,notCm ∈Us
for any1 � s � n andt, q + 1> s:

canceluL←B1,...,notBk
(s + 1, t) ←

ruleuL←B1,...,notBk
(q + 1, t) ← C1(q, q), . . . ,Cm(q, q),

cancelL←B1,...,notBk (q + 1, q + 1)

TL ← B1(t, t), . . .Bk(t, t), ruleL←B1,...,notBk (t, t),

cancelL←B1,...,notBk (q + 1, q + 1),C1(q, q), . . . ,Cm(q, q)

where TL= Au(q + 1, t) if L is an objective atomA, and TL= Au(q + 1, t) if L is a
default atom notA. The ruleL←B1, . . . ,notBk is added to any state greater thans,
provided conditionC1, . . . ,notCm holds at that states, and will remain true by inertia for
all t > q , unless retracted or cancelled.

Translation of cancellation rules. For all update commands

cancel L←B1, . . . ,notBk when C1, . . . ,notCm ∈ Us
for any1 � s � n andt > s:

canceluL←B1,...,notBk (s + 1, t)← C1(s, s), . . . ,Cm(s, s)

The persistent update of ruleL←B1, . . . ,notBk is cancelled at states + 1 provided
conditionC1, . . . ,notCm holds at states.

Translation of assert events. For all update commands

assert event L←B1, . . . ,notBk when C1, . . . ,notCm ∈Us
for any1 � s � n:

TL← B1(s + 1, s + 1), . . .Bk(s + 1, s + 1),C1(s, s), . . . , Cm(s, s)

where TL= Au(s + 1, s + 1) if L is objective atomA, and TL= Au(s + 1, s + 1) if L
is default atom notA. The ruleL← B1, . . . ,notBk is added at states + 1, but does not
remain true through inertia.

Translation of retract events. For all update commands

retract event L← B1, . . . ,notBk when C1, . . . ,notCm ∈ Us
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for any1 � s � n:

ruleuL←B1,...,notBk
(s + 1, s + 1)← C1(s, s), . . . ,Cm(s, s)

canceluL←B1,...,notBk
(s + 1, s + 1)← C1(s, s), . . . ,Cm(s, s)

The ruleL←B1, . . . ,notBk is retracted at states + 1 under the named conditions. The
retraction does not remain true through inertia.

Translation of persistent assert events. For all update commands

always event L← B1, . . . ,notBk when C1, . . . ,notCm ∈ Us
for any1 � s � n andt, q + 1> s:

canceluL←B1,...,notBk
(s + 1, t)←

TL← B1(q + 1, q + 1), . . .Bk(q + 1, q + 1),

cancelL←B1,...,notBk (q + 1, q + 1),C1(q, q), . . . ,Cm(q, q)

where TL=Au(q + 1, q + 1) if L is objective atomA, and TL=Au(q + 1, q + 1) if L is
default atom notA.

The translation of update programs queries is similar to that of conditions in update
commands:

Definition 16 (Translation of queries). Let Q= holds B1, . . . ,Bk,notC1, . . . ,notCm at q
be a query to an update program U in the language L. The translation of Q, Tr(Q), is the
conjunction of literals in the meta-language:

B1(q, q), . . . ,Bk(q, q),C1(q, q), . . . ,Cm(q, q)

Theorem 17 (Correctness of the translation). Let U be an update program. A queryQ is
true inU iff Tr(U) |=smTr(Q).

Proof. See Appendix A. ✷

6. Application domains

In this section we discuss and illustrate with examples the applicability of the language
LUPS to several broad knowledge representation domains. The selected domains include:
active databases, theory of actions, legal reasoning, and software specification. They are
not intended by any means to constitute an exhaustive list of potential application domains
but just to serve as sample representatives. For each of the selected application domains
we present an illustrative example, each of which has been run and tested under our
implementation of LUPS. Additional examples of application of LUPS can be found in [4].
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6.1. Active knowledge bases

Persistent update laws allow us to handle not only knowledge states that dynamically
change due to newly received updates, but they enable us also to model the much more
involved case of self-updatingor active knowledge bases,which undergo change even
though no truly new updates occurred. For example, the watch’s hands move whether
or not new updates are received. Since the high-level language of updates LUPS defined
above has a built-in capability to define persistent updates, it permits us to model active
knowledge bases. The following example illustrates the language’s ability to handle
persistent updates.

Example 18 (Timers). Timers are started by the action on_for(N) which means the timer
will be on for the nextN states. This notion can be captured by three persistent rules added
to U1:

always event on_for(M) when on_for(N), N > 0, M =N − 1

With this rule the timer is on forM states (or clock ticks) if it was on for N =M+ 1 states
in the previous state. Timers are onif they are on_for(N), where N > 0: always on←
on_for(N), N > 0, and they are turned off when N = 0: always not on← on_for(0).
Consider the update command asserted at some state Un: Un: assert event on_for(2). As
intended, on holds in the state n+ 1, n+ 2 but not onholds in the state n+ 3.

The problem of building, querying and modifying active databasesis studied by many
researchers in the database community, and is considered to be an important research topic.
We believe that our approach is likely to have a major impact on the ongoing research in
this area by helping to precisely define both the declarative and the procedural meaning of
the notion of active database.

6.2. Reasoning about actions

An exceptionally successful effort has been made lately in the area of reasoning about
actions. Beginning with the seminal paper by Gelfond and Lifschitz [13], introducing a
declarative language for talking about effects of actions (action language A), through the
more recent paper of Giunchiglia and Lifschitz [15] setting forth an enhanced version
of the language (the so called language C), a number of very interesting results have
been obtained by several researchers significantly moving forward our understanding of
actions, causality and effects of actions (see the survey paper [14] for more details on
action languages). These recent advances also significantly influenced our own work on
dynamic knowledge updates.

The theory of actions is very closely related to knowledge updates. An action taking
place at a specific moment of time may cause an effect in the form of a change of the status
of some fluent. For example, an action of stepping on a sharp nail may result in severe pain.
The occurrence of pain can therefore be viewed as a simple (atomic) knowledge update
triggered by a given action. Similarly, a set of parallel actions can be viewed as triggering
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(causing) parallel atomic updates. The following suitcaseexample illustrates how LUPS
can be used to handle parallel updates.

Example 19 (Suitcase). There is a suitcase with two latches which opens whenever both
latches are up, and there is an action of toggling applicable to each latch [22]. This situation
is represented by the three persistent rules:

always open← up(l1),up(l2)

always up(L) when not up(L), toggle(L)

always not up(L) when up(L), toggle(L)

In the initial situation l1 is down, l2 is up, and the suitcase is closed:

U1 =
{
assert not up(l1),assert up(l2),assert not open

}
Suppose there are now two simultaneous toggling actions:

U2 =
{
assert event toggle(l1),assert event toggle(l2)

}
and afterwards another l2 toggling action: U3 = {assert event toggle(l2)}. In the
knowledge state 2 we will have up(l1), not up(l2) and the suitcase is not open. Only after
U3 will latch l2 be up and the suitcase open.

However, there are also major differences between dynamic updates of knowledge and
theories of actions. While in our approach we want to be able to update one knowledge
base by an arbitrary set of rules that constitutes the updating knowledge base, action
languages deal only with updates of propositional knowledge states. In other words, action
languages are limited to purely atomic assertions and retractions, and thus deal exclusively
with purely extensional (or relational) knowledge bases. Our approach further allows us
to model self-updating or active knowledge bases that are capable of undergoing change
without any outside triggers at all. As a result, from a purely syntactic point of view, LUPS
is strictly more expressive than action languages A or C .

At the semantic level, however, the situation is not so simple. The main motivation
behind the introduction of the language C was to be able to express the notion of causality.
This is a very different motivation from the motivation that we used when defining the
semantics of updated knowledge bases. Here the main principle was to inherit as much
information as possible from the previous knowledge state while changing only those rules
that truly have to be affected by the given update(s). As a result, one can easily see that,
even in simple cases, the semantics of knowledge updates and that of action languages
often differ.

In spite of these differences, the strong similarities between the two approaches clearly
justify a serious effort to investigate the exact nature of the close relationship between
the two research areas and between the respective families of languages, their syntax and
semantics. Hopefully, we will be able to bridge the gap between these two intriguing and
closely related research areas.
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6.3. Legal reasoning

Robert Kowalski and his collaborators did a truly outstanding research work on using
logic programming as a language for legal reasoning(see, e.g., [18]). However logic
programming itself lacks any mechanism for expressing dynamic changes in the law due
to revisions of the law or due to new legislation. Dynamic knowledge representation allows
us to handle such changes in a very natural way by augmenting the knowledge base only
with the newly added or revised data, and automatically obtaining the updated information
as a result. We illustrate this capability of LUPS on the following simple example.

Example 20 (Conscientious objector). Consider a situation where someone is conscripted
if he is draftable and healthy. Moreover a person is draftable when he attains a specific age.
However, after some time, the law changes and a person is no longer conscripted if he is
indeed a conscientious objector:

U1: always draftable(X) when of_age(X)

assert conscripted(X)← draftable(X),healthy(X)

U2: assert healthy(a). assert healthy(b). assert of_age(b).

assert consc_objector(a). assert consc_objector(b)

U3: assert of_age(a)

U4: assert not conscripted(X)← consc_objector(X)

In state 3, b is subject to conscription but after the last assertion his situation changes. On
the other hand, a is never conscripted.

In addition to providing automatic updating, LUPS allows us to keep the entire history
of past changes and to query the knowledge base at any given time in the past. The ability
to keep track of all past changes in the law is a feature of crucial importance in this domain.
We expect, therefore, that by using LUPS as a language for representation and reasoning
about legal knowledge we may be able to significantly improve upon the work supported
on standard logic programming.

6.4. Software specifications

One of the most important problems in software engineering is that of choosing
a suitable software specification language. The following are among the key desired
properties of such a language:

(1) Possibility of a concise representation of statements of natural language, commonly
used in informal descriptions of various domains.

(2) Availability of query answering systems which allow rapid prototyping.
(3) Existence of a well developed and mathematically precise semantics of the language.
(4) Ability to express conditions that change dynamically.
(5) Ability to handle inconsistencies stemming from specification revisions.
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It has been argued in several papers (see, e.g., [8,19]) that the language of logic
programming is a good potential candidate for the language of software specifications.
While logic programming clearly possesses the first three properties, it lacks simple
and natural ways of expressing conditions that change dynamically and the ability to
handle inconsistencies stemming from specification revisions. The last problem is called
elaboration toleranceand requires that small modifications of informal specifications
result in localized and simple modifications of their formal counterparts. Dynamic
knowledge representation based on generalized logic programs extends logic programming
exactly with these two missing dynamic update features. Moreover, small informal
specification revisions require equally small modifications of the formal specification,
while all the remaining information is preserved by inertia. The following banking example
illustrates the above claims.

Example 21 (Banking transactions). Consider a software specification for performing
banking transactions. Account balances are modeled by the predicate balance(AccountNo,
Balance). Predicates deposit(AccountNo,Amount) and withdrawal(AccountNo,Amount)
are used to represent, by means of events, the actions of depositing and withdrawing money
into and out of an account, respectively. A withdrawal can only be accomplished if the
account has a sufficient balance. This simplified description can easily be modeled in LUPS
by U1:

always balance(Ac,OB+Up) when updateBal(Ac,Up),balance(Ac,OB)

always not balance(Ac,OB) when updateBal(Ac,NB),balance(Ac,OB)

assert updateBal(Ac,−X)←withdrawal(Ac,X),balance(Ac,O),O >X

assert updateBal(Ac,X)← deposit(Ac,X)

The first two rules state how to update the balance of an account, given any updateBal
occurrence: when some updateBaloccurs for account Ac, the balance of Ac must be
changed by Up. This is accomplished by simultaneously adding the fact for the new balance
(in the first command) and deleting the fact with the old balance of Ac (in the second
command). With the last two rules, deposits and withdrawals are carried out, by causing
updateBal.

An initial situation can be imposed via assertcommands. Deposits and withdrawals can
be stipulated by asserting events of deposit/2 and withdrawal/2. E.g.:

U2:
{
assert balance(1,0),assert balance(2,50)

}
U3:

{
assert event deposit(1,40),assert event withdrawal(2,10)

}

causes the balance of both accounts 1 and 2 to be 40, after state 3.
Now consider the following sequence of informal specification revisions. Deposits

under 50 are no longer allowed; VIP accounts may have a negative balance up to the
limit specified for the account; account #1 is a VIP account with the overdraft limit of 200;
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deposits under 50 are allowed for accounts with negative balances. These can in turn be
modeled by the sequence:

U4: assert not updateBal(Ac,X)← deposit(Ac,X),X < 50

U5: assert updateBal(Ac,−X)← vip(Ac,L),withdrawal(Ac,X),

balance(Ac,B),B +L�X

U6: assert vip(1,200)

U7: assert updateBal(Ac,X)← deposit(Ac,X),balance(Ac,B),B < 0

This shows dynamic knowledge representation constitutes a powerful tool for software
specifications that will prove helpful in the difficult task of building reliable and provably
correct software.

7. Conclusions and future work

We have presented LUPS, a language for specifying dynamic updates in non-
monotonic knowledge bases. Knowledge bases are represented by generalized logic
programs allowing default negation in rule heads. We provided a declarative semantics
for the language, by translating LUPS programs into sequences of logic programs, whose
semantics is determined by dynamic logic programming [1]. We have also presented a
purely syntactic translation of LUPS programs into logic programs written in a meta-
language, and proven its correctness with respect to the declarative semantics. The
translation immediately leads to a mechanism for implementing LUPS: with a pre-
processor performing the translation, query answering is reduced to that over normal
programs. Such a pre-processor, that translates LUPS programs into logic programs that
can be run in the DLV-system [10] (which computes stable models of normal programs)
has been implemented by us and is available at http://centria.di.fct.unl.pt/∼jja/updates/.
Another implementation, also to be found there, includes a pre-processor and a meta-
interpreter for query answering under the well-founded semantics, and runs under XSB-
Prolog. Though not complete according to the semantics defined in this paper, this other
implementation coincides with it on the broad class of stratified programs. This follows
from the well known result that the well-founded and the stable sematics coincide on
that class. And, for such programs, using XSB-Prolog may have some advantage over
using DLV, including better efficiency in query answering, and its less restrictive usage
of variables and functors in programs. Further discussion of these implementations is,
however, beyond the scope of this paper.

Our language for updates of logic programs borrows from and is closely related to action
languages, which can be translated into logic programs (cf., e.g., [13–15]). A change to
the knowledge base may be considered as an action, where the execution of actions may
depend on other actions and conditions. However, the two approaches are significantly
different. Action languages are tailored for planning and reasoning about actions, rather
than for update specification. Furthermore, in theory of actions, states and actions (updates
of states) are restricted to sets of literals rather than representing sets of rules or logic
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programs. Investigating the detailed relationship of our framework to various action
languages is one of the topics of our future research.

Our approach is also similar in spirit to the work in active databases (ADBs), where
the dynamics of a database is specified through event-condition-action rules triggered
by events. However, in contrast to our approach, ADBs in general have no declarative
semantics and allow firing of only one rule at a time. However, in [5], a declarative
characterization of ADBs is presented based on their reduction to logic programs.

Finally we’ve discussed and illustrated by examples the applicability of LUPS to several
broad knowledge representation domains (viz. active databases, theory of actions, legal
reasoning and software specifications). The examples in this paper are simply meant to
show that the LUPS language can be a useful tool for representing knowledge in those
domains. However they do not provide a deep study of the applicability of the LUPS
language. Such a deeper study is subject of ongoing and future work, namely on:

• Bridging the gap between knowledge updates and the very active research area of
reasoning about actions, by analyzing the exact nature of the relationship existing
between these two closely related areas and by comparing the syntax and semantics of
the languages used in both domains of research.
• Applying LUPS as a language for representation and reasoning about legal knowledge

and for representation and reasoning about multi-agent communication.
• Applying knowledge update methodology to the domain of software engineering by

using knowledge updating as a tool for software specification and verification of
program correctness.
• Using the language of knowledge updates for research on the principles, modeling and

design of active knowledge bases.

We also intend to explore the possibility of applying dynamic knowledge updating for
the sake of equipping knowledge bases with true object-oriented capabilities. Dynamic
knowledge updating seems to provide exactly the tools needed in order to allow instances
of class objects to fully inherit knowledge contained in their super-classes. Namely, we can
view the subclass instance as an update of its super-class in which new rules represent the
updating knowledge, while the super-class represents the original knowledge.

In addition, we plan to further investigate the use of LUPS as a natural framework
for reasoning about and updating visual databases, with the purpose of ensuring efficient
querying, storage and retrieval of images based on the description of their visual contents.
As pointed out in [25], image databases must be equipped with “an ability to reason
about objects[. . .] and an ability to maintain an updated view of the world based on the
actions that either the system or the user has performed”. Moreover, the need to handle
motion requires the ability to deal with spatio-temporal reasoning, where, at any given time
moment, information about a given image frame depends on its own content as well as on
the content of its temporal neighbors. LUPS seems to be ideally suited for this purpose. In
fact we have already tested the prototype implementation of LUPS on some introductory
samples of visual databases, with quite encouraging results.

Dynamic Logic Programming, and LUPS, provide a way of avoiding contradictory
information. This is done by limiting the inheritance of rules by inertia: when updating a
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knowledge base KB with another knowledge base KB′, if the latter concludes some L, then
limit the inertia of rules from the former that lead to the conclusion notL. Clearly not all
forms of contradiction are avoided in this way. For example, if KB′ is itself contradictory,
the inconsistency of the resulting update is not avoided. We intend to devise effective
methods of handling such knowledge inconsistencies by developing new contradiction
removal and diagnosis techniques.

Another possible source of inconsistency not dealt with by LUPS, stems from its use
of a two-valued semantics in the object language. In fact, an update may be inconsistent
and yet have no clear contradiction (such as A and notA), the inconsistency coming from
the inability of the two-valued semantics to handling a specific knowledge representation
phenomenon (e.g., resulting from odd “loops” over negation). To overcome this source
of inconsistencies, we plan to extend our approach to the three-valued well-founded object
language semantics. This would further allow us to model updates with undefined outcome.

Another powerful extension of LUPS, encompassing self-updates and multi-dimensional
updates, is also part of our plans, and the subject of forthcoming papers. Other extensions
of LUPS, namely by incorporating notions of events, is being designed by Eiter et al. (in
yet unpublished work) with the purpose of specifying update policies.

Last, but not least, we intend to further pursue the study of foundations and basic
principlesof dynamic knowledge representation and the adequacy of LUPS as a high-level
for that purpose.
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Appendix A. The proof of Theorem 17

Due to the size of the proof, partially resulting from the size of the translation itself,
instead of a complete proof, here we only present its sketch. Moreover, we only consider
LUPS programs with assert, persistent assert and assert event commands. The extension
of the proof for the case of persistent assert event commands is easy to obtain from the
corresponding proofs for the assert event commands and persistent assert commands. The
translation of retract and cancel commands is adapted from the well known technique of
rule naming.

For the proof of this theorem, we first need to recall the transformational semantics for
dynamic programs presented in [2].

Definition 22 (Dynamic program update). By the dynamic program update over the
sequence of updating programs P = {Ps : s ∈ S} we mean the logic program

⊎
P , which

consists of the following clauses in the extended language L, obtained from augmenting
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the language L of P , with the symbols A, A(s), A(s), Au(s), and Au(s) for any atom A

of L and any s ∈ S:9

(RP) Rewritten program clauses:

Au(s) ← B1, . . . ,Bm,C1, . . . ,Cn (A.1)

Au(s) ← B1, . . . ,Bm,C1, . . . ,Cn (A.2)

(A.1) for any clause:

A←B1, . . . ,Bm, notC1, . . . ,notCn

(A.2) for any clause:

notA← B1, . . . ,Bm, notC1, . . . ,notCn

in the program Ps , where s ∈ S. The rewritten clauses are simply obtained from
the original ones by replacing atoms A (respectively, the atoms notA) occurring
in their heads by the atoms Au(s) (respectively, Au(s)) and by replacing negative
premises notC by atoms C.

(UR) Update rules:

A(s) ← Au(s)

A(s) ← Au(s)
(A.3)

for all objective atomsA and all s ∈ S. The update rules state that an atom A must
be true (respectively, false) in state s ∈ S if it is true (respectively, false) in the
updating program Ps .

(IR) Inheritance rules:

A(s) ← A(s − 1),notAu(s) (A.4)

A(s) ← A(s − 1),notAu(s) (A.5)

for all objective atoms A and all s ∈ S. The inheritance rules say that an atom
A is true (respectively, false) in the state s ∈ S if it is true (respectively, false) in
the previous state s − 1 and it is not rejected, i.e., forced to be false (respectively,
true), by clauses in the updating program Ps .

(DR) Default rules:

A(0) (A.6)

for all objective atoms A. Default rules describe the initial state 0 by making all
objective atoms initially false.

9 In [2] the symbols A− , As , A
−
s , APs , and A−

Ps
where used, respectively, instead of A, A(s), A(s), Au(s),

and Au(s).
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Definition 23 (Dynamic program update at a given state). Given a fixed state s ∈ S, by the
dynamic program update at the state s, denoted by

⊕
sP , we mean the dynamic program

update
⊎

P augmented with:

(CSs ) Current State Rules:

A ← A(s) (A.7)

A ← A(s) (A.8)

notA ← A(s) (A.9)

for all objective atoms A. Current state rules specify the current state s in which
the updated program is being evaluated and determine the values of the atoms A,
A and notA.

Suppose now instead that we have augmented the language with the predicate symbols
with one more argument t (for every t ∈ S), and use the same argument in all the literals
of rules from (A.3)–(A.6). For example, rule (A.4) would then be:

A(s, t)←A(s − 1, t),notAu(s, t)

Note that with this new translation, the modified rules (A.3)–(A.6), are exactly the same as
update, inertia and default knowledge state rules from Definition 15.

Moreover, let rules (A.1) and (A.2) now be replaced, respectively, by:

Au(s, t) ← B1(t, t), . . . ,Bm(t, t),C1(t, t), . . . , Cn(t, t)

Au(s, t) ← B1(t, t), . . . ,Bm(t, t),C1(t, t), . . . , Cn(t, t)

and the current state rules at state s now be:

A ← A(s, s)

notA ← A(s, s)

Compared with the previous one, this translation only adds an extra argument that is
used only for t equal to the current state s. Clearly, the stable models restricted to atoms A
in the original language L are exactly the same in both translations.

Moreover, in the latter translation A (respectively notA) is true in a stable model of the
dynamic program at state s iff A(s, s) (respectively A(s, s)) is true in that stable model.
Thus, for answering queries in a dynamic program at some state s, the two remaining
current state rules are no longer needed provided that the query is posed after adding to it
the two extra arguments, both instantiated with state s. In the sequel, this latter translation
of a dynamic program

⊕
P is represented by T (

⊕
P).

Lemma 24. Let
⊕

P be a dynamic program. Then:⊕
P |=smB1, . . . ,notCn iff T (

⊕
P) |=smB1(s, s), . . . ,Cn(s, s)⊕

P |=∃smB1, . . . ,notCn iff T (
⊕

P) |=∃smB1(s, s), . . . ,Cn(s, s)
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At this point, note that if a LUPS program is comprised only of commands of the
form assert L← L1, . . . ,Lk then the main theorem is already proven. In fact, in these
simple LUPS programs, Υ (U) is obtained by adding L← L1, . . . ,Lk to program Pi iff
assert L← L1, . . . ,Lk ∈ Ui . Moreover, the translation of a LUPS programs with just
these commands, exactly coincides with the translation above of the dynamic program,
and the translation of a query coincides with that of the lemma. So the lemma guarantees
the correctness of the theorem (for this simple case).

Suppose now that we are given a dynamic logic program P = P1⊕· · ·⊕Pi ⊕· · ·⊕Pn,
resulting from the translation of a LUPS programU1⊗· · ·⊗Ui⊗· · ·⊗Un, and that toUi+1
the command assert A← L1, . . . ,Lk when Lk+1, . . . ,Lm is added.10 The translation of
this command (simplified for the case where no retract or cancel commands exist) is the
rule:

r =Au(i + 1, t)← B1(t, t), . . . ,Bk(t, t),C1(i, i), . . . ,Cm(i, i)

According to Lemma 24, and since the indexes in the two extra arguments never
increase, T (P)∪{r} |=∃smC1(i, i), . . . ,Cm(i, i) iff Pi |=∃smC1, . . . ,Cn (where Pi denotes
the sequence P up to program Pi ). Accordingly, if Pi |=∃smC1, . . . ,Cn, then replacing
in that stable model the rule above by rt = Au(i + 1, t)← B1(t, t), . . . ,Bk(t, t) doesn’t
change the stable model, and clearly T (P)∪{rt } is the translation of the dynamic program
obtained from P by adding A← L1, . . . ,Lk to Pi+1. I.e., if Pi |=∃smC1, . . . ,Cn then
adding r produces the same effects as adding A ← L1, . . . ,Lk to Pi+1. If Pi �|=∃sm

C1, . . . ,Cn then the rule r can be deleted when computing a stable model without
C1, . . . ,Cn, and so adding assert A← L1, . . . ,Lk when Lk+1, . . . ,Lm to Ui+1 has no
effect on P . This is exactly the semantics of the assert command in Definition 10.

Assume now that, with the dynamic program P as above resulting from the translation
of the same LUPS program, one adds to Ui+1 the command always A ← L1,

. . . ,Lk when Lk+1, . . . ,Lm. The simplified translation of this command results in the
rules:

r(q + 1)=Au(q + 1, t)←B1(t, t), . . . ,Bk(t, t),C1(q, q), . . . ,Cm(q, q)

for all q + 1> i . Clearly, each of these r(q + 1) rules is the same as the rule that would be
introduced in the translation if a command assert A← L1, . . . ,Lk when Lk+1, . . . ,Lm
is added to Uq+1. So, according to this translation, the addition of always A← L1,

. . . ,Lk when Lk+1, . . . ,Lm to Ui+1 is equivalent to the addition of assert A← L1,

. . . ,Lk when Lk+1, . . . ,Lm to every Uq+1 for q � i , and this is the meaning of the
persistent assert command in Definition 10.

Suppose now that we are given a dynamic logic program Pi+1 = P1 ⊕ · · · ⊕ Pi+1,
resulting from the translation of a LUPS program U1 ⊗ · · · ⊗ Ui+1, and that Ui+1
includes the command assert event A← L1, . . . ,Lk when Lk+1, . . . ,Lm. The simplified
translation of this command is the rule r:

Au(i + 1, i + 1)← B1(i + 1, i + 1), . . . ,Bk(i + 1, i + 1),C1(i, i), . . . , Cm(i, i)

10 The case where the literal in the head is of the form notA is in all respects similar to this one, and omitted
for brevity.
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Consider also the rule r ′ resulting from the translation of the command resulting from the
assert event above when dropping the keyword event:

Au(i + 1, t)←B1(t, t), . . . ,Bk(t, t),C1(i, i), . . . ,Cm(i, i)

Note that the truth of any literal L(q, q), with q < i+ 1, in the stable models of T (Pi+1)∪
{r} does not depend on the addition of r , i.e., T (Pi+1) |=smL(q, q) iff T (Pi+1)∪ {r} |=sm

L(q, q). The same happens when adding rule r ′ instead. Moreover, note that for q = i + 1
adding rule r as the same effect has adding r ′, i.e., T (Pi+1) ∪ {r} |=smL(i + 1, i + 1)
iff T (Pi+1) ∪ {r ′} |=smL(i + 1, i + 1). Thus, for any q up to i + 1 adding r or r ′ has
exactly the same effect, meaning that, up to i + 1, the semantics of adding the assert event
command given by the translation, is the same as that of adding the assert command. This
agrees with Definition 10. To prove the correctness of assert event commands we have also
to prove that, if more commands Ui+2⊗· · ·⊗Un are given, the truth of literals L(q, q) for
some q > i + 1 is not affected by that rule (in Definition 10 this is guaranteed by adding
to Pi+2 a literal falsifying the body of the rule). And this is indeed the case. For that, note
that in the inertial rules the second argument is kept fixed. Thus, since q �= i + 1, rule r is
never activated via inertia rules. The only possibility of rule r being activated in Tr(U) is
via some literal C(i + 1, i + 1) resulting from the translation of a literal in a when-clause
of a command in Ui+1. But this is exactly the case where its truth is verified in Pi+1, and
where rule r must be taken into account. The complete proof of this point is slightly more
complex, to take into consideration to non-relevance property of stable models. The long
and short of is is that because of the stratification on state indexes, non-relevance between
states is not introduced. The technicalities of this are omitted here for brevity.

The complete proof continues by showing the correctness of persistent assert event
commands. This is done by reducing the translation of such commands to the translation of
several assert event commands, in the same way as the proof of persistent assert commands
is done by reducing their translation into several assert commands. The results are then
generalized to the case where retract and cancel commands exist, and the correctness
of these commands is shown. Note apropos that the translation of retract and cancel
commands relies on the known technique of naming rules. The proof is thus based
on the correctness of naming with respect to the translation into dynamic programs of
Definition 10.
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