On a hamiltonian cycle in which specified vertices are not isolated

Atsushi Kaneko ${ }^{\text {a }}$, Ken-ichi Kawarabayashi ${ }^{\text {b }}$, Katsuhiro Ota ${ }^{\text {b }}$, Kiyoshi Yoshimoto ${ }^{\mathbf{c}, *}$
${ }^{\text {a }}$ Department of Computer Science and Communication Engineering, Kogakuin University, 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677, Japan
${ }^{\mathrm{b}}$ Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
${ }^{\mathrm{c}}$ Department of Mathematics, College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan

Received 2 May 2000; received in revised form 24 September 2001; accepted 8 October 2001

Abstract

Let G be a graph with n vertices and minimum degree at least $n / 2$, and B a set of vertices with at least $3 n / 4$ vertices. In this paper, we show that there exists a hamiltonian cycle in which every vertex in B is adjacent to some vertex in B. (c) 2002 Elsevier Science B.V. All rights reserved.

Keywords: Hamiltonian cycles; A minimum degree; Dirac-type condition; Specifed vertices

1. Introduction

Dirac [2] showed that a graph with n vertices and minimum degree at least $n / 2$ is hamiltonian. From Theorem 1 of Egawa et al. [3], we have that, for any edge, there is a hamiltonian cycle which contains the specified edge, but with several exceptions. On the other hand, for any two vertices, there exists a hamiltonian cycle in which the vertices are not adjacent. Furthermore, it holds that, for any vertex subset A containing at most $n / 4$ vertices, there is a hamiltonian cycle such that any two vertices in A are not adjacent. Kaneko and Yoshimoto generalized the fact as follows.

[^0]

Fig. 1.
Theorem 1 (Kaneko and Yoshimoto [5]). Let G be a graph with n vertices and minimum degree at least $n / 2$, and let d be a positive integer such that $d \leqslant n / 4$. Then, for any vertex subset A with at most $n / 2 d$ vertices, there exists a hamiltonian cycle C such that $d_{C}(u, v) \geqslant d$ for any vertices u and v in A.

In this theorem, the distance $d_{C}(u, v)$ is defined as the number of edges in a shortest subpath joining u and v. Suppose that $d=3$, and let A be a vertex subset with at most $n / 6$ vertices. Then, there is a hamiltonian cycle which satisfies the condition in the above theorem. In the cycle, any vertex in $B=V(G) \backslash A$ is adjacent to some vertex in B. In other words, for any vertex subset B with at least $5 n / 6$ vertices, there is a hamiltonian cycle C such that $d_{C}(u, B)=1$ for all vertex $u \in B$. In this paper, we improve the lower bound of the number of vertices in B as follows.

Theorem 2. Let G be a graph with n vertices and the minimum degree at least $n / 2$, and let B be a vertex subset with at least $3 n / 4$ vertices. Then, there exists a hamiltonian cycle in which every vertex in B is adjacent to some vertex in B.

We show that the lower bound is the best possible one. A vertex subset is called isolated if the subset contains a vertex which has no neighbours in the subset. Assume that a graph is the balanced complete bipartite graph $K_{n / 2, n / 2}$ with partite sets W_{1} and W_{2}, and let B be a vertex subset of $K_{n / 2, n / 2}$ of cardinality at most $3 n / 4-1$ such that $\left|B \cap W_{2}\right| \geqslant 2\left|B \cap W_{1}\right|+1$. Then, in any hamiltonian cycle, B contains at least $\left|B \cap W_{2}\right|-2\left|B \cap W_{1}\right|$ vertices which have no neighbours in B, i.e., B is isolated. See Fig. 1. Thus, the desired cycle does not exist.

Finally, we prepare notations used in the subsequent argument. We denote by $N_{G}(x)$ the set of vertices which is adjacent to x in a graph G and its cardinality by $\operatorname{deg}_{G}(x)$. The cardinality of S is denoted by $|S|$ and the subgraph induced by a vertex subset S is denoted by $\langle S\rangle$. A spanning subgraph F is called a path factor if F consists of paths of length of at least one. In the proof, we shall use the following theorem.

Theorem 3 (Johansson [4]). Let G be a connected graph with n vertices and suppose that $n=\sum_{i=1}^{k} n_{i}$, where $n_{i} \geqslant 2$ is an integer. If the minimum degree of G is at least $\sum_{i=1}^{k}\left\lfloor n_{i} / 2\right\rfloor$, then H has a path factor consisting of k components of orders $n_{1}, n_{2}, \ldots, n_{k}$.

All the notations and terminologies not explained here are given in [1].

Fig. 2.

2. The Proof of Theorem 2

Suppose that there is a counterexample G for contradiction. Since the complete graph has the desired hamiltonian cycle, without loss of generality, we may assume that $G \cup x y$ is not a counterexample for any edge $x y \in E(\bar{G})$. If C is one of the desired hamiltonian cycles in $G \cup x y$, then $P=C-x y$ is a hamiltonian path in G. In this paper, we call such a hamiltonian path of $G a$ base path joining x and y. By the minimum degree condition, there is an edge $y^{\prime} x^{\prime}$ in P such that $x x^{\prime}$ and $y^{\prime} y \in E(G)$, and then $P \cup\left\{x x^{\prime}, y^{\prime} y\right\} \backslash y^{\prime} x^{\prime}$ is a hamiltonian cycle of G. Thus, the following fact can be obtained easily.

Fact 1. There exists a desired hamiltonian cycle if there is a base path joining vertices in B in which each end vertex is adjacent to a vertex in B.

Let $A=V(G) \backslash B$, and we divide the argument into two cases.
Case 1: There are two vertices $u \in A$ and $v \in B$ such that $u v \notin E(G)$. Assume that a vertex $v_{1} \in B$ is not adjacent to a vertex v_{n} in A, then there is a base path $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ joining v_{1} and v_{n}. We can show that there exists a base path $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ such that $\left\{u_{1}, u_{2}, u_{n}\right\} \subset B$ and $u_{n-1} \in A$ as follows. If there is no base path $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ with $\left\{u_{1}, u_{2}, u_{n}\right\} \subset B$, then the vertex v_{n} cannot have a neighbour in $\left\{v_{i} \mid v_{i-1} \in B, v_{i+1} \in B\right\}$, and hence all the neighbours are in the complement of this set, this complement is as follows:

$$
\left\{v_{i-1}, v_{i+1} \mid v_{i} \in A \backslash v_{n}\right\} \cup v_{n-1} .
$$

Since $\left|A \backslash v_{n}\right| \leqslant n / 4-1$, we have $\left|N_{G}\left(v_{n}\right)\right| \leqslant 2(n / 4-1)+1=n / 2-1$. This is a contradiction. Also, by Fact 1 , we may assume that $u_{n-1} \in A$.

Let $P=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ be a base path such that $\left\{u_{1}, u_{2}, u_{n}\right\} \subset B$ and $u_{n-1} \in A$. Let $u_{\varphi(1)}, u_{\varphi(2)}, \ldots, u_{\varphi(|A|)}$ be the vertices of A taken in the order as they occur on P, and let

$$
Q_{j}=\left(u_{\varphi(j)}, u_{\varphi(j)+1}, \ldots, u_{\varphi(j+1)-1}\right)
$$

for all $j \leqslant|A|-1$. We note that the vertex u_{n} is adjacent to none of $\left\{u_{i} \mid \varphi(j)+1 \leqslant i \leqslant\right.$ $\varphi(j+1)-3\}$ with $j \leqslant|A|-1$, otherwise G has a base path which satisfies the condition of Fact 1. See Fig. 2(i). Therefore, we have

$$
\begin{equation*}
N_{G}\left(u_{n}\right) \cap V\left(Q_{j}\right) \subset\left\{u_{\varphi(j)}, u_{\varphi(j+1)-2}, u_{\varphi(j+1)-1}\right\} \tag{1}
\end{equation*}
$$

for all $j \leqslant|A|-1$. See Fig. 2(ii). Furthermore, we prove the following claim.

Claim 1. There is an edge $x y \in E(P)$ such that $P \backslash\left\{x y, u_{n-1} u_{n}\right\} \cup\left\{x u_{n}, y u_{n}\right\}$ is also a base path.

Proof. Let $R_{j}=\left(u_{\varphi(j-1)+1}, u_{\varphi(j-1)+2}, \ldots, u_{\varphi(j)}\right)$ for all $j \leqslant|A|$, where we set $\varphi(0)=0$. As in the previous argument, we have

$$
N_{G}\left(u_{n}\right) \cap V\left(R_{j}\right) \subset\left\{u_{\varphi(j)-2}, u_{\varphi(j)-1}, u_{\varphi(j)}\right\} .
$$

If equality holds for some j, then the statement is true. Therefore, we can assume that $\left|N_{G}\left(u_{n}\right) \cap V\left(R_{j}\right)\right| \leqslant 2$ for all j. Since

$$
\frac{n}{2} \leqslant\left|N_{G}\left(u_{n}\right)\right|=\sum_{j=1}^{|A|}\left|N_{G}\left(u_{n}\right) \cap V\left(R_{j}\right)\right| \leqslant 2|A| \leqslant \frac{n}{2},
$$

we have $|A|=n / 4$ and $N_{G}\left(u_{n}\right) \cap V\left(R_{j}\right)=\left\{u_{\varphi(j)-2}, u_{\varphi(j)}\right\}$ for all j. Since the vertex u_{1} is not adjacent to u_{n}, it holds that $\left|V\left(R_{1}\right)\right| \geqslant 4$. Therefore, there is an integer $l \geqslant 2$ such that $\left|V\left(R_{l}\right)\right|=3$. Then both $u_{\varphi(l)-3}=u_{\varphi(l-1)}$ and $u_{\varphi(l)-2}$ are adjacent to u_{n}, and $P \backslash\left\{u_{\varphi(l-1)} u_{\varphi(l)-2}, u_{n-1} u_{n}\right\} \cup\left\{u_{\varphi(l-1)} u_{n}, u_{\varphi(l)-2} u_{n}\right\}$ is a base path, i.e., $u_{\varphi(l-1)} u_{\varphi(l)-2}$ is the desired edge.

If the vertex u_{n-1} is adjacent to u_{1}, then we can obtain the desired cycle from the above claim. Next we consider vertices in Q_{j} which can be adjacent to u_{n-1}. Assume that $\left|V\left(Q_{j}\right)\right| \neq 1$, i.e., $\left|V\left(Q_{j}\right)\right| \geqslant 3$. Suppose that the vertex u_{n-1} is adjacent to $u_{\varphi(j)}$. By Claim 2, there is an edge $x y \in E(P)$ such that $P \backslash\left\{x y, u_{n-1} u_{n}\right\} \cup\left\{x u_{n}, y u_{n}\right\}$ is a base path. If $x y \neq u_{\varphi(j)} u_{\varphi(j)+1}$, then the base path $P \backslash\left\{u_{\varphi(j)} u_{\varphi(j)+1}, x y, u_{n-1} u_{n}\right\} \cup\left\{u_{\varphi(j)} u_{n-1}\right.$, $\left.x u_{n}, y u_{n}\right\}$ also yields the desired hamiltonian cycle from Fact 1. In the case of $x y=u_{\varphi(j)}$ $u_{\varphi(j)+1}$, the base path $P \backslash\left\{u_{\varphi(j)} u_{\varphi(j)+1}, u_{n-1} u_{n}\right\} \cup\left\{u_{\varphi(j)} u_{n-1}, u_{\varphi(j)+1} u_{n}\right\}$ also yields the desired cycle. Thus, we may assume that u_{n-1} is not adjacent to $u_{\varphi(j)}$. Similarly, it holds that the vertex u_{n-1} is adjacent to none of $\left\{u_{i} \mid \varphi(j)+2 \leqslant i \leqslant \varphi(j+1)-3\right\}$. Therefore, for all $j \leqslant|A|-1$, we have

$$
\begin{equation*}
N_{G}\left(u_{n-1}\right) \cap V\left(Q_{j}\right) \subset\left\{u_{\varphi(j)+1}, u_{\varphi(j+1)-2}, u_{\varphi(j+1)-1}\right\} \tag{2}
\end{equation*}
$$

if $\left|V\left(Q_{j}\right)\right| \neq 1$. See Fig. 2(ii). The following claim is important.
Claim 2. Suppose that for some $u \in B$, the graph $G-u$ has a hamiltonian cycle in which every vertex in $B \backslash u$ is adjacent to some vertex in $B \backslash u$. Then, G contains a desired hamiltonian cycle.

Proof. Let $D=\left(v_{1}, v_{2}, \ldots, v_{n-1}\right)$ be the cycle of $G-u$ satisfying the condition. Let $v_{\psi(1)}, v_{\psi(2)}, \ldots, v_{\psi(|A|)}$ be the vertices of A taken in the order as they occur on P, and $R_{j}=\left(v_{\psi(j)}, v_{\psi(j)+1}, \ldots, v_{\psi(j+1)-1}\right)$. If $\left|R_{j}\right| \geqslant 5$, then we have $R_{j} \cap N_{G}(u) \subset\left\{v_{\psi(j)}\right\}$, otherwise there is a desired cycle from Fact 1. See Fig. 3(i). Of course, $\left|R_{j} \cap N_{G}(u)\right| \leqslant 1$ if $\left|R_{j}\right|=1$. Similarly, it holds that if $3 \leqslant\left|R_{j}\right| \leqslant 4$, then $\left|R_{j} \cap N_{G}(u)\right| \leqslant 2$. Since $|A| \leqslant n / 4$, it holds that $n / 2 \leqslant\left|N_{G}(u)\right|=\sum_{j=1}^{|A|}\left|N_{G}(u) \cap V\left(R_{j}\right)\right| \leqslant 2|A| \leqslant n / 2$. Therefore, we have that $|A|=n / 4,3 \leqslant\left|R_{j}\right| \leqslant 4$ and $\left|N_{G}(u) \cap R_{j}\right|=2$ for all $j \leqslant|A|$. In particular, u is adjacent to

Fig. 3.
all $v_{\psi(j)}$. Since D has $n-1$ vertices, there is j such that $\left|R_{j}\right|=3$, and then we can find a desired hamiltonian cycle of G as in the proof of Claim 1. See Fig. 3(ii).

Let

$$
\begin{aligned}
d_{j}= & \left|\left\{u_{\varphi(j)+1}, u_{\varphi(j)+2}, \ldots, u_{\varphi(j+1)}\right\} \cap N_{G}\left(u_{1}\right)\right| \\
& +\left|V\left(Q_{j}\right) \cap N_{G}\left(u_{n-1}\right)\right|+\left|V\left(Q_{j}\right) \cap N_{G}\left(u_{n}\right)\right|,
\end{aligned}
$$

then the following claim holds.
Claim 3. $d_{j} \leqslant\left|V\left(Q_{j}\right)\right|+2$ for all $j \leqslant|A|-1$.

Proof. If $\left|V\left(Q_{j}\right)\right|=1$, then the statement is trivial, and $\left|V\left(Q_{j}\right)\right| \neq 2$, because P is a base path. Thus, we show the claim in the case of $\left|V\left(Q_{j}\right)\right| \geqslant 3$. Notice that $\left|V\left(Q_{j}\right) \cap N_{G}\left(u_{n-1}\right)\right|$ and $\left|V\left(Q_{j}\right) \cap N_{G}\left(u_{n}\right)\right|$ are at most three by (1) and (2), and thus, $d_{j} \leqslant \mid V$ $\left(Q_{j}\right) \mid+6$. Especially, if $\left|V\left(Q_{j}\right)\right|=3$, then $d_{j} \leqslant\left|V\left(Q_{j}\right)\right|+5$, because $u_{\varphi(j)+1}=u_{\varphi(j+1)-2}$.

Suppose that the vertex u_{1} is adjacent to $u_{\varphi(j+1)}$. Then the vertex u_{n} is adjacent to neither $u_{\varphi(j+1)-2}$ nor $u_{\varphi(j+1)-1}$, otherwise we can find out a desired cycle by using Claim 2. Similarly, the vertex u_{n-1} is not adjacent to $u_{\varphi(j+1)-1}$. Thus, if $\left|V\left(Q_{j}\right)\right|=3$, then the inequality holds. In the case where $\left|V\left(Q_{j}\right)\right| \geqslant 4$, we have that u_{n-1} is not adjacent to $u_{\varphi(j+1)-2}$ by using Claims 1 and 2, and also the inequality holds. Now, the case where $u_{1} u_{\varphi(j+1)} \in E(G)$ is shown.

Assume that $u_{1} u_{\varphi(j+1)} \notin E(G)$ and u_{1} is adjacent to $u_{\varphi(j+1)-1}$. As in the previous argument, each of u_{n-1} and u_{n} is not adjacent to $u_{\varphi(j+1)-2}$ if $\left|V\left(Q_{j}\right)\right| \geqslant 4$. If all other edges exist, then we can find out a desired hamiltonian cycle. See Fig. 4(i). Otherwise, the inequality holds. The case of $\left|V\left(Q_{j}\right)\right|=3$ is similar. See Fig. 4(ii).

Suppose that u_{1} is adjacent to neither $u_{\varphi(j+1)}$ nor $u_{\varphi(j+1)-1}$. Assume first that $\left|V\left(Q_{j}\right)\right|$ $\geqslant 4$. If $\left.u_{\varphi(j+1)-1} u_{n} \notin E_{(} G\right)$ and all other edges exist, we can find a desired cycle. See Fig. 4(iii). Thus we may assume that $u_{\varphi(j+1)-1} u_{n} \in E(G)$. If u_{n-1} is adjacent to $u_{\varphi(j+1)-2}$, then

$$
\left(u_{1}, u_{2}, \ldots, u_{\varphi(j+1)-2}, u_{n-1}, u_{n-2}, \ldots, u_{\varphi(j+1)-1}, u_{n}\right)
$$

Fig. 4.
is a base path satisfying the condition in Fact 1 . Therefore, $u_{\varphi(j+1)-2} u_{n-1} \notin E(G)$, and we may suppose that all other edges exist. Then we can find a desired cycle as in Fig. 4(iii). The case when $\left|V\left(Q_{j}\right)\right|=3$ is similar. See Fig. 4(iv).

From this claim, we have

$$
\sum_{j=1}^{|A|-1} d_{j} \leqslant \sum_{j=1}^{|A|-1}\left(\left|V\left(Q_{j}\right)\right|+2\right) \leqslant \sum_{j=1}^{|A|-1}\left|V\left(Q_{j}\right)\right|+\left(\frac{n}{2}-2\right) .
$$

Let $Q_{0}=\left(u_{1}, u_{2}, \ldots, u_{\varphi(1)-1}\right) \cup\left(u_{n-1}, u_{n}\right)$, then $\sum_{j=1}^{|A|-1}\left|V\left(Q_{j}\right)\right|+(n / 2-2)=3 n / 2-(\mid V$ $\left.\left(Q_{0}\right) \mid+2\right)$. Let

$$
d_{0}=\left|\left\{u_{2}, u_{3}, \ldots, u_{\varphi(1)}\right\} \cap N_{G}\left(u_{1}\right)\right|+\left|V\left(Q_{0}\right) \cap N_{G}\left(u_{n-1}\right)\right|+\left|V\left(Q_{0}\right) \cap N_{G}\left(u_{n}\right)\right| .
$$

If $d_{0} \leqslant\left|V\left(Q_{0}\right)\right|+1$, then

$$
\left|N_{G}\left(u_{1}\right)\right|+\left|N_{G}\left(u_{n-1}\right)\right|+\left|N_{G}\left(u_{n}\right)\right|=\sum_{j=0}^{|A|-1} d_{j} \leqslant 3 n / 2-\left(\left|V\left(Q_{0}\right)\right|+2\right)+d_{0}<\frac{3 n}{2} .
$$

This contradicts the minimum degree condition. Thus, to complete the proof in the present case, it suffices to show that $d_{0} \leqslant\left|V\left(Q_{0}\right)\right|+1$.

Let us show that the inequality holds. The vertex u_{1} is adjacent to neither u_{n-1} nor u_{n}, and it holds that

$$
N_{G}\left(u_{n-1}\right) \cap V\left(Q_{0}\right) \subset\left\{u_{\varphi(1)-2}, u_{\varphi(1)-1}, u_{n}\right\}
$$

and

$$
N_{G}\left(u_{n}\right) \cap V\left(Q_{0}\right) \subset\left\{u_{\varphi(1)-2}, u_{\varphi(1)-1}, u_{n-1}\right\}
$$

as in the previous argument. Thus, we have $d_{0} \leqslant\left|V\left(Q_{0}\right)\right|+4$. Assume that $\left|V\left(Q_{0}\right)\right|>4$. If the vertex u_{1} is adjacent to $u_{\varphi(1)}$, then each of u_{n-1} and u_{n} is adjacent to neither $u_{\varphi(1)-2}$ nor $u_{\varphi(1)-1}$ as in the proof of Claim 3.

Fig. 5.
Suppose that $u_{1} u_{\varphi(1)} \notin E(G)$. If u_{1} is adjacent to $u_{\varphi(1)-1}$, then each of u_{n-1} and u_{n} is not adjacent to $u_{\varphi(1)-2}$, and thus, the inequality is true. Also, assume that u_{1} is not adjacent to $u_{\varphi(1)-1}$. If there are both the edges $u_{\varphi(1)-2} u_{n-1}$ and $u_{\varphi(1)-1} u_{n}$, we can find out the desired hamiltonian cycle by Fact 1 . Otherwise, the inequality holds. The case when $\left|V\left(Q_{0}\right)\right|=4$ can be shown similarly.

Case 2: All the pairs of vertices $x \in A$ and $y \in B$ are adjacent. Suppose that there are two non-adjacent vertices x and x^{\prime} in A, and let P be a base path joining them. Since $|B| \geqslant 3|A|$, there exist at least four vertices in B such that these appear consecutively in P. Thus, we can easily obtain the desired hamiltonian cycle. See Fig. 5

Assume that $\langle A\rangle$ is complete. If the induced subgraph of B contains a path factor with at most $|A|$ components, then it is a plain fact that the desired cycle can be obtained from the factor because all the pairs of vertices $x \in A$ and $y \in B$ are adjacent. Thus, we show the existence of such a path factor.

If the induced subgraph $\langle B\rangle$ is not connected, then both components in $\langle B\rangle$ contain a hamiltonian path by the minimum degree condition and these constitute a path factor of $\langle B\rangle$. (By the minimum degree condition of G, we have $|A| \geqslant 2$, in this case.) Suppose that $\langle B\rangle$ is connected and let $q=|B|-3(|A|-1)$. Since $|B| \geqslant 3|A|$, we have $q \geqslant 3$ and the minimum degree is at least

$$
\begin{aligned}
\left\lceil\frac{|A|+|B|}{2}\right\rceil-|A| & =|A|+\left\lceil\frac{q-3}{2}\right\rceil=|A|+\left\lfloor\frac{q-2}{2}\right\rfloor=(|A|-1)+\left\lfloor\frac{q}{2}\right\rfloor \\
& =\sum_{i=1}^{|A|-1}\left\lfloor\frac{3}{2}\right\rfloor+\left\lfloor\frac{q}{2}\right\rfloor .
\end{aligned}
$$

Thus, the induced subgraph $\langle B\rangle$ has a path factor with $|A|$ components from Johansson's theorem. Now the proof is complete.

References

[1] G. Chartrand, L. Lesniak, Graphs \& Digraphs, 2nd Edition, Wadsworth \& Brooks/Cole.
[2] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
[3] Y. Egawa, R.J. Faudree, E. Győri, Y. Ishigami, R.H. Schelp, H. Wang, Vertex-disjoint cycles containing specified edges, Graphs Combin. 16 (2000) 81-92.
[4] R. Johansson, An El-Zahár type condition ensuring path-factors, J. Graph Theory 28 (1998) 39-42.
[5] A. Kaneko, K. Yoshimoto, On a Hamiltonian cycle in which specified vertices are uniformly distributed, J. Combin. Theory Ser. B 81 (2001) 100-109.

[^0]: * Corresponding author.

 E-mail addresses: kaneko@ee.kogakuin.ac.jp (A. Kaneko), k_keniti@comb.math.keio.ac.jp
 (K. Kawarabayashi), ohta@comb.math.keio.ac.jp (K. Ota), yosimoto@math.cst.nihon-u.ac.jp (K. Yoshimoto).

