

Discrete Mathematics 258 (2002) 85-91

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

On a hamiltonian cycle in which specified vertices are not isolated

Atsushi Kaneko^a, Ken-ichi Kawarabayashi^b, Katsuhiro Ota^b, Kiyoshi Yoshimoto^{c,*}

^aDepartment of Computer Science and Communication Engineering, Kogakuin University, 1-24-2 Nishi-Shiniuku, Shiniuku-ku, Tokvo 163-8677, Japan ^bDepartment of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan ^cDepartment of Mathematics, College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan

Received 2 May 2000; received in revised form 24 September 2001; accepted 8 October 2001

Abstract

Let G be a graph with n vertices and minimum degree at least n/2, and B a set of vertices with at least 3n/4 vertices. In this paper, we show that there exists a hamiltonian cycle in which every vertex in B is adjacent to some vertex in B. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Hamiltonian cycles; A minimum degree; Dirac-type condition; Specifed vertices

1. Introduction

Dirac [2] showed that a graph with n vertices and minimum degree at least n/2 is hamiltonian. From Theorem 1 of Egawa et al. [3], we have that, for any edge, there is a hamiltonian cycle which contains the specified edge, but with several exceptions. On the other hand, for any two vertices, there exists a hamiltonian cycle in which the vertices are not adjacent. Furthermore, it holds that, for any vertex subset A containing at most n/4 vertices, there is a hamiltonian cycle such that any two vertices in A are not adjacent. Kaneko and Yoshimoto generalized the fact as follows.

E-mail addresses: kaneko@ee.kogakuin.ac.jp (A. Kaneko), k_keniti@comb.math.keio.ac.jp

(K. Kawarabayashi), ohta@comb.math.keio.ac.jp (K. Ota), yosimoto@math.cst.nihon-u.ac.jp (K. Yoshimoto).

^{*} Corresponding author.

⁰⁰¹²⁻³⁶⁵X/02/\$-see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0012-365X(02)00263-7

Fig. 1.

Theorem 1 (Kaneko and Yoshimoto [5]). Let G be a graph with n vertices and minimum degree at least n/2, and let d be a positive integer such that $d \le n/4$. Then, for any vertex subset A with at most n/2d vertices, there exists a hamiltonian cycle C such that $d_C(u, v) \ge d$ for any vertices u and v in A.

In this theorem, the distance $d_C(u, v)$ is defined as the number of edges in a shortest subpath joining u and v. Suppose that d = 3, and let A be a vertex subset with at most n/6 vertices. Then, there is a hamiltonian cycle which satisfies the condition in the above theorem. In the cycle, any vertex in $B = V(G) \setminus A$ is adjacent to some vertex in B. In other words, for any vertex subset B with at least 5n/6 vertices, there is a hamiltonian cycle C such that $d_C(u, B) = 1$ for all vertex $u \in B$. In this paper, we improve the lower bound of the number of vertices in B as follows.

Theorem 2. Let G be a graph with n vertices and the minimum degree at least n/2, and let B be a vertex subset with at least 3n/4 vertices. Then, there exists a hamiltonian cycle in which every vertex in B is adjacent to some vertex in B.

We show that the lower bound is the best possible one. A vertex subset is called *isolated* if the subset contains a vertex which has no neighbours in the subset. Assume that a graph is the balanced complete bipartite graph $K_{n/2,n/2}$ with partite sets W_1 and W_2 , and let B be a vertex subset of $K_{n/2,n/2}$ of cardinality at most 3n/4 - 1 such that $|B \cap W_2| \ge 2|B \cap W_1| + 1$. Then, in any hamiltonian cycle, B contains at least $|B \cap W_2| - 2|B \cap W_1|$ vertices which have no neighbours in B, i.e., B is isolated. See Fig. 1. Thus, the desired cycle does not exist.

Finally, we prepare notations used in the subsequent argument. We denote by $N_G(x)$ the set of vertices which is adjacent to x in a graph G and its cardinality by $\deg_G(x)$. The cardinality of S is denoted by |S| and the subgraph induced by a vertex subset S is denoted by $\langle S \rangle$. A spanning subgraph F is called a path factor if F consists of paths of length of at least one. In the proof, we shall use the following theorem.

Theorem 3 (Johansson [4]). Let G be a connected graph with n vertices and suppose that $n = \sum_{i=1}^{k} n_i$, where $n_i \ge 2$ is an integer. If the minimum degree of G is at least $\sum_{i=1}^{k} \lfloor n_i/2 \rfloor$, then H has a path factor consisting of k components of orders n_1, n_2, \ldots, n_k .

All the notations and terminologies not explained here are given in [1].

Fig. 2.

2. The Proof of Theorem 2

Suppose that there is a counterexample G for contradiction. Since the complete graph has the desired hamiltonian cycle, without loss of generality, we may assume that $G \cup xy$ is not a counterexample for any edge $xy \in E(\overline{G})$. If C is one of the desired hamiltonian cycles in $G \cup xy$, then P = C - xy is a hamiltonian path in G. In this paper, we call such a hamiltonian path of G a base path joining x and y. By the minimum degree condition, there is an edge y'x' in P such that xx' and $y'y \in E(G)$, and then $P \cup \{xx', y'y\} \setminus y'x'$ is a hamiltonian cycle of G. Thus, the following fact can be obtained easily.

Fact 1. There exists a desired hamiltonian cycle if there is a base path joining vertices in B in which each end vertex is adjacent to a vertex in B.

Let $A = V(G) \setminus B$, and we divide the argument into two cases.

Case 1: There are two vertices $u \in A$ and $v \in B$ such that $uv \notin E(G)$. Assume that a vertex $v_1 \in B$ is not adjacent to a vertex v_n in A, then there is a base path (v_1, v_2, \ldots, v_n) joining v_1 and v_n . We can show that there exists a base path (u_1, u_2, \ldots, u_n) such that $\{u_1, u_2, u_n\} \subset B$ and $u_{n-1} \in A$ as follows. If there is no base path (u_1, u_2, \ldots, u_n) with $\{u_1, u_2, u_n\} \subset B$, then the vertex v_n cannot have a neighbour in $\{v_i | v_{i-1} \in B, v_{i+1} \in B\}$, and hence all the neighbours are in the complement of this set, this complement is as follows:

 $\{v_{i-1}, v_{i+1} \mid v_i \in A \setminus v_n\} \cup v_{n-1}.$

Since $|A \setminus v_n| \leq n/4 - 1$, we have $|N_G(v_n)| \leq 2(n/4 - 1) + 1 = n/2 - 1$. This is a contradiction. Also, by Fact 1, we may assume that $u_{n-1} \in A$.

Let $P = (u_1, u_2, ..., u_n)$ be a base path such that $\{u_1, u_2, u_n\} \subset B$ and $u_{n-1} \in A$. Let $u_{\phi(1)}, u_{\phi(2)}, ..., u_{\phi(|A|)}$ be the vertices of A taken in the order as they occur on P, and let

$$Q_j = (u_{\varphi(j)}, u_{\varphi(j)+1}, \dots, u_{\varphi(j+1)-1})$$

for all $j \leq |A| - 1$. We note that the vertex u_n is adjacent to none of $\{u_i | \varphi(j) + 1 \leq i \leq \varphi(j+1)-3\}$ with $j \leq |A| - 1$, otherwise *G* has a base path which satisfies the condition of Fact 1. See Fig. 2(i). Therefore, we have

$$N_G(u_n) \cap V(Q_j) \subset \{u_{\varphi(j)}, u_{\varphi(j+1)-2}, u_{\varphi(j+1)-1}\}$$
(1)

for all $j \leq |A| - 1$. See Fig. 2(ii). Furthermore, we prove the following claim.

87

Claim 1. There is an edge $xy \in E(P)$ such that $P \setminus \{xy, u_{n-1}u_n\} \cup \{xu_n, yu_n\}$ is also a base path.

Proof. Let $R_j = (u_{\phi(j-1)+1}, u_{\phi(j-1)+2}, \dots, u_{\phi(j)})$ for all $j \leq |A|$, where we set $\phi(0) = 0$. As in the previous argument, we have

$$N_G(u_n) \cap V(R_j) \subset \{u_{\phi(j)-2}, u_{\phi(j)-1}, u_{\phi(j)}\}.$$

If equality holds for some *j*, then the statement is true. Therefore, we can assume that $|N_G(u_n) \cap V(R_j)| \leq 2$ for all *j*. Since

$$\frac{n}{2} \leq |N_G(u_n)| = \sum_{j=1}^{|A|} |N_G(u_n) \cap V(R_j)| \leq 2|A| \leq \frac{n}{2},$$

we have |A| = n/4 and $N_G(u_n) \cap V(R_j) = \{u_{\varphi(j)-2}, u_{\varphi(j)}\}$ for all *j*. Since the vertex u_1 is not adjacent to u_n , it holds that $|V(R_1)| \ge 4$. Therefore, there is an integer $l \ge 2$ such that $|V(R_l)| = 3$. Then both $u_{\varphi(l)-3} = u_{\varphi(l-1)}$ and $u_{\varphi(l)-2}$ are adjacent to u_n , and $P \setminus \{u_{\varphi(l-1)}u_{\varphi(l)-2}, u_{n-1}u_n\} \cup \{u_{\varphi(l-1)}u_n, u_{\varphi(l)-2}u_n\}$ is a base path, i.e., $u_{\varphi(l-1)}u_{\varphi(l)-2}$ is the desired edge. \Box

If the vertex u_{n-1} is adjacent to u_1 , then we can obtain the desired cycle from the above claim. Next we consider vertices in Q_j which can be adjacent to u_{n-1} . Assume that $|V(Q_j)| \neq 1$, i.e., $|V(Q_j)| \geq 3$. Suppose that the vertex u_{n-1} is adjacent to $u_{\varphi(j)}$. By Claim 2, there is an edge $xy \in E(P)$ such that $P \setminus \{xy, u_{n-1}u_n\} \cup \{xu_n, yu_n\}$ is a base path. If $xy \neq u_{\varphi(j)}u_{\varphi(j)+1}$, then the base path $P \setminus \{u_{\varphi(j)}u_{\varphi(j)+1}, xy, u_{n-1}u_n\} \cup \{u_{\varphi(j)}u_{n-1}, xu_n, yu_n\}$ also yields the desired hamiltonian cycle from Fact 1. In the case of $xy = u_{\varphi(j)}u_{\varphi(j)+1}$, the base path $P \setminus \{u_{\varphi(j)}u_{\eta(j)+1}, u_{n-1}u_n\} \cup \{u_{\varphi(j)+1}u_n\}$ also yields the desired cycle. Thus, we may assume that u_{n-1} is not adjacent to $u_{\varphi(j)}$. Similarly, it holds that the vertex u_{n-1} is adjacent to none of $\{u_i \mid \varphi(j) + 2 \leq i \leq \varphi(j+1) - 3\}$. Therefore, for all $j \leq |A| - 1$, we have

$$N_G(u_{n-1}) \cap V(Q_j) \subset \{u_{\phi(j)+1}, u_{\phi(j+1)-2}, u_{\phi(j+1)-1}\}$$
(2)

if $|V(Q_i)| \neq 1$. See Fig. 2(ii). The following claim is important.

Claim 2. Suppose that for some $u \in B$, the graph G - u has a hamiltonian cycle in which every vertex in $B \setminus u$ is adjacent to some vertex in $B \setminus u$. Then, G contains a desired hamiltonian cycle.

Proof. Let $D = (v_1, v_2, ..., v_{n-1})$ be the cycle of G - u satisfying the condition. Let $v_{\psi(1)}, v_{\psi(2)}, ..., v_{\psi(|A|)}$ be the vertices of A taken in the order as they occur on P, and $R_j = (v_{\psi(j)}, v_{\psi(j)+1}, ..., v_{\psi(j+1)-1})$. If $|R_j| \ge 5$, then we have $R_j \cap N_G(u) \subset \{v_{\psi(j)}\}$, otherwise there is a desired cycle from Fact 1. See Fig. 3(i). Of course, $|R_j \cap N_G(u)| \le 1$ if $|R_j| = 1$. Similarly, it holds that if $3 \le |R_j| \le 4$, then $|R_j \cap N_G(u)| \le 2$. Since $|A| \le n/4$, it holds that $n/2 \le |N_G(u)| = \sum_{j=1}^{|A|} |N_G(u) \cap V(R_j)| \le 2|A| \le n/2$. Therefore, we have that $|A| = n/4, 3 \le |R_j| \le 4$ and $|N_G(u) \cap R_j| = 2$ for all $j \le |A|$. In particular, u is adjacent to

all $v_{\psi(j)}$. Since *D* has n-1 vertices, there is *j* such that $|R_j| = 3$, and then we can find a desired hamiltonian cycle of *G* as in the proof of Claim 1. See Fig. 3(ii).

Let

$$d_{j} = |\{u_{\phi(j)+1}, u_{\phi(j)+2}, \dots, u_{\phi(j+1)}\} \cap N_{G}(u_{1})| + |V(Q_{j}) \cap N_{G}(u_{n-1})| + |V(Q_{j}) \cap N_{G}(u_{n})|,$$

then the following claim holds.

Claim 3. $d_i \leq |V(Q_i)| + 2$ for all $j \leq |A| - 1$.

Proof. If $|V(Q_j)| = 1$, then the statement is trivial, and $|V(Q_j)| \neq 2$, because *P* is a base path. Thus, we show the claim in the case of $|V(Q_j)| \ge 3$. Notice that $|V(Q_j) \cap N_G(u_{n-1})|$ and $|V(Q_j) \cap N_G(u_n)|$ are at most three by (1) and (2), and thus, $d_j \le |V(Q_j)| + 6$. Especially, if $|V(Q_j)| = 3$, then $d_j \le |V(Q_j)| + 5$, because $u_{\phi(j)+1} = u_{\phi(j+1)-2}$.

Suppose that the vertex u_1 is adjacent to $u_{\varphi(j+1)}$. Then the vertex u_n is adjacent to neither $u_{\varphi(j+1)-2}$ nor $u_{\varphi(j+1)-1}$, otherwise we can find out a desired cycle by using Claim 2. Similarly, the vertex u_{n-1} is not adjacent to $u_{\varphi(j+1)-1}$. Thus, if $|V(Q_j)| = 3$, then the inequality holds. In the case where $|V(Q_j)| \ge 4$, we have that u_{n-1} is not adjacent to $u_{\varphi(j+1)-2}$ by using Claims 1 and 2, and also the inequality holds. Now, the case where $u_1u_{\varphi(j+1)} \in E(G)$ is shown.

Assume that $u_1u_{\varphi(j+1)} \notin E(G)$ and u_1 is adjacent to $u_{\varphi(j+1)-1}$. As in the previous argument, each of u_{n-1} and u_n is not adjacent to $u_{\varphi(j+1)-2}$ if $|V(Q_j)| \ge 4$. If all other edges exist, then we can find out a desired hamiltonian cycle. See Fig. 4(i). Otherwise, the inequality holds. The case of $|V(Q_j)| = 3$ is similar. See Fig. 4(ii).

Suppose that u_1 is adjacent to neither $u_{\varphi(j+1)}$ nor $u_{\varphi(j+1)-1}$. Assume first that $|V(Q_j)| \ge 4$. If $u_{\varphi(j+1)-1}u_n \notin E_i(G)$ and all other edges exist, we can find a desired cycle. See Fig. 4(iii). Thus we may assume that $u_{\varphi(j+1)-1}u_n \in E(G)$. If u_{n-1} is adjacent to $u_{\varphi(j+1)-2}$, then

$$(u_1, u_2, \ldots, u_{\varphi(j+1)-2}, u_{n-1}, u_{n-2}, \ldots, u_{\varphi(j+1)-1}, u_n)$$

is a base path satisfying the condition in Fact 1. Therefore, $u_{\varphi(j+1)-2}u_{n-1} \notin E(G)$, and we may suppose that all other edges exist. Then we can find a desired cycle as in Fig. 4(iii). The case when $|V(Q_j)| = 3$ is similar. See Fig. 4(iv). \Box

From this claim, we have

$$\sum_{j=1}^{|\mathcal{A}|-1} d_j \leq \sum_{j=1}^{|\mathcal{A}|-1} (|V(\mathcal{Q}_j)|+2) \leq \sum_{j=1}^{|\mathcal{A}|-1} |V(\mathcal{Q}_j)| + \left(\frac{n}{2} - 2\right).$$

Let $Q_0 = (u_1, u_2, \dots, u_{\phi(1)-1}) \cup (u_{n-1}, u_n)$, then $\sum_{j=1}^{|A|-1} |V(Q_j)| + (n/2 - 2) = 3n/2 - (|V(Q_0)| + 2)$. Let

$$d_0 = |\{u_2, u_3, \dots, u_{\varphi(1)}\} \cap N_G(u_1)| + |V(Q_0) \cap N_G(u_{n-1})| + |V(Q_0) \cap N_G(u_n)|.$$

If $d_0 \leq |V(Q_0)| + 1$, then

$$|N_G(u_1)| + |N_G(u_{n-1})| + |N_G(u_n)| = \sum_{j=0}^{|A|-1} d_j \leq 3n/2 - (|V(Q_0)| + 2) + d_0 < \frac{3n}{2}.$$

This contradicts the minimum degree condition. Thus, to complete the proof in the present case, it suffices to show that $d_0 \leq |V(Q_0)| + 1$.

Let us show that the inequality holds. The vertex u_1 is adjacent to neither u_{n-1} nor u_n , and it holds that

$$N_G(u_{n-1}) \cap V(Q_0) \subset \{u_{\varphi(1)-2}, u_{\varphi(1)-1}, u_n\}$$

and

$$N_G(u_n) \cap V(Q_0) \subset \{u_{\phi(1)-2}, u_{\phi(1)-1}, u_{n-1}\}$$

as in the previous argument. Thus, we have $d_0 \leq |V(Q_0)| + 4$. Assume that $|V(Q_0)| > 4$. If the vertex u_1 is adjacent to $u_{\varphi(1)}$, then each of u_{n-1} and u_n is adjacent to neither $u_{\varphi(1)-2}$ nor $u_{\varphi(1)-1}$ as in the proof of Claim 3.

90

Suppose that $u_1u_{\varphi(1)} \notin E(G)$. If u_1 is adjacent to $u_{\varphi(1)-1}$, then each of u_{n-1} and u_n is not adjacent to $u_{\varphi(1)-2}$, and thus, the inequality is true. Also, assume that u_1 is not adjacent to $u_{\varphi(1)-1}$. If there are both the edges $u_{\varphi(1)-2}u_{n-1}$ and $u_{\varphi(1)-1}u_n$, we can find out the desired hamiltonian cycle by Fact 1. Otherwise, the inequality holds. The case when $|V(Q_0)| = 4$ can be shown similarly.

Case 2: All the pairs of vertices $x \in A$ and $y \in B$ are adjacent. Suppose that there are two non-adjacent vertices x and x' in A, and let P be a base path joining them. Since $|B| \ge 3|A|$, there exist at least four vertices in B such that these appear consecutively in P. Thus, we can easily obtain the desired hamiltonian cycle. See Fig. 5

Assume that $\langle A \rangle$ is complete. If the induced subgraph of *B* contains a path factor with at most |A| components, then it is a plain fact that the desired cycle can be obtained from the factor because all the pairs of vertices $x \in A$ and $y \in B$ are adjacent. Thus, we show the existence of such a path factor.

If the induced subgraph $\langle B \rangle$ is not connected, then both components in $\langle B \rangle$ contain a hamiltonian path by the minimum degree condition and these constitute a path factor of $\langle B \rangle$. (By the minimum degree condition of G, we have $|A| \ge 2$, in this case.) Suppose that $\langle B \rangle$ is connected and let q = |B| - 3(|A| - 1). Since $|B| \ge 3|A|$, we have $q \ge 3$ and the minimum degree is at least

$$\begin{bmatrix} |A| + |B| \\ 2 \end{bmatrix} - |A| = |A| + \begin{bmatrix} q-3 \\ 2 \end{bmatrix} = |A| + \lfloor \frac{q-2}{2} \rfloor = (|A| - 1) + \lfloor \frac{q}{2} \rfloor$$
$$= \sum_{i=1}^{|A|-1} \lfloor \frac{3}{2} \rfloor + \lfloor \frac{q}{2} \rfloor.$$

Thus, the induced subgraph $\langle B \rangle$ has a path factor with |A| components from Johansson's theorem. Now the proof is complete.

References

- [1] G. Chartrand, L. Lesniak, Graphs & Digraphs, 2nd Edition, Wadsworth & Brooks/Cole.
- [2] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
- [3] Y. Egawa, R.J. Faudree, E. Győri, Y. Ishigami, R.H. Schelp, H. Wang, Vertex-disjoint cycles containing specified edges, Graphs Combin. 16 (2000) 81–92.
- [4] R. Johansson, An El-Zahár type condition ensuring path-factors, J. Graph Theory 28 (1998) 39-42.
- [5] A. Kaneko, K. Yoshimoto, On a Hamiltonian cycle in which specified vertices are uniformly distributed, J. Combin. Theory Ser. B 81 (2001) 100–109.