
N.l-l

ELSEVIER

DISCRETE
APPLIED
MATHEMATICS

Discrete Applied Mathematics 87 (1998) 139-147

Splicing representations of strictly locally
testable languages

Tom Head*
Department of Mathematical Sciences, State University qf New York-Binghamton, Binghamton,

NY 13902-6000, USA

Received 26 March 1997; received in revised form 16 February 1998; accepted 9 March 1998

Abstract

The relationship between the family SH of simple splicing languages, which was recently
introduced by Mateescu et al. and the family X7’ of strictly locally testable languages is clarified
by establishing an ascending hierarchy of families {SiH: i > - 1) of splicing languages for which
SH = SI H and the union of the families is the family XT. A procedure is given which, for an
arbitrary regular language L, determines whether L is in SLT and, when L is in SLT, specifies
constructively the smallest family in the hierarchy to which L belongs. Examples are given of
sets of restriction enzymes for which the action on DNA molecules is naturally represented by
splicing systems of the types discussed. 0 1998 Elsevier Science B.V. All rights reserved.

Keywords: Splicing systems; H systems; DNA computing; Local testability; Regular languages;
Restriction enzymes

1. Introduction

The splicing system concept was introduced in [6] as a formal device for the genera-
tion of languages and as a formal model of specific forms of DNA recombination. The
definition was created in close imitation of the recombinant behavior of double-stranded
DNA molecules in the presence of specific restriction enzymes and a ligase. See [9, lo]
for an exposition of this new field of splicing theory and for an explanation of its origin
in molecular biology. The use of splicing concepts as a basis of universal computing is
being investigated extensively now as exemplified in [4, 5, 10, 14- 16, 191. Our interest
continues, since [6, 71 , to center on models of the generative dynamics of molecular
soups, as exemplified by [111.

We are concerned here with subclasses of the splicing systems that in [6] were
called null context splicing systems (called here NCH systems). The present note was
stimulated by the recent paper [12] which introduced a subclass of the null context
splicing systems called simple H systems. It was observed in [6] that the family of

* E-mail: tom@math.binghamton.edu.

0166-218X/98/$17.00 0 1998 Elsevier Science B.V. All rights reserved.
Z’ZZSO166-218X(98)00053-5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82376011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

140 T. Head1 Discrete Applied Mathematics 87 (1998) 139-147

languages generated by null context splicing systems coincides with the family SLT of
strictly locally testable languages which is a subfamily of the regular languages that
was introduced in [131. Languages generated by splicing systems in the original sense
of [6, 71 are always regular [1, 2, 17, 181.

In Section 2 the required formal definitions are given. This includes the definition
of a sequence of language families {&H: i 2 -l} beginning with the finite languages,
having SiH = SH, and having the class of all SLT languages as union.

In Section 3 we study the problem of generating languages with NCH systems. We
provide a procedure which determines, for any regular language L, whether L is in SLT.
When L is in SLT the procedure continues and calculates the least integer k > - 1 for
which L is in SkH.

In Section 4 examples of sets R of restriction enzymes are given for which, for each
such R, the set of DNA molecules generated (by R and a ligase) from a finite initial
set of DNA molecules is predicted to be the molecular embodiment of a language of
type &H for specified k.

2. Definitions and examples

Let A be a fixed finite set to be used as an alphabet for the free monoid A* that
consists of all strings of symbols in A, including the null string 1. The languages we
discuss will be subsets of A*.

Definition. A null context splicing system (NCH system) G = (A,Z, R) with alphabet
A consists of a finite subset I of A* called the initial language and a finite subset R of
A* called the rule set. The language L(G) = L(A,I, R) generated by G is the smallest
language L in A* that contains I and has the property that whenever strings wrx and
yrz are in L, with r in R, the strings WYZ and yrx are also in L. A language L is
called a null context splicing language (NCH language) if there exists a null context
splicing system G = (A,Z, R) for which L = L(G).

The concept of a constant, as introduced by Schutzenberger [20], is a valuable con-
ceptual tool for splicing theory: A string c in A * is a constant for a language L over
an alphabet A if, whenever wcx and ycz are in L, both wcz and ycx are also in L.
Note that when c is a constant for L, so are each of the strings in A*cA*. Recall that
a string y is a factor of a string w if w =xyz for some x,z in A* and that y is a
factor of a language L if y is a factor of some string in L. A string c that is not a
factor of a language L vacuously satisfies the definition of a constant for L. Concern
with constants is often restricted to those that are also factors. Our main concern will
be with the yet more restricted class of constants that we call primes: We say that a
constant factor p of a language is a prime constant factor (briefly, a prime) for L if
p is a constant factor for L and for any factorization p = xyz, with xz not null, y is
not a constant. Note that, when the null string 1 is a constant for a language L, it

T. Head1 Discrete Applied Mathematics 87 (I 998) 139-147 141

is necessarily the unique prime for L. Each constant factor for a language L has one
or more factors that are primes for L. Each rule of an NCH system G = (A, Z,R) is
necessarily a constant for the language L(G).

Definition. Let k be an integer 3 - 1. An Sk splicing system (&H system) is an
NCH system G = (A,Z,R) for which, for each string r in R, length r < k. A language
L is called an Sk splicing 1UngUUge (SkH language). if there eXiStS an SkH system
G = (A,Z,R) for which L = L(G). The family of Sk splicing languages is denoted by

SkH.

Every SkH language is an NCH language and every NCH language is an Sk H
language for some positive integer k. Thus the union sf the families SkH, k3 - 1, is
the family of NCH languages.

The S-t H systems are precisely the systems for which R is empty. Consequently,
for an S-r H system G = (A,Z,R) we have L(G) = I. Thus, the S-t H languages are
precisely the finite languages. It is therefore decidable, whether a given regular language
L is in S-t H; and, when it is in S- 1 H, we have the representation L = L(G) where
G = (A, L, R) with R empty.

The SoH systems are those for which R is either empty or R = { 1). An SOH system
that generates an infinite language must have the form G = (A,Z, {l}) with I not empty.
Let B = {b in A: b occurs in some string in I}. It is then easily confirmed, using the
fact that 1 is a constant, that L(G) = B’. Conversely, for any subset B of A, L(G) = B*
for G = (A, B, { I}). Thus, the SoH languages are precisely the finite languages together
with the languages B”, where B is a subset of A. It is therefore decidable whether
a regular language is in SoH; and, when it is in SoH, we obtain a representation
L = L(G) where either G = (A, L,R) with R empty or G = (A, B, { 1)). Note that for any
NCH system G = (A,Z,R), if R contains the null string then, for G’ = (A,Z, { I}), we
have L(G) = L(G’) is an SO H language.

The St H systems and the S1 H languages are precisely the simple H systems (SH
systems) and simple H languages (SH languages) as defined in [121.

Example. For this example let A = {a,b}. For each k3 1, let Lk =ak(bkack-‘)bkak)*.
Observe that Lk =L(A,Z,R), where Z = {ukbka(k-‘)bkak} and R = {uk}. Thus, Lk is a
member of the family SkH. Careful consideration reveals that no string of length <k
is a constant factor of Lk and therefore Lk does not lie in SjH for any j <k.

The examples above establish the assertion that the sequence SkH, k 3 - 1, is u
strictly ascending infinite hierarchy of language families for alphabets of two or more
symbols. For a singleton alphabet the NCH languages are merely the finite and cofinite
sets.

Definition ([13] modified using [3]). A language L is strictly locally testable (SLT)
if there is a positive integer k for which every factor of L of length k is constant.

142 T. HeadlDiscrete Applied Mathematics 87 (1998) 139-147

That the family of SLT languages coincides with the family of NCH languages is

a consequence of the more general Theorem given in [6]. However, the proof of the
Theorem of Section 3 subsumes a proof of this equivalence. Thus the union of the
families Sk, k 2 - 1, is the family of SLT languages.

3. Splicing and strict local testability

Our objective here is to determine which languages can be represented in the form

L = L(A, Z, R) and to construct concise representations whenever representations ex-
ist. In Section 2 we have already treated the languages L that admit representations
L = L(A,I,R) in which either R is empty or R contains the null string 1.

In the first lemma we note that in constructing rule sets to represent a language L,
we need only look among the prime constants factors of L.

Lemma 1. Let L =L(A,Z,R). For each r in R that is a factor of L, let c(r) be a
prime constant factor of r. Then L = (A, I, R’) where R’ = {c(r): r in R}.

The next two lemmas tell us not to attempt a representation L = L(A,Z, R) unless L
is SLT.

Lemma 2. Let L = L(A,Z, R) and let k exceed by one the length of the longest string
in I. Then every factor of L of length k possesses a string in R as a factor. Conse-
quently, every string of length k in A* is a constant for L.

Proof. The set S of all strings in L for which every factor of length k possess a string
in R as a factor has the two properties: (1) S contains I since no string in I contains
a factor of length k; and (2) S is closed under splicing by rules in R. Consequently
S = L directly from the definition of L = L(A, Z, R). 0

Lemma 3. For every L = L(A, I, R), L is SLT.

Proof. In [3] the SLT languages are characterized as those languages for which there
is a positive integer k for which every string in A* of length k is a constant. We have
taken this characterization as our definition. Lemma 2 concludes the proof. ??

The next three lemmas provide, for each language L, intrinsically associated sets
Z(L) and R(L) for which if L has any representation of the desired form at all, then
L = L(A,I(L), R(L)). In fact, we shall see that L has a representation of the desired
form if and only if both Z(L) and R(L) are finite. As will be observed in the theorem
below, when L is regular R(L) is regular and, when R(L) is finite, I(L) is regular.
For L regular, the regularity of R(L) and the conditional regularity of Z(L) allow us
to decide whether both sets are finite, and consequently, whether L is representable in
the desired form.

T. Head1 Discrete Applied Mathematics 87 (1998) 139-147 143

Definition. For each finite language L, let R(L) be empty. For each infinite language
L let R(L) be the set of all prime constant factors of L.

Lemma 4. For L =L(A,I,R), R(L) is finite and L = L(A,I,R(L)).

Proof. These are consequences of the definition of R(L) and of Lemma 1. 0

Definition. Let L be a language and let R’ be a set of strings that are constant relative
to L. For R’ empty we let I(R’) =L. When R’ contains the null string 1 there is a
subset B of A for which L = B* (see Section 2) and we let I(R’) = B. For R’ not empty
and 1 not in R’, we let I(R’) = L\(U {A*pA*pA*pA*: p in R’).

Lemma 5. Let L = L(A,I, R) and let R’ be a finite subset of R(L). Then there exists
a finite subset I’ of L for which L = L(A,I’, R’) if and only if I(R’) is finite. When
I(R’) is finite L = L(A,I(R’), R’).

Proof. From the discussions of families S-1H and SoH in Section 2, we know this
lemma holds when either R’ is empty or R’ (hence also R) contains the null string.
We proceed under the additional hypothesis: R’ not empty and 1 not in R’.

Suppose first that I(R’) is finite. Since I(R’) is contained in L and R’ is contained
in R(L), L(A,I(R’), R’) is contained in L. If L is not contained in L(A,I(R’), R’) then
there is a shortest string s in L\L(A,I(R’), R’) and it must have the form s = wpxpypz
for some w,x,y,z in A* and some p in R’. Using the underscored occurrences of
p in s = wpxpypz and s = wpxpypz we conclude u = wpypz is in L. Likewise from
s = wpxpypi and s = wpxpypz we conclude v = wpxpz is in L. Since u and v are
in L and are shorter than s, we conclude u and v are in L(A,I(R’), R’). Using the
underscored occurrences of p in v = wpxpz and u = wpypz we conclude the contra-
diction s = wpxpypz in L(A,I(R’), R’). Th&, when I(R finite L = L(A,I(R’), R’) as
required.

Suppose now that L = L(A,I’, R’) for a finite subset I’ of L. Then by the three part
definition of I(R’) and Lemma 2, I(R’) must be finite. ci

Definition. For each language L let I(L) = I(R(L)).

Lemma 6. For L = L(A,I, R), the set I(L) is finite and L = L(A,I(L), R(L)).

Proof. From Lemma 4, L = L(A, I, R(L)). Apply Lemma 5 with I’ = I and R’ = R(L)
to obtain the finiteness of I(L) = I(R(L)) and the equality L = L(A,I(L), R(L)). 0

Finally, we note that it is precisely the SLT languages that have representations of
the desired form.

Lemma 7. Let L be SLT. Then L = L(A,Z, Ak) where k is a positive integer for which
every string in A* of length k is constant for L and I = I(Ak) = L\(U {A*pA*pA*p
A*: p in Ak).

144 T. HeadlDiscrete Applied Mathematics 87 (1998) 139-147

Proof. The definition of I insures the finiteness of I. One may then confirm directly
that L =L(A,I,Ak). 0

Proposition. A language L has a representation of the form L = L(A, I, R) if and only
if L is SLT. Thus NCH =SLT.

Proof. This is the combination of Lemmas 3 and 7. 0

Theorem. For each regular language L:

(1) R(L) . g 1 IS re u ar and the finiteness of R(L) can be decided;
(2) when R(L) is finite, I(L) is regular and the jmiteness of I(L) can be decided,
(3) L is NCH if and only if both I(L) and R(L) are jmite, in which case L = L

(A,I(L),R(L));
(4) representability of L in the form L = L(A, I, R) can be decided, and
(5) if L is SLT then there is a least integer k>-1 for which L is in SkH and this

k is computable.

Proof. Let L be a regular language and let A4 = (A,$ {qo},F,E) be the trimmed min-
imal automaton recognizing L, where: A is the alphabet, S is the set of states, qo is
the initial state, F is the set of final states, E is the set of edges with labels in A, and,
by trimmed, we mean that all states not accessible from qo have been removed and
all states from which F is not accessible have been removed. The language recognized
by an automaton A4 will be denoted L(M).

(1) For each p in S let M(p) = (A, S, {q’}, {p}, E’) where: q’ is a newly adjoined
state and E’ results from adjoining to E, for each q in S, an edge from q’ to q
labeled with the null string 1. For each p in S, let C(p) = L(M(p))\(U {L(M(q)): q
in S\(p)). The set of all constant factors for L is C(L) = IJ {C(p): p in S}. The
set R(L) of all prime constant factors of L is R(L) = C(L)\(A+C(L)A* UA*C(L)A+).
Hence R(L) is regular we can decide whether it is finite.

(2) If R(L) is finite, then Z(L) has one of the three forms: L, B, or L\U {A*cA*cA*
CA*: c in R(L)}. In each of these three cases, I(L) is regular and we can decide
whether Z(L) is finite.

(3 and 4) These statements follow from (l), (2) and the Proposition.
(5) Let L be SLT. Then L=L(A,Z(L),R(L)) by Lemmas 7 and 8. We may now

apply Lemma 5 to any desired subset R’ of R(L). The set Z(R’) is regular and we can
therefore decide whether it is finite. If Z(R’) is finite then L = L(A,Z(R’), R’), otherwise
there is no I’ for which L = L(A,I’, R’). By applying this technique successively to
the subsets Ri = {c in R(L): length c <i} for each i = - 1, 0, 1,2,. . . , we find the least
integer k 2 - 1 for which L is in SkH. 0

Remark. Once a desired R’ is obtained, we may then shrink I(R’) to any subset I of
I(R’) for which L(A,Z, R’) = L(A,I(R’), R’) where this latter equality can be decided.

T. Head1 Discrete Applied Mathematics 87 (1998) 139-147 145

4. Molecular considerations

A reader who finds the sketch of biochemical principles included in this Section to

be inadequate may consult [9, lo] or [6].
For brevity we will denote double-stranded DNA molecules such as

5’-GATCGGTCCAAGTC-3’
3’-CTAGCCAGGTTCAG-5’

in the shorter form: gatcggtccaagtc (always read in the 5’ to 3’ direction). It is not
necessary to give the lower strand since G pairs only with C, A with T, T with
A, and C with G. Since an actual molecule is not confined to a line, but rotates

freely in space, one should take care to notice that an equally valid representation
for the molecule above is: gacttggaccgatc. A segment of DNA for which the two
representations are identical is said to be palindromic (or to have dyadic symmetry).
We will not discuss single-stranded DNA molecules. All strings in this section are
understood to be over the alphabet D = {a, c, g, t} and to represent double-stranded
DNA molecules. Notice that each symbol in this alphabet D represents a unit consisting
of paired deoxyribonucleotides (bound together only by hydrogen bonds): a = [A/T],
c = [C/G], g = [G/C], and t = [T/A].

Each of the two strands of a double-stranded DNA molecule is held together by
strong covalent bonds. To cut such bonds special enzymes obtained from appropriate
strains of bacteria are used. These are the restriction enzymes (endonucleases). Such
an enzyme adheres at an occurrence of a DNA subsequence called its site. It then cuts
one covalent bond in each strand at a specific location in the site. We will consider
here only enzymes which have palindromic sites. As an example of our method of
representing enzyme sites we have, for the enzyme @II, the site gacgt-c. The assertion
that gacgt? is the site of &II means that &II cuts only at subsegments gacgtc of
DNA molecules and that the covalent bond in the top strand that is cut is the one
indicated by the caret between t and c. The cut in the bottom strand is also made
between the t and c (recall that the site is palindromic). All this means that, when the
enzyme &II is present, each DNA molecule of the form:

5’.. .XXGACGTCXX...3' may be cut into S'...XXGACCT-3' and 5'-CXX . ..3'

3'...XXCTGCAGXX...5' 3'...XXC-5' 3'-TGCAGXX...5'.

In the &tIl site gacgtc we refer to the segment acgt as the crossing, the g at the
left as the left context, and the c at the right as the right context. The crossing yields
the sticky ends (also called overhangs) ACGT-3’ and 3’-TGCA protruding from the
fragments produced by the cut. Sticky ends that match may join weakly by hydrogen
bonding, but may be expected to drift apart unless covalent bonds are established in the
two strands. If an enzyme called a ligase is present the required covalent bonds may be
established to yield a firmly bonded fully double-stranded DNA molecule formed from
the two fragments. In this way new recombinant DNA molecules may form which

146 T. HeadlDiscrete Applied Mathematics 87 (1998) 139-147

have not previously been present. This type of cut and paste activity provides the basis
for the technology of gene splicing.

The sites for the three restriction enzymes &II, &I, and &I are gacgt^c,c^cgc,
gg-cgcgcc, and at-taut, respectively. Since these enzymes have the null string as left
context and also as right context, it is entirely natural to model the recombination
potential of any subset of this set of three enzymes with a null context splicing system
(NCH system): For any initial set 1 of DNA molecules, if a common buffer solution
can be found in which these three enzymes and a ligase can function, then the set
L of well formed fully double-stranded DNA molecules that may potentially arise is
modeled by L(G), where G =(D,Z,R) with R= {gate, catg, aatt}. This G is an &H
system. For any choice of I, L(G) is therefore, necessarily an S4H language, but for
some choices of I it could also be SkH for some k < 4.

The very elementary structure of the NCH splicing languages is due to the fact
that site occurrences for such restricted systems are preserved under splicing. In DNA
terms, after a site has been used for recombination the site ‘is still there’. This need not
be the case with sets of two or more enzymes, like &II, that have non-null context.
See [6] for relevant examples. Of course, if only a single enzyme such as &II is used
then an NCH may be used: For initial set I of DNA molecules, the set of well-formed
fully double stranded DNA molecules that may arise is modeled by L(D,I,R) with
R = {gacgtc}. As long as the enzymes of a set cannot interact in such a way as to
destroy a site then an NCH representation may be possible. An example is given in
the next paragraph.

The sites for the four restriction enzymes &tII AciI AscI and &I are gacgt-c, Y-Y_>
c-cgc, gg^cgcgcc, and at-taut. An examination of the four sticky ends of these sites
shows that any recombination event must occur between two segments that were cut
by the same enzyme. Thus when recombined the site is always restored. Thus we may
use the NCH system (0, Z, R) with R = {gacgtc, ccgc, ggcgcgcc, attaat} to model the
generative capacity of this set of enzymes when combined with a ligase. The language
generated is necessarily in &H, for any choice of I, but for some choices of I it could
also be in SkH for some k < 8.

Acknowledgements

I wish to thank Elizabeth Laun and the two anonymous referees for their unusu-
ally careful readings and thoughtful suggestions that have resulted in improvements
that appear here. Partial support for this research through NSF CCR-9509831 and
DARPA/NSF CCR-9725021 is gratefully acknowledged.

References

[l] K. Culik II, T. Haju, The regularity of splicing systems and DNA, in: Proc. ICALP ‘89, LNCS 372
(1989) 222-233.

T. HeadlDiscrete Applied Mathematics 87 11998) 139-147 141

[2] K. Culik II, T. Harju, Splicing semigroups of dominoes and DNA, Discrete Appl. Math. 31 (1991)
261-211.

[3] A. DeLuca, A. Restive, A characterization of strictly locally testable languages and its application to
subsemigroups of a free semigroup, Inform. and Control 44 (1980) 300-319.

[4] C. Ferretti, S. Kobayashi, DNA splicing systems and post systems, in: Proceedings of the Pacific
Symposium on Biocomputing ‘96, World Scientific, Singapore, 1995, pp. 288-299.

[5] R. Freund, E. Csuhaj-Varju, F. Watchler, Test tube systems with cutting/recombination operations,
in: Proceedings of the Pacific Symposium on Biocomputing ‘97, World Scientific, Singapore, 1996,
pp. 163-174.

[6] T. Head, Formal language theory and DNA: an analysis of the generative capacity of specific
recombinant behaviors, Bull. Math. Biol. 49 (1987) 737-759.

[7] T. Head, Splicing schemes and DNA, in: Cl. Rozenberg, A. Salomaa (Eds.), Lindenmayer Systems -
Impacts on Theoretical Computer Science, Computer Graphics, and Developmental Biology, Springer,
Berlin, pp. 371-383, 1992; also in: Nanobiology I (1992) 335-342.

[8] T. Head, Splicing Languages generated with one sided context. 84 (1998) 145-163.
[9] T. Head, Gh. Paun, D. Pixton, Language theory and molecular genetics: generative mechanisms

suggested by DNA recombination, a chapter in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal
Languages, vol. 2, Springer, New York, 1996, pp. 295-360.

[lo] L. Kari, DNA computing: arrival of biological mathematics, Math. lntelligencer I9 (1997) 9-22.
[I I] E. Laun, K.J. Reddy, Wet splicing systems, in: Proceedings of the 3rd DIMACS Workshop on DNA

Based Computers, U. Penn., 1997.
[I21 A. Mateescu, Gh. Paun, G. Rozenberg, A. Salomaa, Simple splicing systems, Discrete Appl. Math. in:

Biomolecular Computing. Theory and Experiment, Gh. Paun, ed. (Springer), to appear.
[I31 R. McNaughton, S. Papert, Counter-Free Automata, MIT Press, Cambridge, MA, 1971.
[141 Gh. Paun, Five (plus two) universal DNA computing models based on the splicing operation, Second

DNA Computing Workshop, Princeton, June 1996.
[151 Gh. Paun, G. Rozenberg, A. Salomaa, Computing by splicing, Theoret. Comput. Sci. I68 (1996) 32l-

336.
[161 Gh. Paun, A. Salomaa, DNA computing based on the splicing operation, Math. Japon. 43 (1996)

607-632.
[I71 D. Pixton, Regularity of splicing systems, Discrete Appl. Math. 69 (1996) 101-124.
[I81 D. Pixton, Splicing in abstract families of languages, Theoret. Comput. Sci., to appear.
[191 L. Priese, Y. Rogojine, M. Morgenstem, Finite H-systems with 3 test tubes are not predictable,

in: Proceedings of the Pacific Symposium on Biocomputing ‘98, World Scientific, Singapore, 1997,
5477558.

[20] M.P. Schutzenberger, Sur certaines operations de fermeture dans les langages rationels, Sympos. Math.
15 (1975) 2455253.

