# Transforming growth factor- $\beta$ l rapidly activates phosphorylase in a calcium-dependent manner in rat hepatocytes

## Sung Ho Hahm and Ronald H. Cooper

Department of Pharmacology, University of South Carolina School of Medicine, Columbia, SC 29208, USA

## Received 18 August 1992

Transforming growth factor- $\beta 1$  (TGF- $\beta 1$ ) rapidly activated phosphorylase in isolated rat hepatocytes (half-maximal rate of activation with approximately 0.1 ng/ml). Removal of Ca<sup>2+</sup> from the external medium just before TGF- $\beta 1$  addition markedly attenuated phosphorylase activation. TGF- $\beta 1$  (1 ng/ml) produced a small increase in [Ca<sup>2+</sup>], (approximately 10% increase after 30 s), which appears sufficient to account for phosphorylase activation. These observations indicate that activation of the TGF- $\beta 1$  signal transduction system in hepatocytes is linked with a small increase in [Ca<sup>2+</sup>], and external Ca<sup>2+</sup> may contribute in part to this increase.

Transforming growth factor-\$1; Phosphorylase; Calcium; Hepatocyte; Signal transduction; Growth factor

## 1. INTRODUCTION

The transforming growth factor-beta (TGF- $\beta$ ) family comprises at least five closely related polypeptides which modulate growth and differentiation in a variety of cell types [1-3]. The prototype, now designated TGF- $\beta$ 1, was initially purified from human platelets [4] and exists in the biologically active form as a homodimeric peptide of 25 kDa. Although originally identified by its ability to induce anchorage-independent growth in fibroblasts [5,6], TGF- $\beta$ 1 has subsequently been shown to be a potent inhibitor of the growth of epithelial cells, including hepatocytes [7-10]. The mechanisms whereby TGF- $\beta$ 1 and other TGF- $\beta$  family members regulate cell growth are presently unknown, but appear to be mediated by specific cell surface receptors. Three types of TGF- $\beta$  receptors have been identified [11–16]; types I and II are glycoproteins thought to be directly involved in the TGF- $\beta$  signal transduction process, while receptor III (betaglycan) appears to serve some other function [17-20]. The type II receptor contains a serine/ threonine kinase activity in the cytoplasmic domain [21], unlike the type III receptor [22,23].

The intracellular events which follow receptor binding of TGF- $\beta$  are not well defined. TGF- $\beta$ 1 causes rapid phosphorylation of a number of nuclear proteins in mink lung CC164 cells [24], one of which is identified as the cyclic AMP responsive element binding protein [25]. It has been reported that TGF- $\beta$ 1 increased inositol 1,4,5-trisphosphate levels and promoted Ca<sup>2+</sup> influx in Rat-1 cells [26,27], but these effects occurred after several hours and were blocked by actinomycin D. The present study was undertaken to examine the early effects of TGF- $\beta$ 1 on isolated rat hepatocytes; evidence is presented for a rapid increase in phosphorylase *a* activity which appears to be mediated through a small increase in [Ca<sup>2+</sup>].

## 2. MATERIALS AND METHODS

#### 2.1. Materials

TGF- $\beta$ 1 prepared from porcine platelets, was purchased from R & D Systems (Minneapolis, MN, USA); collagenase D was from Boehringer Mannheim (Indianapolis, IN, USA); fatty acid free bovine serum albumin (PENTEX, fraction V) was from Miles Diagnostics (Kankakee, IL, USA); indo-1/AM was from Molecular Probes (Junction City, OR, USA);  $\alpha$ -D-[U-<sup>14</sup>C] glucose-1-phosphate was from Du-Pont/NEN (Boston, MA, USA). All other reagents were of analytical grade.

#### 2.2. Hepatocyte preparation

Isolated hepatocytes were prepared by collagenase perfusion of intact liver from fed, male, Sprague-Dawley rats (175-250 g), as described by Meijer et al. [28].

#### 2.3. Phosphorylase measurements

Hepatocytes were incubated (7.5 mg dry weight/ml) in Krebs-Ringer bicarbonate buffer containing 15 mM glucose and 0.2% (w/v) fatty acid-free bovine serum albumin (medium A). After shaking for 30 min at 37°C in a water bath under an atmosphere of  $O_2/CO_2$  (95:5), 200 µl aliquots were rapidly mixed with 200 µl aliquots of buffer containing 50 mM MES, pH 6.1, 150 mM NaF, 20 mM EDTA, 0.4 M sucrose, 0.025% (v/v) Triton X-100 and 5 mM dithiothreitol, and immediately frozen in liquid N<sub>2</sub>. Samples were stored at -80°C until

Correspondence address: R.H. Cooper, Department of Pharmacology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA, Fax: (1) (803) 733 3197.

Abbreviations: TGF- $\beta$ , transforming growth factor beta;  $[Ca^{2+}]_i$ , cytosolic free calcium concentration; indo-1/AM, 1-[2 amino-5-(6-carboxyindol-2-yl)phenoxy]-2-(2'-amino-5'-methylphenoxy)ethanne-N, N, N', N'-tetraacetic acid, penta-acetoxymethylester.

assayed for phosphorylase a by the procedure of Gilboe et al. [29]. Total phosphorylase activity was measured in the presence of 5 mM AMP and 10% (v/v) ethylene glycol dimethyl ether [30].

#### 2.4. Cytosolic free Ca<sup>2+</sup> measurements using indo-1

Hepatocytes were preincubated for 10 min at 37°C (10 mg dry weight/ml) in medium A in a shaking water bath. Indo-1/AM was added (4  $\mu$ M final concentration) and incubation continued for a further 15 min. Hepatocytes were centrifuged at  $50 \times g$  for 1 min, resuspended at the same concentration in fresh medium A, re-centrifuged, and resuspended in medium A at a concentration of 25 mg dry weight/ml. Intracellular Ca2+ measurements were performed using an Hitachi F2000 fluorescence spectrophotometer, with excitation at 355 nm, and fluorescence emission at 410 nm and 480 nm was monitored alternately every 0.5 s. Indo-1-loaded hepatocytes (6 mg dry weight/ ml) were preincubated in a stirred cuvette maintained at 32°C, for 3 min prior to addition of growth factor or agonist. For calibration purposes, sequential additions of EGTA (3 mM), Tris base (10 mM), Triton X-100 (0.1%, v/v), and excess CaCl<sub>2</sub> (5 mM) were made [31]. [Ca<sup>2+</sup>], was calculated after correction for autofluorescence, according to the formula [32]:

## $[Ca^{2+}]_i = K_d(R - R_{min})/(R_{max} - R) \times S_{12}/S_{b2}$

where  $K_d$  (250 nM) is the dissociation constant for Ca<sup>2+</sup> binding to indo-1,  $R_{max}$  and  $R_{min}$  are the fluorescence ratio values under saturating and Ca<sup>2+</sup>-free conditions, respectively, and  $S_{C}/S_{b2}$  is the ratio of fluorescence values for Ca<sup>2+</sup>-free/Ca<sup>2+</sup>-bound indicator at 480 nm.

## 3. RESULTS

As shown in Fig. 1, TGF- $\beta$ 1 (1 ng/ml) caused a rapid increase in hepatocyte phosphorylase *a* activity, with maximal activation (2.5-fold increase relative to control) occurring between 30 s and 1 min, followed by a return towards control values. Total hepatocyte phosphorylase activity (i.e. *a* and *b* forms) was essentially unchanged by TGF- $\beta$ 1; values of 88.4 ± 3.7 nmol/



Fig. 1. Effect of TGF- $\beta$ 1 on phosphorylase *a* activity in hepatocytes and dependency on external calcium. Hepatocytes were preincubated at 37°C for 40 min in Krebs-Ringer bicarbonate buffer containing 1.33 mM CaCl<sub>2</sub>, and then centrifuged at 50 × g for 70 s and resuspended in Krebs-Ringer bicarbonate buffer containing CaCl<sub>2</sub> or in buffer without added CaCl<sub>2</sub>. The centrifugation step was repeated followed by resuspension of the cells. Cells were subsequently incubated either in the presence (•) or absence (0) of CaCl<sub>2</sub> for 5 min, before addition of TGF- $\beta$ 1 (1 ng/ml). Aliquots were removed for phosphorylase assay at the times indicated. Results shown are means  $\pm$  S.E.M. for 4 separate experiments.



Fig. 2. Dose-response curve for rate of activation of phosphorylase in hepatocytes by TGF- $\beta$ 1. Time courses for activation of phosphorylase in hepatocytes incubated in Krebs-Ringer bicarbonate buffer containing 1.33 mM CaCl<sub>2</sub>, by concentrations of TGF- $\beta$ 1 from 0.01 to 5 ng/ml were established by removing samples for phosphorylase measurement from cell suspensions before, and at various times (10, 20, 30 s) after addition of the particular concentration of TGF- $\beta$ 1. The initial rates of activation of phosphorylase, 10 s after TGF- $\beta$ 1 addition, are plotted as a function of TGF- $\beta$ 1 concentration. Values shown are means  $\pm$  S.E.M. for data from 4 separate experiments.

min/mg and 93.0  $\pm$  3.0 nmol/min/mg (mean  $\pm$  S.E.M. for 4 separate experiments) were observed before, and 2 min following TGF- $\beta$ 1, respectively. When TGF- $\beta$ 1 was added to hepatocytes which had been washed twice and incubated for 5 min in buffer with no added CaCl<sub>2</sub>, there was a rapid activation of phosphorylase (Fig. 1) but the maximal extent of this activation and the duration were reduced relative to the response observed in the presence of external calcium.

Fig. 2 shows initial rates of activation of phosphorylase, measured 10 s after addition of TGF- $\beta$ 1, plotted as a function of TGF- $\beta$ 1 concentration. Phosphorylase activation was observed at TGF- $\beta$ 1 concentrations as low as 0.01 ng/ml, and the rate of activation was maximal at 1 ng/ml. This concentration range is similar to that previously reported for inhibitory effects of TGF- $\beta$ 1 on epidermal growth factor-induced DNA synthesis in hepatocytes [10].

The increase in phosphorylase a by TGF- $\beta$ 1 and its dependency on external Ca<sup>2+</sup> (Fig. 1) may indicate receptor-activated increases in cytosolic Ca<sup>2+</sup> from intracellular stores and entry of external Ca<sup>2+</sup>, as is well established for  $\alpha_1$ -agonists and vasopressin [33,34]. Accordingly, the effect of TGF- $\beta$ 1 on hepatocyte [Ca<sup>2+</sup>], was examined using cells loaded with the Ca<sup>2+</sup>-sensitive dye, indo-1 [32]. As shown in Fig. 3a, TGF- $\beta$ 1 (1 ng/ml) caused an increase in the 410 nm fluorescence emission signal, corresponding to a calculated change in [Ca<sup>2+</sup>], from 93 nM (mean value determined over a 60 s period prior to TGF- $\beta$ 1 addition) to a value of approximately 100 nM within 30 s after TGF- $\beta$ 1 addition. Overall, in 6 determinations from three hepatocyte preparations, treatment with TGF- $\beta$ 1 (i ng/ml) for 30 s increased



Fig. 3. Comparison of changes in cytosolic Ca<sup>2+</sup> concentration elicited by TGF- $\beta$ 1 and by low and high concentrations of phenylephrine (PE), with corresponding changes in phosphorylase *a* activity. Panels (a) and (b) show the changes in fluorescence emission at 410 nm in indo-1-loaded hepatocytes, following addition of TGF- $\beta$  or phenylephrine, respectively. In panel (b) the indicated addition of PE were made to the same cuvette approximately 3 min apart; part of the intervening trace was deleted for presentation. Calculated intracellular Ca<sup>2+</sup> concentrations [Ca<sup>2+</sup>], are as indicated. Panel (c) shows changes in phosphorylase activity at the indicated times following addition of either TGF- $\beta$  (1 ng/ml,  $\circ$ ), or PE (50 nM,  $\bullet$ ).

 $[Ca^{2+}]_{i}$  from 112 ± 8 nM to 126 ± 9 nM (means ± S.E.M. for control and TGF- $\beta$ 1-treated cells, respectively). The increase in  $[Ca^{2+}]_i$  was significant (P < 0.01) when analyzed by the Paired Student's t-test. The relevance of this relatively small change was assessed by determining whether the  $\alpha_i$ -adrenergic agonist, phenylephrine, could, at a suitably low concentration, elicit a similar activation of phosphorylase with a correspondingly small increase in  $[Ca^{2+}]_i$ . It is well established that  $\alpha_i$ adrenergic agonists promote phosphoinositide hydrolysis causing mobilization of Ca2+ from intracellular stores and entry of external Ca2+ [33,34]; the increase in [Ca<sup>2+</sup>]; activates phosphorylase kinase which in turn, promotes conversion of phosphorylase b to the a form. Fig. 3b indicates that a low concentration of phenylephrine (50 nM) caused a small increase in  $[Ca^{2+}]_i$  concentration after 30 s, of similar magnitude (approximately 10% increase in duplicate determinations) to that observed with TGF- $\beta$ 1 in Fig. 3a. A higher concentration of phenylephrine (10  $\mu$ M) added subsequently to the low concentration as shown in Fig. 3b caused a larger increase in  $[Ca^{2+}]_i$  as expected. It appears however from the data shown in Fig. 3c, that phenylephrine (50 nM), was capable of activating phosphorylase to the same extent observed with TGF- $\beta$ 1 (1 ng/ml), suggesting that the relatively small increase in  $[Ca^{2+}]_i$  in response to TGF- $\beta$ 1 is sufficient to account for the activation of phosphorylase.

## 4. DISCUSSION

The present results demonstrate that TGF- $\beta$ 1 produces a rapid increase in phosphorylase *a* activity in hepatocytes (Fig. 1), and the concentration range over which such activation occurs (Fig. 2), is similar to the concentration range over which TGF- $\beta$ 1 inhibits epidermal growth factor-induced DNA synthesis in rat hepatocytes [10]. The change in phosphorylase activity is rapid (maximal by 30 s) and is one of the earliest observed changes in a cellular response to TGF- $\beta$ 1.

Evidence is presented in Fig. 3a for a small increase in  $[Ca^{2+}]$ , in hepatocytes exposed to TGF- $\beta$ 1 for 30 s. Furthermore, removal of external Ca<sup>2+</sup> from the medium just prior to TGF- $\beta$ l addition, markedly attenuates the phosphorylase activation (Fig. 1), suggesting that entry of external Ca2+, as well as mobilization of Ca<sup>2+</sup> from internal stores, may contribute to the elevation of cytosolic Ca2+ underlying phosphorylase activation. Entry of external Ca2+ into the hepatocytes is known to be required for a sustained activation of phosphorylase in response to phenylephrine and vasopressin [33,34]. Although the increase in  $[Ca^{2+}]_i$  elicited by TGF- $\beta$ 1 is relatively small, phenylephrine, whose ability to promote changes in intracellular Ca<sup>2+</sup> levels and activate phosphorylase is well established [33,34]. was capable of increasing hepatocyte phosphorylase activity to the same extent as TGF- $\beta$ I, with a similarly small increase in  $[Ca^{2+}]_i$  (Fig. 3). This finding is consistent with previous data comparing vasopressin doseresponse curves for phosphorylase activation and increase in  $[Ca^{2+}]_i$  in hepatocytes, which suggested that phosphorylase kinase can be activated at very low Ca2+ levels [35].

In summary, the ability of TGF- $\beta$ 1 to promote rapid activation of hepatocyte phosphorylase activity, associated with a small increase in  $[Ca^{2+}]_i$ , represents one of the earliest reported intracellular effects of TGF- $\beta$ 1. The rapidity of these changes indicates a close coupling with events occurring upon binding of TGF- $\beta$ 1 to the receptor, and elucidation of the mechanisms responsible for these changes in  $[Ca^{2+}]_i$  should therefore provide insight into the TGF- $\beta$ 1 signal transduction system.

Acknowledgements: This work was supported in part by American Cancer Society Grant IN-107 and by NIH Small Instrumentation Program Grant HL 43942.

## REFERENCES

- [1] Massague, J. (1990) Annu. Rev. Cell Biol. 6, 597-641.
- [2] Roberts, A.B. and Sporn, M.B. (1990) in: Handbook of Experimental Pharmacology: Peptide Growth Factors and Their Recep-

tors (Sporn, M.B. and Roberts, A.B., Eds.) vol. 95/l, pp. 419-472, Springer-Verlag, Heidelberg.

- [3] Barnard, J.A., Lyons, R.M. and Moses, H.L. (1990) Biochim. Biophys. Acta 1032, 79–87.
- [4] Assoian, R.K., Komoriya, A., Meyers, C.A., Miller, D.M. and Sporn, M.B. (1983) J. Biol. Chem. 258, 7155-7160.
- [5] Roberts, A.B., Anzano, M.A., Lamb, L.C., Smith, J.M. and Sporn, M.B. (1981) Proc. Natl. Acad. Sci. USA 78, 5339–5343.
- [6] Moses, H.L., Branum, E.L., Proper, J.A. and Robinson, R.A. (1981) Cancer Res. 91, 2842–2848.
- [7] Nakamura, T., Tomita, Y., Hirai, R., Yamaoka, K., Kaji, K. and Ichihara, A. (1985) Biochem. Biophys. Res. Commun. 133, 1042– 1050.
- [8] Carr, B.L. Hayashi, I., Branum, E.L. and Moses, H.L. (1986) Cancer Res. 46, 2330-2334.
- [9] McMahon, J.B., Richards, W.L., delCampo, A.A., Song, M.H. and Thorgeirsson, S.S. (1986) Cancer Res. 46, 4665–4671.
- [10] Russell, W.E. (1988) J. Cell Physiol. 135, 253-261.
- [11] Frolik, C.A., Wakefield, L.M., Smith, D.M. and Sporn, M.B. (1984) J. Biol. Chem. 259, 10995–11000.
- [12] Tucker, R.F., Branum, E.L., Shipley, G.D., Ryan, R.J. and Moses, H.L. (1984) Proc. Natl. Acad. Sci. USA 81, 6757-6761.
- [13] Cheifetz, S., Like, B. and Massague, J. (1986) J. Biol. Chem. 261, 9972–9978.
- [14] Wakefield, L.M., Smith, D.M., Masui, T., Harris, C.C. and Sporn, M.B. (1987) J. Cell Biol. 105, 965-975.
- [15] Segarini, P.R., Roberts, A.B., Rosen, M.D. and Seyedin, S.M. (1987) J. Biol. Chem. 262, 14655-14662.
- [16] Cheifetz, S., Bassols, A., Stanley, K., Ohta, M., Greenberger, J. and Massague, J. (1988) J. Biol. Chem. 263, 10783-10789.
- [17] Boyd, F.T. and Massague, J. (1989) J. Biol. Chem. 264, 2272– 2278.
- [18] Laiho, M., Weis, F.M.B. and Massague, J. (1990) J. Biol. Chem. 265, 18518-18524.

- [19] Laiho, M., Weis, F.M.B., Boyd, F.T., Ignotz, R.A. and Massague, J. (1991) J. Biol. Chem. 266, 9108-9112.
- [20] Massague, J., Cheifetz, S., Boyd, F.T. and Andres, J.L. (1990) Ann. NY Acad. Sci. 593, 59-72.
- [21] Lin, H.Y., Wang, X.-F., Ng-Eaton, E., Weinberg, R.A. and Lodish, H.F. (1992) Cell 68, 775-785.
- [22] Lopez-Casillas, F., Cheifetz, S., Doody, J., Andres, J.L., Lane, W.S. and Massague, J. (1991) Cell 67, 785-795.
- [23] Wang, X.-F., Lin, H.Y., Ng-Eaton, E., Downward, J., Lodish, H.F. and Weinberg, R.A. (1991) Cell 67, 797-805.
- [24] Kramer, I.M., Koorneef, I., deVries, C., deGroot, R.P., deLaat, S.W., van den Eijnden-van Raaij, A.J.M. and Kruijer, W. (1991) Biochem. Biophys. Res. Commun. 175, 816-822.
- [25] Kramer, I.M., Koornell, I., deLaat, S.W. and van den Eijndenvan Raaij, A.J.M. (1991) EMBO J. 10, 1083-1089.
- [26] Muldoon, L. L., Rodland, K.D. and Magun, B.E. (1988) J. Biol. Chem. 263, 18834-18841.
- [27] Rodland, K.D., Muldoon, L.L. and Magun, B.E. (1990) J. Invest. Dermatol. 94, 33S-40S.
- [28] Meijer, A.J., Gimpel, J.A., Deleeuw, G.A., Tager, J.M. and Williamson, J.R. (1975) J. Biol. Chem. 250, 7728-7738.
- [29] Gilboe, D.P., Larson, K.L. and Nuttall, F.Q. (1972) Anal. Biochem. 47, 20-27.
- [30] Uhing, R.J., Janski, A.M. and Graves, D.J. (1979) J. Biol. Chem. 254, 3166–3169.
- [31] Tsien, R. and Pozzan, T. (1989) Methods Enzymol. 172, 230-262.
- [32] Grynkiewicz, G., Poenie, M. and Tsien, R.Y. (1985) J. Biol. Chem. 260, 3440-3450.
- [33] Williamson, J.R., Cooper, R.H., Joseph, S.K. and Thomas, A.P. (1985) Am. J. Physiol. 248, C203-C216.
- [34] Joseph, S.K., Coll, K.E., Thomas, A.P., Rubin, R. and Williamson, J.R. (1985) J. Biol. Chem, 260, 12508-12515.
- [35] Thomas, A.P., Alexander, J. and Williamson, J.R. (1984) J. Biol. Chem. 259, 5574–5584.