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Metabolism is at the heart of many biotechnologies from

biofuels to medical diagnostics. Metabolomic methods that

provide glimpses into cellular metabolism have rapidly

developed into a critical component of the biotechnological

development process. Most metabolomics methods have

focused on what is happening inside the cell. Equally important

are the biochemical transformations of the cell, and their effect

on other cells and their environment; the exometabolome.

Exometabolomics is therefore gaining popularity as a robust

approach for obtaining rich phenotypic data, and being used in

bioprocessing and biofuel development. Mass spectrometry

imaging approaches, including several nanotechnologies,

provide complimentary information by localizing metabolic

processes within complex biological matrices. Together, the

two technologies can provide new insights into the metabolism

and interactions of cells.
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Introduction
Diverse biotechnologies ranging from synthetic biology

to clinical research rely on an accurate understanding of

metabolism. Hence, metabolomics methods that charac-

terize and quantify the metabolic processes within the

cell have become integral to diverse research avenues.

Recently, metabolite imaging methods have been devel-

oped to localize metabolism within the biological matrix.

Now, exometabolomic methods are emerging to bridge

the gap between metabolic profiling and imaging experi-

ments.

Exometabolomics, also known as metabolic footprinting,

is the study of how cells transform their small molecule

environment. Here metabolomics is used to detect
www.sciencedirect.com 
changes in culture media as a result of cell culture,

typically, by comparing fresh versus spent media. While

simple, this approach provides powerful information on

cellular phenotypes while avoiding the challenges of

measuring intracellular metabolites. This is because exo-

metabolite levels integrate over minutes or hours versus

intracellular metabolites that may be altered or degraded

within milliseconds of extraction [1,2] requiring careful

quenching of ongoing cellular processes to minimize the

effects of cellular stresses encountered in sample prepa-

ration (e.g. centrifugation). Allen et al. in 2003 showed the

exometabolomics approach to be robust to sample prepa-

ration methods and could discriminate yeast growth states

and mutants using direct infusion electrospray ionization

(ESI) mass spectrometry [3��]. More recently exometa-

bolomics has been used as an information-rich method

for studying released compounds under varying environ-

mental conditions [4], which will be discussed further

throughout this review.

Mass spectrometry is currently the principal method

used for exometabolomics [5], though other techniques

including NMR are also well suited for these studies

[5–7]. While direct infusion ESI enables high through-

put screening, liquid chromatography coupled to mass

spectrometry (LC–MS) greatly increases metabolite

coverage as chromatographic separation limits signal

suppression enabling detection of low-abundance or

weakly-ionizing metabolites (Figure 1a). A major limi-

tation of LC–MS exometabolomics is that it does

not provide information on the localization of these

metabolic processes.

Mass spectrometry imaging (MSI) enables direct interro-

gation of biomolecules within the 3D architecture of

cellular environments. This is accomplished by generat-

ing gas phase ions from spatially defined locations (e.g.

using a laser or focused ESI cone) ultimately to construct

a map of ions across a 2D surface. There are a wide-range

of MSI approaches, as recently reviewed [8��,9��] including

many nanotechnologies such as nanostructure-initiator

mass spectrometry (NIMS), Nan post Arrays (NAPA)

and many others [10].

Here we review exometabolomics approaches and appli-

cations to show how this simple technique can provide

critical insights into phenotypes, cellular interactions and

environmental transformations. We highlight how this

approach can be used in rapid phenotyping assays that

are becoming popular in drug development, synthetic
Current Opinion in Biotechnology 2015, 34:209–216
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Illustration of exometabolomics workflows. (a) In LC–MS based exometabolomics, cells of interest are cultured in media containing metabolites,

and these metabolites are measured by LC–MS, before and after culture to define cellular substrates and products. (b) In MSI-based

exometabolomics, spatially defined desorption/ionization is used to generate images of metabolite composition across cell culture plates.
biology, biofuel development, and investigating the met-

abolic interactions and dependencies of cells. Lastly, we

anticipate that exometabolomics in conjunction with

mass spectrometry imaging (MSI) will provide important

insights into metabolic interactions between populations

of cells.

Phenotypic analysis
The initial report describing metabolic phenotyping focused

on differentiating yeast strains using direct infusion. In this

study, the media from 19 Saccharomyces cerevisiae (yeast)

strains with unique deletions were compared, confirming

that gene knockouts can be discriminated reproducibly by

exometabolomic (AKA footprinting) measurements and sta-

tistical analysis [3��]. There are many recent examples of

exometabolomic profiling in yeast. This was extended by

Chumnanpuen et al. to achieve real time sampling of yeast

media under three different growth conditions [11] and

Castrillo et al. used a systems biology approach, including

exometabolomics to understand the growth control of yeast

for metabolic engineering [12]. Another interesting applica-

tion is the recent comparison of 69 commercial yeast strains

commonly used in chardonnay production. Here, 29 primary
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and secondary metabolites were measured, and up to 1000-

fold differences were noted between strains. The largest

variability was noted in the ratios of acetate esters to ethyl

esters, which greatly affects the sensory profile (predomi-

nantly taste) of wine [13].

We have used exometabolomics to investigate heterotro-

phy by the cyanobacterium, Synechococcus sp. PCC

7002 [14–16]. Here cultures were grown in four different

media: minimal media or the same augmented with yeast

extract or tissue culture media or extracts of Synechococcus
sp. PCC 7002. It was found that the cyanobacteria re-

leased very few metabolites but took up a wide range of

compounds. Interestingly, it appears that the cyanobac-

teria showed preference for their own metabolites includ-

ing many novel metabolites.

More recently we examined the use of this approach for

high throughput gene annotation using the complete

mutant libraries of Shewanella oneidensis MR1 [17] and

the KEIO Escherichia coli collection [18]. Here, exome-

tabolomics was used to identify 71 metabolites taken up

by the type strains. Ten interesting and commercially
www.sciencedirect.com
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available metabolites were selected for analysis using a

2.2 minute LC/MS method. Over 8000 mutants were

individually cultured in media augmented with these

10 metabolites for exometabolomic analysis, where failure

to take up a metabolite indicated disruption of an associat-

ed gene. This identified genes of known function, novel

transporters and enzymes including a histidase for

ergothionine [19], a microbial produced metabolite associ-

ated with Crohn’s disease [20]. Most recently, we have also

found that exometabolomics can be used for secondary

metabolite analysis from outer membrane vesicles

(OMVs), such as in the case of Myxococcus xanthus, which

secrete small molecules with antibiotic properties into

their extracellular environment [21].

Biofuel development
The use of lignocellulosic biomass for biofuel generation

has gained popularity in the last decade [22]. Lignocellu-

losic biomass is predominantly composed of cellulose,

hemicellulose and lignin. Lignin is a complex aromatic

polymer, which functions as the supportive structure of

lignocellulose. Currently, breakdown of lignocellulose

requires a pretreatment-hydrolysis step, in order to hy-

drolyze the rigid polysaccharides into monomers, for

microorganisms to utilize the biomass in fermentation

processes. This pretreatment, however, releases com-

pounds that can act as inhibitors of the fermentation

process, reducing the performance of fermenting yeast

[23]. Zha et al. used exometabolomics to identify novel

toxic inhibitors being released in the pretreatment step to

break down lignocellulose [24].

Microorganisms that are capable of mixed-sugar fermen-

tation are also used in the cellulosic biofuel industry, as

they have increased inhibitor tolerance. Casey et al. used

exometabolomics to monitor co-fermentation of glucose

and xylose in genetically engineered strains of yeast in the

presence of increasing salt concentration. They found

that xylose consumption was strongly affected by the

presence of salt, and a shift in metabolism to increased

glycerol production during xylose fermentation when salt

was present. It was concluded that salt concentrations

have a negative impact on yeast performance during

cellulosic ethanol production [25].

Bioprocesses
Microbes and mammalian cells are often used for indus-

trial production of complex protein therapeutics. Under-

standing what these specialized cells consume and

excrete can aid in designing processes to improve recom-

binant protein yields, folding properties, and desired

therapeutic activity [26]. Carinhas et al. looked at the

exometabolomic signatures of glutamine synthetase

(GS) — Chinese hamster ovary (CHO) clones to under-

stand the variable expression of IgG4, identifying re-

quired nutrients to increase IgG generation [6,27].

Carneiro et al. used exometabolomics to monitor the
www.sciencedirect.com 
metabolic impact of heterologous protein production in

E. coli. They noticed accumulation of glyoxylate shunt

pathway inhibitors in the culture media, and nutritional

shifts suggesting routes to replenish TCA cycle inter-

mediates required for the expression of heterologous

protein [28].

Other major bioprocessing applications for exometabolo-

mics have focused on increasing yields and for monitoring

fermentations. For example Xu et al. observed a 27%

increase in soluble sugars released from a glycogen

synthase null mutant in comparison with wild type Syne-
chococcus sp. [29]. Fu et al. used exometabolomics to

understand the impact of scale-up on the host microor-

ganism’s behavior during industrial fermentation [30].

Exometabolomics has also been used in bioprocess de-

velopment to monitor microbial contamination. Sue et al.
were able to accurately (97%) classify fermentation sam-

ples coming from contaminated cultures, using exome-

tabolomics with GC–MS [31].

Drug mechanisms of action
A recent development has been to use exometabolomics

to characterize the mechanism of action of an ethanolic

extract of Garcinia mangostana Linn. for the treatment of

malaria. Metabolites from the culture medium of the

malaria-causing parasite, Plasmodium falciparum, were

measured after treatment with the extracts. It was found

that these extracts resulted in the absence of malate in the

culture media which the authors attributed to interrup-

tion of TCA cycle metabolism in the parasite [32]. Un-

derstanding the mechanism of action of drugs through

exometabolomics is a promising research direction, which

could potentially be expanded to the investigation of drug

toxicity in the future (Figure 2).

Examining cellular interactions
While most articles and reviews published in the field of

exometabolomics describe LC–MS-based techniques

[38], laboratories have also been using mass spectrometry

imaging (MSI) as a complimentary technique that allows

for the localization of metabolites in 2D and 3D from

tissues [39–42], around biofilms and bacterial colonies

[8��,9��,35��,36,43,44�] among many other applications

[8��]. MALDI and ESI-based techniques are most widely

used for metabolite MSI. While MALDI-MSI has the

advantage of being high throughput, ESI-based techni-

ques benefit from a more comprehensive analysis, due to

fewer metabolites being detected simultaneously. Addi-

tionally, nanometer-scale secondary ion mass spectrome-

try (nanoSIMS) has been widely used in conjunction with

stable isotopes to understand microbial metabolism and

the turnover of proteins and metabolites within tissues

and cells [45,46]. For example, Mayali et al. used nano-

SIMS to look at adaptations to nutrient availability in

mixed microbial communities within the San Francisco

Bay [47]. Similarly, Woebken et al. and Fike et al. used the
Current Opinion in Biotechnology 2015, 34:209–216
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Figure 2
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Approaches and technologies used for exometabolomics. (a) Protocol for preparation of exometabolites from liquid culture [14,33,34], and (b) two

protocols for preparation of exometabolites from agar gels [35��,36,37��].
same technology to study N2 fixation and sulfide levels,

respectively, from the hypersaline microbial mats found

in Guerrero Negro, Baja California Sur, Mexico [48,49].

The Dorrenstein lab has developed a wide range of

approaches for imaging microbial interactions and second-

ary metabolites. Watrous et al. described the use of MALDI

imaging to map microbial exchange in three dimensions

(3D) [9��]. They cut cross sections of 8 mm deep agar and

imaged each one. The images were computationally com-

bined to generate 3D models (see Figure 3d). These

models were able to map the chemical distributions of

Candida albicans in the presence of Pseudomonas aeruginosa,

and it was discovered that there was increased rhamnolipid

production by P. aeruginosa [9��]. The Dorrenstein lab has

also published on a new concept describing the use of

nanospray desorption electrospray ionization (nanoDESI)

with MSI to profile metabolites directly from a Petri dish,

individually or in a mixed biofilm (Figure 3f) [50]. Addi-

tionally, Traxler et al. recently used MSI to study the

interaction between Streptomyces coelicolor with five actino-

mycetes (Figure 3e). They found that several desferriox-

amines were secreted by S. coelicolor while interacting with

several of the actinomycetes [37��]. Essential data on
Current Opinion in Biotechnology 2015, 34:209–216 
secondary metabolites, including tandem mass spectrom-

etry data, is available via the Global Natural Products Social

Molecular Network (GnPS) (https://gnps.ucsd.edu/

ProteoSAFe/libraries.jsp). This database contains second-

ary metabolite spectra available for public searching from

multiple sources.

Nanostructure-initiator mass spectrometry is a highly

sensitive surface-based technique for metabolite analysis

from tissue sections [39,41,51,52]. However, early efforts

to extend this approach to investigate colony interactions

were unsuccessful largely due to microbial exopolysac-

charides that inhibited desorption/ionization. Recently,

the replica-extraction-transfer (REX) technique was de-

veloped to allow for the transfer of metabolites directly

from agar cultures onto nanostructure initiator mass spec-

trometry (NIMS) surfaces. These surfaces are advanta-

geous as they allow for the detection of small molecules

with very low background [43,51]. Acoustic printing of

bacteria allows for the growth of individual isolates in

close proximity (Figure 3a), and the sensitivity and spatial

resolution of NIMS allows for the detection of metabo-

lites both present on the bacteria, and in the surrounding

areas between bacterial isolates. The resulting data is
www.sciencedirect.com
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Figure 3
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Examples of mass spectrometry imaging-based exometabolomics. (a) Acoustically printed bacteria imaged with NIMS, (b) the Web of Microbes

exometabolomics data repository for looking at microbial interactions and food webs [53], (c) the predatory behavior of M. xanthus in the

presence of E. coli [21], (d) three-dimensional MALDI imaging of P. aeruginosa and C. albicans in co-culture [9��], (e) the interaction of

S. coelicolor with actinomycetes [37��], and (f) MSI using nanoDESI directly from agar gels.

The part figure (b) is adapted with permission from Ref. [35��] (Copyright 2014, American Chemical Society). The part figure (f) is adapted with

permission from Ref. [50] (Copyright 2013, American Chemical Society).
directly accessible via the browser-based MSI software;

OpenMSI [36] (https://openmsi.nersc.gov/openmsi/

client/).

Outlook
Exometabolomic studies will provide critical insights into

the distributed metabolism occurring in microbial com-

munities and tissues by defining the metabolic inputs and

outputs of cell types. Given the importance of cell–cell

interactions including signaling and microenvironmental

controls, it is important to complement these studies with

MSI. Thus this integrated approach takes advantage of

the more comprehensive analysis of LC–MS/MS based

exometabolomics [8��] and the spatial information provid-

ed by MSI. We envision that exometabolomic (e.g. webof-

microbes.com) [53], natural product (e.g. https://gnps.ucsd.

edu/ProteoSAFe/libraries.jsp), lipid (e.g. LipidMaps,

LipidBlast) [54,55], metabolite (e.g. Metlin, HMDB,

MassBank) [56–59] and MSI data repositories (e.g. Open-

MSI) will be critical to enable the integration of these

diverse data types and improvement of our understanding

of cellular metabolic interactions.
www.sciencedirect.com 
A few recent examples illustrate the power of this ap-

proach for investigating microbial interactions, where one

microbe is releasing a substance that is toxic to a neigh-

boring microbe, such as is the case with the predatory

behavior seen by M. xanthus in the presence of E. coli
[21,60] (Figure 3c). Moree et al. investigated the interac-

tion between P. aeruginosa and Aspergillus fumigatus, com-

mon opportunistic pathogens in cystic fibrosis, at the

molecular level. They were able to visualize the secreted

metabolites through MALDI TOF and MALDI FT-ICR

based MSI, and it was discovered that secreted phena-

zines are converted by A. fumigatus into other chemical

entities with enhanced toxicities [61�].

Conclusion
Exometabolomics provides an experimentally robust

approach to obtain rich phenotypic information on cells.

It has been used for diverse applications including gene

annotation, biofuel development, bioprocessing, and

drug mechanisms of action. This approach can be used

to define the inputs and outputs of cells to study cellular

interactions. While LC–MS is highly sensitive and
Current Opinion in Biotechnology 2015, 34:209–216
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provides the largest dynamic range for characterization

of large numbers of metabolites, the localization of these

metabolites through MSI and targeted MSI provides

useful information for understanding how microbes

interact in complex environments.  The combination

of these two complementary  approaches, exometabolo-

mics and MSI, will provide critical information on the

distributed metabolism occurring in microbial and other

cellular communities.
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