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Abstract For the terminal guidance problem of missiles intercepting maneuvering targets in the

three-dimensional space, the design of guidance laws for non-decoupling three-dimensional engage-

ment geometry is studied. Firstly, by introducing a finite time integral sliding mode manifold, a

novel guidance law based on the integral sliding mode control is presented with the target acceler-

ation as a known bounded external disturbance. Then, an improved adaptive guidance law based on

the integral sliding mode control without the information of the upper bound on the target accel-

eration is developed, where the upper bound of the target acceleration is estimated online by a

designed adaptive law. The both presented guidance laws can make sure that the elevation angular

rate of the line-of-sight and the azimuth angular rate of the line-of-sight converge to zero in finite

time. In the end, the results of the guidance performance for the proposed guidance laws are pre-

sented by numerical simulations. Although the designed guidance laws are developed for the con-

stant speed missiles, the simulation results for the time-varying speed missiles are also shown to

further confirm the designed guidance laws.
� 2016 The Authors. Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The terminal guidance law design is the basis to realize the pre-
cise guidance of missile. The aim of a terminal guidance law is
to allow missiles to intercept targets with minimum miss dis-
tances.1 Proportional navigation (PN) guidance law and its
variants have been well-known guidance laws, thanks to its
high efficiency and ease of implementation in a large variety

of interception engagements. However, for the situation of
intercepting the targets with a larger maneuverability, PN
guidance laws are not able to intercept the targets under the

required precision.2 In order to deal with the maneuverable
targets effectively, many researchers have developed various
modern robust guidance laws based on different nonlinear

control methods, such as H1 control,3 L2 gain control,4 differ-
ential game,5 sliding mode control,6–8 etc.

So far, the sliding mode control (SMC) has been widely
used to design controllers because of its good robustness to

external disturbances and the uncertainty of the system
parameters. The conventional sliding mode control,9–11 whose
sliding mode manifold is a linear function, can only finish the
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Fig. 1 Three-dimensional interception geometry.
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asymptotic convergence in infinite time in the sliding phase. In
order to achieve the finite time convergence in the sliding
phase, one of the solutions is to apply the terminal sliding

mode control (TSMC) whose sliding mode manifold is a non-
linear function.12,13 In addition, the TSMC can also guarantee
that the convergence of the system states is faster, the conver-

gence precision is higher and the system has a better distur-
bance rejection performance than the traditional linear
sliding mode control (LSMC). Therefore, the TSMC has been

widely applied to the missile guidance law design problem.14–18

Another good method is to finish the convergence in finite time
by applying the integral sliding mode control (ISMC). A finite
time convergent ISMC was proposed by Ref.19 for a kind of

higher order systems, and has been successfully used in the
field about the design of the guidance law.20,21

In the implementation of the SMC, the switching gain selec-

tion is a difficult problem. Generally speaking, for completing
the sliding mode reaching condition, we should choose the
switching gain larger than the upper bound of external distur-

bance. So, a necessary assumption is that the disturbance has
upper bound and that its upper bound needs to be known in
Refs.13,17. However, in practical applications, the upper bound

of external disturbance is hard to know. To resolve the above-
mentioned problem, the adaptive sliding mode control has
been studied in much literature.22–27 The advantage of the
adaptive sliding mode control is that it adaptively tunes

the switching gain by designing an adaptive law to estimate
the value of the upper bound of the disturbance. So, we do
not need to know the upper bound on the disturbance in

advance.
In practice, the relative motion of target and missile takes

place in the three-dimensional (3D) space, and the mathemat-

ical model that accurately describes the relation of relative
motion of target and missile is complicated nonlinear strong-
coupled equations. While designing the guidance law for the

missile, the usual method is to decouple the 3D motion into
two two-dimensional motions. There exist many researches
that designed the guidance laws in the two-dimensional
space.15–17,20,21 However, the method based on the traditional

decoupling will lose the guidance information during decou-
pling and result in a negative effect on terminal guidance accu-
racy. So, it would be close to reality if the terminal 3D

guidance law is developed under the condition of not neglect-
ing the couple among the channels of nonlinear dynamics of
target-missile relative movement in the 3D space.

At present, many 3D guidance laws have been developed.
For example, a few 3D PN guidance laws were developed in
Refs.28–30. However, for intercepting a strong maneuvering
target, the robustness of such guidance laws is not so well.

Based on a geometric method, a 3D guidance law considering
angle constraints was developed for the non-maneuvering tar-
gets in Ref.31. In Refs.32,33, a 3D guidance law was proposed

for maneuvering targets based on a nonlinear backstepping
control approach. Note that in Refs.32,33, the guidance laws
were designed for maneuvering targets, but the proposed guid-

ance laws could not guarantee that the system states converge
in finite time. Then, in Refs.34,35, SMC-based 3D guidance
laws considering impact angle constraints were proposed.

However, in Ref.34, the guidance law was designed for station-
ary targets. Although the guidance law was proposed for
maneuvering targets in Ref.35, the information of the target
acceleration bound needs to be known in advance. Hence,
for the guidance problem in the terminal phase when the mis-
siles intercept the high-speed maneuvering targets, to study the
finite time convergent 3D guidance law without any informa-

tion about the upper bound of the target acceleration is not
only theoretically challenging but also practical requirement.

For the guidance problem in the terminal phase when the

missiles intercept the high-speed maneuvering targets, the main
contribution of this paper is to develop a non-decoupling and
finite time convergent 3D guidance law and without the knowl-

edge of the bound on the target acceleration in advance. First
of all, based on the ISMC, a new 3D integral sliding mode
(ISM) guidance law is put forward in the 3D environment,
which can guarantee the finite time convergence of guidance

system states. Then, a novel 3D adaptive integral sliding mode
(AISM) guidance law with the finite time convergence is pro-
posed by combination of the ISMC and adaptive control tech-

nique which is used to estimate the unknown upper bound of
the target acceleration.

2. Formulation of guidance model

In this section, the target-missile relative motion equations for
the 3D guidance system are presented. Fig. 1 shows the 3D

interception geometry. T denotes the target, M the missile,
Oxyz a inertial reference frame, Ox1y1z1 a line-of-sight
(LOS) frame and R the relative distance between the target

and missile; qe and qb are the elevation and azimuth angles

of the LOS, respectively.
Regard the missile and the target as point mass in designing

guidance laws and the velocities of the missile and the target;

VM and VT, are assumed to be constants. 3D relative motion
geometry of missile and target, as given in Fig. 1, can be
expressed by the following differential equations17:

€R� R _q2e � R _q2b cos
2 qe ¼ aTR � aMR ð1Þ

R€qe þ 2 _R _q2e þ R _q2b sin qe cos qe ¼ aTe � aMe ð2Þ

�R€qb cos qe � 2 _R _qb cos qe þ 2R _qe _qb sin qe ¼ aTb � aMb ð3Þ
where aM ¼ aMR; aMe; aMb

� �
and aT ¼ aTR; aTe; aTb

� �
are the

vectors of the missile’s acceleration and target’s acceleration
in the LOS frame, respectively.

From Eqs. (2) and (3), it can be obtained that there exist

serious cross couplings between the elevation and the azimuth
channels of the LOS.
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In many practical terminal guidance processes, there are no
thrusts, and then the magnitude of the missile’s velocity is gen-
erally uncontrollable. Hence, we do not consider aMR as the

control variable, but the missile normal accelerations, aMe

and aMb, are regarded as control variables to change the direc-

tion of missile’s velocity. In designing guidance laws, we just
need to make the LOS angular rates, _qe and _qb, converge to

zero by designing the control variables aMe and aMb when the

relative velocity of the missile-target is less than zero. There-
fore, in the design process of the guidance law, the objective
is to make the LOS angular rates _qe and _qb converge to zero,

and then Eq. (1) can be omitted.
Defining x1 ¼ qe, x2 ¼ _qe, x3 ¼ qb, x4 ¼ _qb and combining

Eqs. (2) and (3) yield the three-dimensional guidance system
described as follows:

_x1 ¼ x2

_x2 ¼ � 2 _R

R
x2 � x2

4 sin x1 cos x1 � aMe

R
þ aTe

R
_x3 ¼ x4

_x4 ¼ � 2 _R

R
x4 þ 2x2x4 tanx1 þ aMb

R cos x1

� aTb
R cosx1

8>>>>>>><
>>>>>>>:

ð4Þ

In practical applications, the target’s acceleration is viewed
as external disturbance and it is not easy to obtain. But the
target’s acceleration is usually bounded. Hence, we have the

following assumption.

Assumption 1. Suppose that jaTej 6 e1 and jaTbj 6 e2, where e1
and e2 are positive constants.
3. Guidance law design

Before designing the guidance laws, we first give some lemmas
which are used to verify the stability of the guidance system.

Lemma 1 (Ref.36). It supposes that _VðtÞ 6 �l1VðtÞ�
l2VðtÞgð8t > t0Þ, where l1 > 0, l2 > 0, 0 < g < 1, VðtÞ is a
continuous positive definite function and t0 is the initial time.

Then, the system converges to the equilibrium point in finite time

tf provided by tf 6 t0 þ 1

l1ð1� gÞ ln
l1Vðt0Þ1�g þ l2

l2
.

_s ¼ _s1

_s2

� �
¼

� 2 _R

R
x2 � x2

4 sinx1 cos x1 � aMe

R
þ aTe

R
þ k1sig

a1ðx1Þ þ k2sig
a2ðx2Þ

� 2 _R

R
x4 þ 2x2x4 tanx1 þ aMb

R cosx1

� aTb
R cos x1

þ l1sig
b1ðx3Þ þ l2sig

b2ðx4Þ

2
664

3
775 ð10Þ
Lemma 2 (Ref.37). Let a1; a2; . . . ; an > 0 satisfy the condition

that the polynomial kn þ ank
n�1 þ . . .þ a2kþ a1 is Hurwitz.

Consider the following n-order system

_y1 ¼ y2; . . . ; _yn�1 ¼ yn; _yn ¼ u ð5Þ

There exists h 2 ð0; 1Þ such that, for every w 2 ð1� h; 1Þ, the
states of the system Eq. (5) can converge to its equilibrium point
in finite time under the controller

u ¼ �a1sig
w1ðy1Þ � a2sig

w2ðy2Þ � � � � � ansig
wn ðynÞ ð6Þ
where sigwiðyiÞ ¼ jyijwisignðyiÞ ði ¼ 1; 2; . . . ; nÞ and w1;w2; . . . ;wn

satisfy wi�1 ¼
wiwiþ1

2wiþ1 � wi

ði ¼ 2; 3; . . . ; nÞ, wn ¼ w, wnþ1 ¼ 1.

Lemma 3 (Ref.38). For bi 2 R ði ¼ 1; 2; . . . ; nÞ; 0 < q < 1 is a
real number, then the following inequality is satisfied:

jb1j þ jb2j þ . . .þ jbnjð Þq 6 jb1jq þ jb2jq þ . . .þ jbnjq ð7Þ

Lemma 4 (Ref.36). It supposes that b1; b2; . . . ; bn are all positive
numbers and 0 < q < 2. Then, the following inequality is
satisfied:

b21 þ b22 þ � � � þ b2n
� �q 6 bq1 þ bq2 þ � � � þ bqn

� �2 ð8Þ
3.1. Integral sliding mode guidance law design

In this subsection, a novel nonlinear ISM guidance law is pre-

sented to ensure the disturbance rejection performance of the
three-dimensional guidance system described by Eq. (4). A
brief design process of the developed ISM guidance law is

given as follows. Firstly, we design a nonlinear integral sliding
surface vector. Secondly, on the basis of the nonlinear integral
sliding surface vector, a nonlinear ISM guidance law is pro-

posed. Then, it is obtained that under the developed guidance
law, the LOS angular rates, _qe and _qb, converge to zero in finite

time in the presence of the external disturbances whose upper
bound can be known.

Inspired by Ref.20, a sliding surface vector is chosen as

s ¼ s1

s2

� �
¼ x2 þ

R t

0
k1sig

a1ðx1Þ þ k2sig
a2ðx2Þð Þdt

x4 þ
R t

0
l1sig

b1ðx3Þ þ l2sig
b2ðx4Þ

� �
dt

" #
ð9Þ

where a1 ¼ a2a3
2a3 � a2

, b1 ¼
b2b3

2b3 � b2

, a3 ¼ b3 ¼ 1, a2 ¼ b2 ¼ u,

u 2 ð1� h; 1Þ; h 2 ð0; 1Þ, and k1; k2; l1; l2 > 0 ensure that

k2 þ k2kþ k1 and k2 þ l2kþ l1 are Hurwitz.
The derivative of s can be written as
Eq. (10) can be rewritten as

_s ¼ Aþ B
aMe

aMb

� �
þ C

aTe

aTb

� �
ð11Þ

where

A ¼
� 2 _R

R
x2 � x2

4 sin x1 cosx1 þ k1sig
a1ðx1Þ þ k2sig

a2 ðx2Þ

� 2 _R

R
x4 þ 2x2x4 tanx1 þ l1sig

b1ðx3Þ þ l2sig
b2 ðx4Þ

2
664

3
775
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B ¼
� 1

R
0

0
1

R cosx1

2
664

3
775

C ¼ c11 c12

c21 c22

� �
¼

1

R
0

0 � 1

R cos x1

2
664

3
775

Because the seeker has a minimum action distance R0, we have
R P R0 during the guided flight process of the missile, thus B

is nonsingular provided x1 remains small. Based on the integral
sliding surface vector Eq. (9), we proposed the following the
ISM guidance law for the guidance system Eq. (4).

aMe

aMb

� �
¼ B�1 �A� qs� c1signðs1Þ

c2signðs2Þ
� �� 	

ð12Þ

where ci P xi þ e1jci1j þ e2jci2j, xi > 0 (i ¼ 1; 2) is a constant.

And q is a positive constant.
Then, the first theorem is given as follows.

Theorem 1. For the guidance system Eq. (4) under Assumption 1
with the integral sliding surface vector Eq. (9), when the

guidance law Eq. (12) is used for the guidance system Eq. (4),
then the elevation angular rate _qe and the azimuth angular rate
_qb of LOS converge to zero in finite time, respectively.

Proof. Choose the Lyapunov function as follows:

V1 ¼ 1

2
sTs ð13Þ

Appling Eqs. (11) and (12) and according to Assumption 1,
the derivative of V1 is given by

_V1 ¼ sT Aþ B
aMe

aMb

� �
þ C

aTe

aTb

� �� 	

¼ sT �qsþ C
aTe

aTb

� �
� c1signðs1Þ

c2signðs2Þ

� �� 	

¼ �qsTsþ sT
c11aTe þ c12aTb � c1signðs1Þ
c21aTe þ c22aTb � c2signðs2Þ
� �

¼ �qsTsþ c11aTe þ c12aTb
� �

s1 � c1js1j
þ c21aTe þ c22aTb
� �

s2 � c2js2j
6 �qsTsþ e1jc11j þ e2jc12jð Þjs1j � c1js1j
þ e1jc21j þ e2jc22jð Þjs2j � c2js2j
6 �qsTs� x1js1j � x2js2j ð14Þ

Let x ¼ minfx1;x2g, hence Eq. (14) can be rewritten as

_V1 6 �qsTs� xðjs1j þ js2jÞ ð15Þ
By Lemma 3, we can obtain the following inequality:

_V1 6 �qsTs� x js1j2 þ js2j2

 �1

2 ¼ �2qV1 �
ffiffiffi
2

p
xV

1
2
1 ð16Þ

Based on Lemma 1, the sliding surface vector converges to

zero in finite time, i.e. siðt1Þ ¼ 0 ði ¼ 1; 2Þ, where t1 is the time
of sliding surface vector converging to zero. Then, for all
t P t1, we have si ¼ 0 ði ¼ 1; 2Þ, which implies that
_si ¼ 0 ði ¼ 1; 2Þ, i.e.
_x2 ¼ �k1sig
a1ðx1Þ � k2sig

a2 ðx2Þ ð17Þ

_x4 ¼ �l1sig
b1ðx3Þ � l2sig

b2ðx4Þ ð18Þ

According to Lemma 2, x2 and x4 can converge to zero in
finite time, i.e. _qe and _qb converge to zero in finite time, respec-

tively. The proof of Theorem 1 is completed. h

Remark 1. As clearly seen in the designed guidance law
Eq. (12), the implementation of the designed ISM guidance

law depends on the upper bound of the target’s acceleration.
However, in many practical situations, there is no accurate
knowledge about the upper bounds of the target acceleration.

To overcome the problem, the adaptive control scheme is a
good choice. So, a new AISM guidance law will be developed
in the following subsection.
3.2. Adaptive integral sliding mode guidance law design

In the subsection, an adaptive law is proposed which is used to
estimate the upper bound of the target’s acceleration online.
With the help of the adaptive law, an novel robust AISM guid-
ance law is proposed for the 3D guidance system Eq. (4) which

needs not to know the upper bound of the target’s acceleration
in advance. The design method on the novel AISM guidance
law is similar to that of the previously mentioned integral slid-

ing mode guidance law. And the developed AISM guidance
law can guarantee that the LOS angular rates _qe and _qb con-

verge to zero in finite time without the information on the
upper bound of the target’s acceleration. Then, the following
theorem is obtained.

Theorem 2. For the guidance system Eq. (4) with the sliding
surface vector Eq. (9), the LOS angular rates _qe and _qb will

converge to zero in finite time under the following guidance law

Eq. (19) and the designed adaptive laws Eq. (20).

aMe

aMb

� �
¼ B�1 �A� q1s� q2

js1jcsignðs1Þ
js2jcsignðs2Þ

� ��

�
X2
j¼1

jc1jjsignðs1Þ
jc2jjsignðs2Þ
� �

gj êj

!
ð19Þ

_̂ej ¼ gj
X2
i¼1

jcijjjsij
 !

êjð0Þ > 0; j ¼ 1; 2 ð20Þ

where q1; q2 > 0; 0 < c < 1; gj P 1 ðj ¼ 1; 2Þ are designed

constants and êj is the estimation of ej.

Proof. Let ~ej be the estimation error of the ej, i.e.
~ej ¼ ej � êj ðj ¼ 1; 2Þ. Choose the following Lyapunov function

V2 ¼ 1

2
sTsþ 1

2

X2
j¼1

~e2j ð21Þ

Computing the first order derivative of V2 along system
Eq. (11) and using Eqs. (19) and (20), we have
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_V2 ¼ sT _sþ
X2
j¼1

~ej _~ej ¼ sT Aþ B
aMe

aMb

� �
þ C

aTe

aTb

� �� 	
þ
X2
j¼1

~ej _~ej

¼ sT �q1s� q2

js1jcsignðs1Þ
js2jcsignðs2Þ

� �
�
X2
j¼1

jc1jjsignðs1Þ
jc2jjsignðs2Þ
� �

gjêj

 

þ C
aTe

aTb

� �	
þ
X2
j¼1

~ej _~ej

¼ �q1s
Ts� q2

X2
i¼1

jsijcþ1 �
X2
j¼1

X2
i¼1

jcijjjsij
 !

gj êj þ
X2
i¼1

ci1si

 !

� aTe þ
X2
i¼1

ci2si

 !
aTb �

X2
j¼1

X2
i¼1

jcijjjsij
 !

gjðej � êjÞ

¼ �q1s
Ts� q2

X2
i¼1

jsijcþ1 þ
X2
i¼1

ci1si

 !
aTe þ

X2
i¼1

ci2si

 !
aTb

�
X2
j¼1

X2
i¼1

jcijjjsij
 !

gjej 6 �q1s
Ts� q2

X2
i¼1

jsijcþ1

þ
X2
j¼1

X2
i¼1

jcijjjsij
 !

ej �
X2
j¼1

X2
i¼1

jcijjjsij
 !

gjej

¼ �q1s
Ts� q2

X2
i¼1

jsijcþ1 þ
X2
j¼1

X2
i¼1

jcijjjsij
 !

ejð1� gjÞ

6 �q1s
Ts� q2

X2
i¼1

jsijcþ1 6 0 ð22Þ

From the inequality (22), we can obtain V2ðtÞ 6 V2ð0Þ,
which implies that V2ðtÞ is bounded. Hence, it can be con-

cluded that s and ~ej ðj ¼ 1; 2Þ are all bounded.

Furthermore, consider another Lyapunov function

V3 ¼ 1

2
sTs ð23Þ

Applying Eqs. (19) and (20), the derivative of V3 can be
written as

_V3 ¼ sT _s ¼ sT Aþ B
aMe

aMb

" #
þ C

aTe

aTb

" # !

¼ sT �q1s� q2

js1jcsignðs1Þ
js2jcsignðs2Þ

" #
�
X2
j¼1

jc1jjsignðs1Þ
jc2jjsignðs2Þ

" #
gjêj

 

þ C
aTe

aTb

" #!

¼ �q1s
Ts� q2

X2
i¼1

jsijcþ1 �
X2
j¼1

X2
i¼1

jcijjjsij
 !

gj êj

þ
X2
i¼1

ci1si

 !
aTe þ

X2
i¼1

ci2si

 !
aTb

6 �q1s
Ts� q2

X2
i¼1

jsijcþ1 �
X2
j¼1

X2
i¼1

jcijjjsij
 !

gjêj

þ
X2
j¼1

X2
i¼1

jcijjjsij
 !

ej

¼ �q1s
Ts� q2

X2
i¼1

jsijcþ1 þ
X2
j¼1

X2
i¼1

jcijjjsij
 !

ej � gjêj
� � ð24Þ
Since êjð0Þ > 0 and _̂ej ¼ gj
P2

i¼1jcijjjsij

 �

P 0, there is

êjðtÞ P êjð0Þ > 0 ðt P 0Þ. Choose êjð0Þ large enough and gj sat-

isfying gj P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2j ð0Þ þ ê2j ð0Þ

q
êjð0Þ þ 1 ðj ¼ 1; 2Þ.

Combining with êjðtÞ P êjð0Þ > 0, one can obtain that

ej � gj êj 6 ej �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2j ð0Þ þ ê2j ð0Þ

q
� êjð0Þ

¼ ~ejð0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2j ð0Þ þ ê2j ð0Þ

q
6 j~ejð0Þj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2j ð0Þ þ ê2j ð0Þ

q
¼

ffiffiffiffiffiffiffiffiffiffi
~e2j ð0Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2j ð0Þ þ ê2j ð0Þ

q
6

ffiffiffiffiffiffiffiffiffiffi
ê2j ð0Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2j ð0Þ þ ê2j ð0Þ

q
6 0 ð25Þ

From Eq. (25), Eq. (24) can be expressed as

_V3 6 �q1s
Ts� q2

X2
i¼1

jsijcþ1 ð26Þ

According to Lemma 4, we have js1jcþ1 þ js2jcþ1

 �2

P

js1j2 þ js2j2

 �cþ1

, that is to say, the following inequality (27)

holds.

js1jcþ1 þ js2jcþ1 P js1j2 þ js2j2

 �cþ1

2 ¼ 2
cþ1
2 V

cþ1
2
3 ð27Þ

Therefore, Eq. (26) can be rewritten as

_V3 6 �2q1V3 � 2
cþ1
2 q2V

cþ1
2
3 ð28Þ

Based on Lemma 1, the sliding surface vector converges to
zero in finite time. The remaining steps of the proof are similar
to those of Theorem1. Hence, the remaining steps are omitted
here. So, conclusions can be easily obtained that the LOS

angular rates _qe and _qb converge to zero in finite time, respec-

tively. The proof of Theorem 2 is completed. h

Remark 2. Compared with Theorem 1, an adaptive estimation
term is introduced into the guidance law Eq. (19) in Theorem 2.
From the guidance law Eq. (19), it is easy to see that the

proposed AISM guidance law Eq. (19) does not contain the
information on the upper bounds of the target’s acceleration.
Instead, the upper bound is provided by applying the adaptive

law Eq. (20) to estimate the bound. Thus, the AISM guidance
law Eq. (19) successfully resolves the mentioned problem
existing in the ISM guidance law Eq. (12).

Note that the ISM guidance law Eq. (12) and the AISM
guidance law Eq. (19) are discontinuous controller because

of the existing of signum function which can bring about the
undesirable chattering problem. To alleviate the chattering, a
continuous saturation function satðyÞ given in Eq. (29), which

is used to approximate the signum function, takes place of the
signum function.

satðyÞ ¼
1 y > h

y=h jyj 6 h

�1 y < �h

8><
>: ð29Þ

where h is a small positive constant. If h is given smaller
enough, then better approximating effect will be obtained.
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So, the corresponding ISM guidance law in Eq. (12) and the

AISM guidance law in Eq. (19) can be modified as

aMe

aMb

� �
¼ B�1 �A� qs� c1satðs1Þ

c2satðs2Þ
� �� 	

ð30Þ

aMe

aMb

� �
¼ B�1 �A� q1s� q2

js1jcsignðs1Þ
js2jcsignðs2Þ

� ��

�
X2
j¼1

jc1jjsatðs1Þ
jc2jjsatðs2Þ
� �

gj êj

!
ð31Þ
4. Simulation

To illustrate the effectiveness of the designed guidance laws

Eqs. (30) and (31) in the above section, this section shows
the numerical simulations for the missiles air-intercepting the
maneuvering targets at constant speed and time-varying speed.

The simulation parameters are missile parameters and tar-
get parameters. The missile parameters are given by: (1) initial
position coordinates: xMð0Þ ¼ 0 m, yMð0Þ ¼ 0 m and zMð0Þ ¼
0 m; (2) velocity: VM ¼ 1000 m=s; (3) initial flight path angle
and heading angle: hMð0Þ ¼ 45� and uMð0Þ ¼ 0�. The target
parameters are given by: (1) initial position coordinates:

xTð0Þ ¼ 11136 m, yTð0Þ ¼ 8603:6 m and zTð0Þ ¼ 5192:8 m; (2)
velocity: VT ¼ 800 m=s; (3) initial flight path angle and head-
ing angle: hTð0Þ ¼ �30� and uTð0Þ ¼ 120�.

The parameters of the ISM guidance law Eq. (30) are

given as follows: k1 ¼ l1 ¼ 0:006; k2 ¼ l2 ¼ 0:4, a1 ¼ b1 ¼ 1
3
;

a2 ¼ b2 ¼ 1
2
; q ¼ 0:05; c1 ¼ x1 þ e1jc11j þ e2jc12j; c2 ¼ x2 þ

e1jc21j þ e2jc22j; x1 ¼ x2 ¼ 0:04; e1 ¼ e2 ¼ 70, h ¼ 0:002. The

parameters of the AISM guidance law Eq. (31) are chosen

as: k1 ¼ 0:006; k2 ¼ 0:4; a1 ¼ b1 ¼ 1
3
; a2 ¼ b2 ¼ 1

2
, l1 ¼ 0:6; l2 ¼

40; q1 ¼ 5; q2 ¼ 1; c¼ 0:5, g1 ¼ g2 ¼ 10, h¼ 0:002. The maxi-
mum normal accelerations that missile can provide perpendic-

ular to the LOS are assumed to be 25g respectively, and g is the

acceleration of gravity (g¼ 9:8m=s2).

4.1. Constant speed missiles

In the subsection, for the constant speed missiles intercepting

three different kinds of targets, the simulation examples are
provided to illustrate the guidance performance of both
designed guidance laws.

For performance comparison, the augmented proportional
navigation (APN) guidance law is also simulated under the
same initial conditions. The APN guidance law is chosen as

aMe ¼ �N _R _qe þ aTe

aMb ¼ N _R _qb þ aTb

(
ð32Þ

where the parameter N is set to be 4.

To verify the effectiveness of the designed guidance laws,
the following three cases for the different target acceleration
are selected as follows:

Case 1. aTe ¼ 7g sin t and aTb ¼ 7g cos t.
Case 2. aTe ¼ 7g and aTb ¼ 7g.
Case 3. aTe and aTb are squares with an amplitude of 7g, a

period of 4 s and a phase delay of 0.1 s.
With the given initial conditions and data, simulations are
performed for the three cases under all the three guidance laws.
For the three cases, Figs. 2–4 show the simulation results. Each

figure includes the response of the elevation angular rate of the
LOS _qe, the azimuth angular rate of the LOS _qb, the sliding

mode manifolds s1 and s2, the missile acceleration in the eleva-
tion loop aMe, the missile acceleration in the azimuth loop aMb,

the estimation error of the upper bound of target acceleration
~ej ðj ¼ 1; 2Þ, and the relative movement curve of the missile-

target for all the three guidance laws, which are given in
Figs. 2(a)–(h), 3(a)–(h), 4(a)–(h), respectively. The abbreviations

in Figs. 2–4 and Table 1, i.e. ISMGL, AISMGL and APNGL,
denote the proposed integral sliding mode guidance law
Eq. (30), adaptive integral sliding mode guidance law Eq. (31)
and the augmented PN guidance law Eq. (32), respectively.

Table 1 presents the miss distances and interception times.
From the Figs. 2(a), 3(a), 4(a) and 2(b), 3(b), 4(b), it can be

obtained that both proposed guidance laws can ensure that the

LOS angular rates _qe and _qb converge to zero in finite time for

the target acceleration profiles of Cases 1–3. However, the con-
vergence property of the LOS angular rates _qe and _qb under the

APNGL is not the same for the three cases. For Case 1 and
Case 2, the LOS angular rates _qe and _qb do not converge to

zero. For Case 3, if the target is a square maneuvering, the
APNGL can guarantee that the LOS angular rates _qe and _qb
converge to zero, but the LOS angular rates _qe and _qb diverge

at an early time which leads to a large miss distance. As shown
in Figs. 2(c), 3(c), 4(c) and 2(d), 3(d), 4(d), it can also be seen
that both variables of the sliding surface vector converge to

zero rapidly in finite time under both proposed guidance laws
for the three cases. From these figures, we can also observer
that the sliding surface variable curves are smooth and stable
even for the case of square maneuvering target. As presented

in Figs. 2(e), 3(e), 4(e) and 2(f), 3(f), 4(f), the missile accelera-
tions in the two loops under both proposed guidance laws are
within the reasonable bounds and there are problems of accel-

eration saturations in the initial phase of the terminal guidance
process for all target acceleration cases. And, the missile accel-
erations produced by the APNGL are much smaller than those

under the ISMGL and AISMGL. But, the larger missile accel-
eration taken by the proposed ISMGL and AISMGL can
make the LOS angular rate preferably converge to zero in

finite time and large acceleration decreases correspondingly
as the LOS angular rates come close to zero. In addition, we
can see that with the convergence properties of the LOS angu-
lar rates, the missile acceleration commands under the pro-

posed guidance laws converge to the similar curve with the
target’s acceleration for each case after a while. From Figs. 2(g),
3(g), 4(g), we can observer that the estimation error of the

upper bound of the target’s acceleration rapidly converge to
zero under the proposed AISMGL for the three cases, which
indicates that the designed adaptive law can effectively esti-

mate the upper bound of the target’s acceleration. It can be
clearly observed from Figs. 2(h), 3(h), 4(h) that with the
implementation of both developed ISMGL and AISMGL,

the missile can intercept the target successfully for all the target
acceleration profiles of Cases 1–3. The relative movement
curves of the missile-target under the proposed AISMGL are
similar to that under APNGL for any case. And the proposed

ISMGL makes the missiles have slightly longer trajectories
than those of the other guidance laws for the three cases.



Fig. 2 Response curves under three guidance laws of Case 1.
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Fig. 3 Response curves under three guidance laws of Case 2.
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Fig. 4 Response curves under three guidance laws of Case 3.
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Table 1 Miss distances and interception times for three cases.

Guidance law Case 1 Case 2 Case 3

Miss distance (m) Interception time (s) Miss distance (m) Interception time (s) Miss distance (m) Interception time (s)

APNGL 0.890 9.085 2.060 9.272 1.360 8.697

ISMGL 0.030 9.110 0.020 9.380 0.024 8.720

AISMGL 0.025 9.090 0.010 9.190 0.019 8.690
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From Table 1, it can be observed that the interception time
under both designed guidance laws is similar to that under the
APNGL for the Cases 1–3. But, by comparing the miss dis-

tance for all the target cases, the miss distances achieved by
the proposed ISMGL and the AISMGL are much less than
the APNGL. So, the APNGL cannot ensure the guidance

accuracy, while the proposed ISMGL and AISMGL can
ensure that the missile intercepts the target successfully and
have a high guidance precision even in the case of existing

strong target maneuver.

4.2. Varying speed missiles

In Section 4.1, only the simulation results for the constant
speed missiles are shown. Nonetheless, as we all know, the
speed of the missile for a realistic missile model15 is variable,
hence, the following simulation results are presented to

demonstrate the effectiveness of the above designed guidance
laws for missiles with varying speed which is as good as that
for the constant speed missiles. This is due to the inherently

strong robustness of the designed guidance laws. The equa-
tions of motion of a missile, which is regarded as a point-
mass flying over a flat, non-rotating Earth, are described as

follows:

_xM ¼ VMcoshM cosuM ð33Þ

_yM ¼ VM sin hM ð34Þ

_zM ¼ �VM cos hM sinuM ð35Þ

_VM ¼ T�D

m
� g sin hM ð36Þ

_hM ¼ ay � g cos hM
VM

ð37Þ

_uM ¼ � az
VM cos hM

ð38Þ

where xM; yM and zM denote the position of the missile; m; hM
and uM represent the mass, the flight path angle and the head-

ing angle of the missile, respectively; T and D denote the thrust
and the drag of the missile, respectively; ay and az are the hor-

izontal projection and vertical projection of the missile normal
acceleration.

For the realistic missile model, the expression of the aerody-

namic drag D in Eq. (36) is given as

D ¼ D0 þDi ð39Þ
with

D0 ¼ CD0Qs; Di ¼
km2ða2y þ a2zÞ

Qs

K ¼ 1

pAre
; Q ¼ 1

2
qV2

M

8>>><
>>>:
where D0 and Di are the zero-lift drag and induced drag; CD0

and K denote the coefficient of the zero-lift drag and the coef-
ficient of the induced drag; Q; Ar; e and q represent the
dynamic pressure, the aspect ratio, the efficiency factor and

the atmosphere density, respectively; and s is the reference area

and assumed to be 1 m2. For the guidance problem, CD0 and K
are given as

CD0 ¼

0:02 Ma < 0:93

0:02þ 0:2ðMa� 0:93Þ Ma < 1:03

0:04þ 0:06ðMa� 1:03Þ Ma < 1:10

0:0442� 0:007ðMa� 1:10Þ Ma P 1:10

8>>><
>>>:

ð40Þ

K ¼ 0:2 Ma < 1:15

0:2þ 0:246ðMa� 1:15Þ Ma P 1:15



ð41Þ

where Ma is the Mach number and given by

Ma ¼ VMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4RCTP

p ; RC ¼ 288 J=K � kg ð42Þ

where TP is the temperature at the height yM above sea level
and is given by

TP ¼ 288:16� 0:006yM yM < 11000

216:66 yM P 11000



ð43Þ

The thrust T of the missile can be calculated as

T ¼
33000 0 6 t 6 1:5

7500 1:5 < t 6 8:5

0 t P 8:5

8><
>: ð44Þ

The mass of the missile m is given as

m ¼
135� 14:53t 0 6 t 6 1:5

113:205� 3:31ðt� 1:5Þ 1:5 < t 6 8:5

90:035 t P 8:5

8><
>: ð45Þ

where t is time in seconds. The atmosphere density is given by

q ¼ 1:15579� 1:058� 10�4yM þ 3:725� 10�9y2M � 6

� 10�14y3M ð46Þ
The simulation conditions are the same as the previous sim-

ulation and the target acceleration is chosen as aTe ¼ 7g sin t,

aTb ¼ 7g cos t which is the same as Case 1. The missile’s initial

speed and the target’s initial speed are 1000 m=s and 800 m=s,
respectively. With the implement of the proposed ISMGL and
AISMGL, the LOS angular rates _qe and _qb, the sliding mode

manifold s1 and s2, the missile acceleration in the elevation
loop aMe, the missile acceleration in the azimuth loop aMb,

the estimation error of the upper bound of target acceleration
~ej ðj ¼ 1; 2Þ, the relative movement curve of the missile-target,

and the variation of the missile speed are given in Figs. 5 and 6.
In addition, we can also obtain that under the ISMGL and



Fig. 5 Response curves with the proposed ISMGL and AISMGL.
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Fig. 6 Variations of missile speed with the proposed ISMGL

and AISMGL.
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AISMGL, the miss distances are 0.020 m and 0.015 m, and the
intercepting times are 9.550 s and 9.690 s, respectively. From
Fig. 5, we can observer that under both designed guidance

laws, the simulation results for the varying speed missile are
similar to the results of Case 1 for the constant speed missile
in the above subsection, respectively. Fig. 6 shows the varia-
tion of the missile speed for the ISM guidance law and AISM

guidance law. As shown in Fig. 6, it can be observed that it can
be observed that the speed of the missile fast increases at the
start of the engagement owing to the larger thrust compared

with the drag. Then, after the second, the speed of the missile
decreases when the thrust is less than the drag on the missile.
As the missile speed decreases, the interception time for vary-

ing speed missiles is a little longer than that for constant speed
missiles under both proposed guidance laws. Therefore, it can
be concluded that the performances of the developed guidance

laws for the time-varying speed missiles are as good as those
for the constant speed missiles.

5. Conclusions

In this paper, for the guidance problem in the terminal phase
when the missiles intercept the high-speed maneuvering targets
in the 3D space, the finite-time guidance law design is studied.

The main contributions of this work are listed as follows:

(1) A new 3D ISM guidance law based on a finite time con-

vergence of the integral sliding mode manifold is pro-
posed. The proposed ISM guidance law depends on
the information on the upper bound of the target’s accel-

eration. Therefore, with the novel use of the adaptive
control, an improved AISM guidance law which does
not need the upper bound of the target’s acceleration
is proposed.

(2) With the aid of the Lyapunov stability theory, we obtain
that the 3D guidance system is finite-time stable. It is
proved that the elevation angular rate of the LOS and

the azimuth angular rate of the LOS converge to zero
in finite time for both developed guidance laws.

(3) Numerical simulation results including the constant

speed and the varying speed missile intercepting the
maneuvering target have shown the effectiveness and
high-precision guidance performance of both proposed

guidance laws.
In this paper, we research the finite-time guidance law
design; however we did not consider the input saturation prob-
lem. At present, only a few papers focus on the finite-time

guidance law design problem under input saturation. Under
the input saturation, how to develop the finite-time guidance
law which can produce higher guidance precision and better

robustness is a challenging task, which is also our research
direction.
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