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Eukaryotic DNA is organized into domains or loops generated by the attachment of chromatin fibers to the nuclear matrix
via specific regions called scaffold or matrix attachment regions. The role of these regions in DNA replication is currently
under investigation since they have been found in close association with origins of replication. Also, viral DNA sequences,
containing the origins of replication, have been found attached to the nuclear matrix. To investigate the functional role of this
binding we have studied, in Raji cells, the interaction between Epstein–Barr virus (EBV) origins of replication and the nuclear
matrix in relation to the viral cycle of infection. We report here that both the latent (ori P) and the lytic (ori Lyt) EBV origins
of replication are attached to the nuclear matrix, the first during the latent cycle of infection and the second after induction
of the lytic cycle. These findings suggest that the binding of the origins of replication with the nuclear matrix modulates viral

replication and expression in the two different phases of infection. © 1999 Academic Press
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INTRODUCTION

The nuclear matrix is a proteinaceous framework that
rganizes the DNA into topologically distinct loops (Phi-
an and Strätling, 1990; Roberge and Gasser, 1992) an-
hored at specific sites named scaffold/matrix attach-
ent regions (S/MARs) (Mirkovitch et al., 1984; Cockerill

nd Garrard, 1986; Gasser and Laemmli, 1987).
These evolutionary conserved DNA elements are gen-

rally 300–3000 bp long, contain several AT-rich se-
uence motifs and Topo II cleavage sites (Gasser et al.,
989; Adachi et al., 1989), and have the potential to
nwind under conditions of superelical stress (Bode et
l., 1992; Kohwi-Shigematsu and Kohwi, 1990). It has
een shown that S/MAR elements flank actively tran-
cribed genes and increase the transcriptional activity of

reporter gene in stably transfected cells (Blasquez et
l., 1989; Phi-Van and Strätling, 1990; Stief et al., 1989) or

n transgenic mice (Xu et al., 1989).
In addition S/MARs may act as boundery sequences

y sheltering the chromatin from position effects (Gasser
nd Laemmli, 1986a,b; Dijkwel and Hamlin, 1988).

It has been shown that S/MARs–nuclear matrix inter-
ctions play a role in DNA replication and gene expres-
ion. In this respect, while evidence has been provided

hat origins of replication are close or coincide with
/MARs in several cell systems (Razin et al., 1986; Mah

1 To whom correspondence and reprint requests should be ad-
ressed at Microbiology Institute, Faculty of Medicine and Surgery,
niversity of Roma “La Sapienza,” P.le A. Moro, 5—00185 Roma, Italy.
aax: 39-6-49914641. E-mail: Mattia@axrma.uniroma1.it.
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t al., 1993; Amati et al., 1990; Amati and Gasser, 1990;
run et al., 1990; Umek et al., 1989; Dubey et al., 1991),

he contribution of matrix attachments to mammalian
rigin function is still not clear.

Several studies have reported that viral genomes rep-
icate and express in association with the nuclear matrix
Deppert and Schirmbeck, 1995; Moen et al., 1990;
chirmbeck et al., 1993; Adom and Richard-Foy, 1991)
nd that this association in some cases involves the
rigins of viral replication. Because viral DNA replication
imics DNA replication of the host cell with respect to

uclear compartmentalization, viral systems are usefull
ools for investigating the function of the interactions
etween the origins of replication and the nuclear matrix.

To this purpose, we have choosen Epstein–Barr virus
EBV), which replicates in a latent and in a lytic phase via
wo different origins of replication, to investigate the
inding of the latter to the matrix with respect to the viral
tate of infection. EBV, a human herpesvirus, is the ethio-

ogic agent of infectious mononucleosis and is associ-
ted with a number of tumors, such as Burkitt lymphoma,
asopharingeal carcinoma, and Hodgkin desease

Liebowitz and Kieff, 1993; Herbst et al., 1990). EBV la-
ently infects and transforms human B lymphocytes,

here the majority of the viral genome is maintained as
ircular, double-stranded DNA (Lindahl et al., 1976). Of

he approximately 100 genes encoded by the virus, about
0 are differentially expressed during latency, depending
n the infected host cell. They comprise six nuclear
ntigens (EBNA1, -2, -3A, -3B, -3C, and -LP) and three

ntegral membrane proteins (LMP-1, -2A, and -2B). In

ddition, two genes coding for small RNAs (EBER1 and

0042-6822/99 $30.00
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10 MATTIA ET AL.
BER2) are actively transcribed in most EBV-infected
ells.

Most EBV genes are expressed during the lytic cycle.
n the absence of exogenous stimuli, only a small per-
entage of cells undergo lysis as a result of productive

nfection, but the latter can be quantitatively triggered in
itro by a variety of induction procedures (Bauer et al.,
982; Di Renzo et al., 1994; Ooka et al., 1984). In the latent
ycle, EBV replication is mediated by a cis-acting ele-
ent identified as the origin of DNA replication, ori P

Reisman et al., 1985; Yates et al., 1985), while during the
ytic phase, the origin of replication, ori Lyt, is activated
Gruffat et al., 1995).

It has been shown that in latently infected cells, EBV is
rganized as a single DNA domain, which is anchored
n the nuclear matrix by a high-affinity MAR containing

he origin of replication ori P (Jankelevich et al., 1992).
To gain insight into the functional role of EBV ori–

uclear matrix interactions, we have studied them with
espect to the latent as well as to the lytic cycle of
nfection.

To this end we have used Raji cells, a Burkitt lym-
homa-derived cell line containing multiple copies of the
BV genome in a tightly latent state. These cells can be

reated with a number of agents, such as phorbol esters,
odium butyrate, and TGFb, to induce the EBV lytic cycle,
ut because of a deletion in the Raji viral genome (Hatfull
t al., 1988), only the early events of the lytic cycle take
lace, making this cell system ideal for our studies.

Here, we report that following induction of the EBV
ytic cycle, the ori Lyt origin of replication associates with
he nuclear matrix, while the binding of the origin of
eplication ori P is diminished.

It is proposed that the association of the viral origins of
eplication to the nuclear matrix is instrumental to viral
eplication and genome expression in the two different
hases of infection.

RESULTS

nduction of EBV lytic cycle

In order to induce the EBV lytic cycle in a large pro-
ortion of Raji cells, a combination of P(BU)2, sodium

FIG. 1. Linear EBV genome, BamHI restriction map, and position of
ndicated are the origins of replication (ori P and ori Lyt), the terminal re
IR1 to IR4). (B) BamHI restriction map and underneath the position of
utyrate, and TGF-b2 was used. D
Experiments have been carried out to quantitatively
nduce the EBV lytic cycle in the cell population, while

aintaining high values of cell viability. To this purpose,
arious concentrations of the inducers, different lengths
f incubation time, and different cell densities and serum
ontents in the culture medium had been tested. Under

he different conditions, the percentage of cells express-
ng EBV early antigens (EA) and the number of viable
ells, after trypan blue staining, had been evaluated. The
esults have shown that the combination of P(BU)2 plus
odium butyrate leads about 30% of the cell population to
nter the lytic cycle. The addition of TGFb as third induc-

ng agent allows, under the experimental conditions de-
cribed under Materials and Methods, to increase the
A-positive cells to about 60%, while cell viability re-
ains higher than 80% (data not shown).

BV probes

In order to study the specific interactions of EBV ori-
ins of replication ori P and ori Lyt with the nuclear
atrix in the latent or in the lytic form of infection, probes
ere generated by PCR that would recognize different

egions of EBV genome. Amplified DNA included se-
uences within the origins of replication ori P and ori Lyt
ontained, respectively, in fragments C and H of the
amHI-restricted EBV genome (see Fig. 1). Probes were
lso generated that would recognize sequences within
amHI A, BamHI B, and BamHI Z fragments.

Table 1 reports the nucleotide sequences of the prim-
rs used and the genomic locations and the lengths of

he amplification products.

valuation of the association of EBV BamHI
estriction fragments with the nuclear matrix

Intact nuclei from control and induced Raji cells were
igested in situ with BamHI restriction enzyme. The nu-
lear matrix-associated and the soluble DNA fractions
ere isolated as previously described (Jankelevich et al.,

992). According to this procedure, DNA fragments as-
ociated with the nuclear matrix were enriched in the
uclear matrix fraction of the DNA while, by contrast,

nerated fragments. (A) Schematic representation of the EBV genome.
R), the five unique sequences (U1 to U5), and the four internal repeats

enerated fragments used to probe the genome.
PCR-ge
peats (T
NA fragments not anchored to the matrix were found
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11EBV ORIGINS OF REPLICATION AND THE NUCLEAR MATRIX
qually distributed among the two DNA fractions or more
bundant in the soluble one.

After BamHI digestion, the nuclear matrix-bound DNA
s about 40–50% of the total, independently of the treat-

ent of the cells with inducers of the EBV lytic cycle.
qual amounts isolated from the insoluble and the sol-
ble fractions were electrophoretically resolved and hy-
ridized with the probes for the different regions of the
amHI-restricted EBV genome.

Figure 2 shows the results of hybridization with the
robe for the latent origin of replication ori P. This probe

ecognizes a 9.5-kb band, corresponding to the BamHI C
ragment of the EBV genome.

Untreated, latently infected cells retain about 75% of
his fragment in the nuclear matrix DNA fraction.

T

Oligomers Used to Amp

Sequence 59-39

ori P DP TTTTTAAACCTCCTGGAATT
ori P RP CTGTGTAGCTACCGATAAGC
ori Lyt DP GCCTTCTTTTATCCTCTTTT
ori Lyt RP GCCCCTCCTCCTCTCGTTAT
BamHI A DP GCCTCCGCCGTCCACTCTA
BamHI A RP CCGCCTGCCCCATCTTCAC
BamHI B DP ATAGACGGTTGGGCAGTAG
BamHI B RP TATTTCCTTCGTTGCCTCAT
BamHI Z DP TTCAAAGAGAGCCGACAGG
BamHI Z RP TTCAAACAGCAGCAGCAGTG

Note. DP, direct primer; RP, reverse primer.

FIG. 2. Association of the BamHI C fragment with the nuclear matrix.
uclei isolated from latently infected Raji cells (untreated) and from

ells treated with the inducers (induced) were in situ digested with
amHI. Equal amounts of DNA purified from the nuclear matrix (M) and

he soluble (S) fractions were resolved on a 1% agarose gel, blotted,
nd hybrydized with DIG-labeled ori P probe (top). The bar graph

epresents the mean values obtained from the densitometric measure-
ent of the hybridization signals of three similar experiments for

ntreated (empty bar) and induced (filled bars). The values are ex-
ressed as the percentage of association of the BamHI C fragment with
he nuclear matrix and the soluble fraction. t
By contrast, after the cells were treated with the
gents that induce the lytic cycle, the percentage of the
atrix-associated BamHI C fragment decreases to about

5%, with a parallel increment of the portion released in
he soluble DNA fraction.

When the BamHI-restricted EBV genome was hybrid-
zed with the probe for the lytic origin of replication ori
yt, a 6-kb band, corresponding to the BamHI H frag-
ent, was apparent. Figure 3 shows that when the cells

arbor the virus in the latent form of infection, the distri-
ution of this fragment is prevalent in the soluble com-
onent of the DNA. However, after they are treated with

nducers of the lytic cycle, the percentage of the BamHI
fragment that is found nuclear matrix-associated in-

reases from about 35 to 45%.
To evaluate whether regions of the EBV genome other

han those containing the origins of replication would
lso redistribute between the two DNA fractions upon

nduction of the EBV lytic cycle, we measured the asso-

V Genomic Sequences

EBV genome (nt) Product (bp)

7300–9183 1883

52805–52984 179

161574–162926 1372

113912–114778 886

102126–102772 666

FIG. 3. Association of the BamHI H fragment with the nuclear matrix.
ntreated and induced Raji nuclei were in situ digested with BamHI.
urified DNA fractions were processed as in Fig. 2 and hybridized with
IG-labeled ori Lyt probe (top). The bar graph, obtained as for Fig. 2,

epresents the percentage of association of the BamHI H fragment with
ABLE 1

lify EB

T
C
G

A

he two DNA fractions.
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12 MATTIA ET AL.
iation of the BamHI A, BamHI B, and BamHI Z fragments
ith the nuclear matrix and the soluble DNA component

n untreated and induced cells. As shown in Fig. 4, the
istribution of these fragments between the two DNA
omponents is not related to the viral phase of replica-

ion. The percentage of the BamHI A fragment (10 kb)
ssociated with the nuclear matrix is higher than that
easured in the soluble DNA fraction. However, neither

he BamHI B (9.6 kb) nor the BamHI Z (8 kb) fragment
electively associates with the nuclear matrix. In partic-
lar, a higher percentage of the BamHI Z fragment par-

itions to the soluble DNA fraction, while BamHI B ap-
ears more evenly distributed between the two DNA
omponents.

nteractions of ori P and ori Lyt with the nuclear
atrix during the latent or the lytic cycle

f EBV infection

We next tested whether the preferential binding of
amHI C and BamHI H fragments to the nuclear matrix,
bserved, respectively, in the latent and in the lytic
hases of EBV infection, was involved the origin of rep-

ication ori P and ori Lyt. Nuclei isolated from untreated
nd induced Raji cells were in situ digested with restric-

ion enzymes that delimit ori P and ori Lyt. As shown in
ig. 5, a PstI/PvuII digestion generates a 2.9-kb fragment,
hich includes the entire ori P consensus sequence
nd, upstream, the EBER2 gene (Gahn and Schildkraut,
989). Alternatively, a SacI/PstI digestion was used to
enerate a 2.3-kb fragment containing the entire minimal
ri Lyt consensus sequence (Hammerschmidt and Sud-
en, 1988) and part of the auxiliary region which in-
reases ori Lyt efficiency (nt 53581–54713) encompass-

ng the BHRF1 promoter.
The percentage of DNA recovered in the nuclear ma-

rix fraction after each of the two double digestions was
bout 20% of the total DNA.

FIG. 4. Distribution of BamHI A, BamHI B, and BamHI Z fragments
ver the nuclear matrix and the soluble DNA fractions. Untreated

empty bars) and induced (filled bars) Raji nuclei were in situ digested
s in Fig. 2 and the purified DNA was hybridized with BamHI A, BamHI
, and BamHI Z probes. The hybridization signals from three similar
xperiments were quantified and expressed in the bar graph as per-
entages of association with the nuclear matrix (M) and the soluble (S)
NA fraction.
Figure 6 shows the results obtained when Raji nuclei a
ere digested with PstI/PvuII endonucleases and the
urified DNA fractions hybridized with ori P probe. The
uantification of the hybridization signals measured for

hree similar experiments indicates that latently infected
ells retain between 2.4- and 4-fold more of the ori P

ragment on the nuclear matrix than the amount found in
he soluble DNA fraction. Upon induction of the lytic
ycle, the percentage of association of the ori P with the
uclear matrix decreases about 20% with respect to the
ntreated cells.

Figure 7 shows the results obtained after in situ di-
estion with SacI and PstI enzymes and hybridization
ith the ori Lyt probe.

FIG. 5. Schematic representation of PstI/PvuII- and PstI/SacI-re-
tricted regions of EBV genome, containing the origins of replication.

ndicated are ori P (A) and ori Lyt (B) coordinates in B95.8 and the
ositions of the relative probes shown underneath with filled bars.

FIG. 6. Identification of ori P binding to the nuclear matrix. Untreated
nd induced Raji nuclei were in situ digested with PstI and PvuII. Equal
mounts of DNA purified from the nuclear matrix (M) and the soluble (S)

ractions were hybrydized with a DIG-labeled ori P probe (top). The
ybridization signals from three similar experiments were quantified
nd expressed in the bar graph as percentages of association with the
uclear matrix and the soluble DNA fraction for untreated (empty bar)

nd induced (filled bars) cells.
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13EBV ORIGINS OF REPLICATION AND THE NUCLEAR MATRIX
In latently infected Raji cells, the ori Lyt is almost
ompletely released in the soluble DNA fraction. By con-

rast, following induction of the EBV lytic cycle, the ori Lyt
ragment specifically associates with the nuclear matrix.
he quantification of the hybridization signals related to

hree similar experiments indicate that in induced Raji

FIG. 7. Identification of ori Lyt binding to the nuclear matrix. Un-
reated and induced Raji nuclei were in situ digested with PstI and SacI.
qual amounts of DNA purified from the nuclear matrix (M) and the
oluble (S) fractions were hybrydized with DIG-labeled ori Lyt probes

top). The bar graph was obtained as for Fig. 6.

FIG. 8. Association of ori Lyt surrounding sequences to the nuclear m
ap of EBV genome showing the regions of homology to BamHI H and
aji nuclei were in situ digested with NcoI. Soluble and insoluble DN
ybridized with BamHI H or BamHI F probes. Shown are the fragmen
oluble and insoluble DNA fractions of untreated and induced Raji cel
istogram represents the increment of the binding of NcoI-generated
nfection.
ells, the ori Lyt fragment is about fivefold more abun-
ant in the nuclear matrix than in the soluble DNA com-
onent.

ssociation of ori Lyt surrounding sequences to the
uclear matrix in the latent and the lytic phases
f EBV cycle

To further evaluate the association of the EBV genome
o the nuclear matrix in the regions adjacent the ori Lyt,
aji nuclei from control and induced cells were in situ
igested with the restriction enzyme NcoI. After nuclear
atrix isolation and protein digestion, insoluble and sol-

ble DNA fractions were subjected to Southern blot
nalysis with cloned BamHI H (6 kb) and BamHI F (7.4 kb)

ragments of the EBV genome randomly labeled with
IG-dUTP.
As shown in Fig. 8a, following NcoI digestion, the ori

yt is contained in a 2.5-Kb fragment, similar in size and
osition to that obtained by the SacI/PstI digestion. The

ragments generated by NcoI-restricted EBV DNA, en-
ighted by the BamHI H or the BamHI F probe, appear in
ig. 8b. The distribution of these fragments in untreated
nd induced Raji cells, over the matrix and the soluble
NA components, was studied after quantification of the

a) Schematic representation of NcoI and PstI/SacI restriction digestion
I F probes. Shaded boxes indicate left ori Lyt containing fragments. (b)

ponents, purified as described under Materials and Methods, were
htened by each probe. (c) The hybridization signals measured in the
expressed as percentages of association as reported for Fig. 2. The

nts to the nuclear matrix in the lytic versus the latent phase of EBV
atrix. (
BamH
A com

ts enlig
ls were
fragme
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14 MATTIA ET AL.
ybridization signals, corrected for the amounts of total
NA.
The histogram of Fig. 8c shows the increments in the

ercentages of matrix-associated fragments of induced
ersus control cells. It appears that in induced cells the
ssociation to the nuclear matrix of the 2.5-kb ori Lyt
ontaining fragment is increased about 65%. The binding

o the nuclear matrix sharply decreases for the neigh-
oring fragments, the difference between the two phases
eing about 25% for the fragments of 2002 and 594 bp,

ying next to the ori Lyt, and about 5 to 10% for the more
pstream and downstream DNA regions.

DISCUSSION

Several reports obtained in different systems suggest
specific association of the origins of replication with

he nuclear matrix (Dijkwel and Hamlin, 1995). It has
een hypothesized that these interactions play a pivotal

ole during development, selectively activating, at each
tep, a fraction of the potential origins of replication, and
uring cell differentiation promoting the expression of a
attern of selected genes.

Origins of replication, which share sequence motifs
ith MAR regions, have been found in yeast, viruses,
itochondria, chloroplasts, and mammalian cells (Phi-

an and Strätling, 1990; Aelen et al., 1983). Although
any studies have shown that nascent DNA starts at

efined sites attached to the nuclear matrix, a complete
nderstanding of the regulatory processes that control

he replication pattern within a given cell type or through
ifferent stages of development is still lacking. To gain

nsights on the functional role of oris–nuclear matrix
ssociations, we have used EBV as a model system, to
tudy these interactions with respect to different phases
f viral expression. We report here that both the ori P and

he ori Lyt function as S/MARs by anchoring the EBV
enome to the nuclear matrix, the first during the latent
ycle of infection and the second after induction of the

ytic cycle.
In order to study the interaction of the EBV origin of

eplication with the nuclear matrix in the two phases of
nfection we have used the combination of three different
gents known to be inducers of the EBV lytic cycle.
nder our experimental conditions, the expression of
BV early antigens was obtained in more than 60% of the
aji cell population, a percentage significantly higher

han those previously reported (Bauer et al., 1982; Di
enzo et al., 1994; Ooka et al., 1984).

From the analysis of the distribution of different re-
ions of the BamHI-digested EBV genome over the nu-
lear matrix and the soluble DNA components, we con-
lude that only the BamHI C and BamHI H fragments,
ontaining, respectively, the origins of replication ori P

nd ori Lyt, undergo a redistribution over the nuclear h
atrix and the soluble DNA components upon induction
f the EBV lytic cycle.

Although the Raji EBV genome contains two lytic ori-
ins of replication, only the left ori Lyt seems to be

nvolved in binding to the nuclear matrix. In fact, the ori
yt probe, which shares 76% homology with the right ori
yt, shows neither a 9.5-kb (Raji coordinates 149,116 to
58,711) nor a 2.1-kb (Raji coordinates 155,512 to 157,696)

ragment containing the right lytic origin of replication
fter restriction, respectively, with BamHI or SacI/PstI
nzymes. It is interesting to note that during latency,
lternative sites of replication in Raji cells were found in

he region upstream of ori P, near the right ori Lyt (Little
nd Schildkraut, 1995). These findings indirectly support
ur data suggesting a functional activity of the left ori Lyt
hen the lytic phase of infection is induced.
The distribution of BamHI-restricted fragments of the

BV genome has been thoroughly studied in latently
nfected Raji cells (Jankelevich et al., 1992). We confirm
hat in this phase of infection about 70% of the BamHI A
ragment associates with the nuclear matrix. However,
he fractions of the BamHI B and BamHI Z fragments that
artition with the nuclear matrix are higher than those

eported in the previous study. Our explanation for this
pparent discrepancy might reside in the length of the
robe used in the two studies. It is conceivable that large
coRI fragments are less easily retained on the matrix

han the probes used in our experiments, only a few
undred basepairs long.

The PvuII/PstI and the SacI/PstI digestions of Raji cell
NA has allowed us to establish that both EBV origins of

eplication, depending on the viral phase of infection,
ind to the nuclear matrix. In particular, the association
f ori Lyt sequences with the matrix is different when

esiding in the 6-kb or in the 2.3-kb fragment. In fact, it
as been previously observed by other authors that re-
ions of DNA larger than 3–4 kb bind to the nuclear
atrix with reduced specificity (Izaurralde et al., 1988).

he survey of the DNA restricted regions flanking the left
rigin of replication has shown that, upon induction of
BV lytic cycle, the fragments immediately next to the ori
yt are somewhat retained on the nuclear matrix, while

he degree of association of more distant fragments to
he matrix is much lower. It is conceivable that se-
uences neighboring the origin of replication would con-
ur in ori Lyt activity and are therefore found, in the lytic
ycle, in the insoluble DNA fraction. A similar gradation

n affinity for the nuclear matrix, observed for the frag-
ents neighboring the ori P in latently infected Raji cells,
as related to the presence of partial digestion products
ccurring during in situ restriction of the nuclei (Jankelev-

ch et al., 1992). More detailed mapping and gel retarda-
ion experiments will be necessary to characterize which
equences within the origins of replication show the

ighest affinity for the nuclear matrix and whether they
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15EBV ORIGINS OF REPLICATION AND THE NUCLEAR MATRIX
hare features common to endogenous MARs identified
n different cell systems (Boulikas, 1994).

The decrement of ori P and the parallel increment of
ri Lyt binding to the matrix at the onset of the lytic phase

ndicates that these origins of replication are not perma-
ently attached and that the association of EBV oris to

he karyoskeleton is strictly related to the type of viral
ycle.

The redistribution of EBV oris between the nuclear
atrix and the soluble DNA components is evident de-

pite the fact that 40% of the cells, still harboring the virus
n the latent phase of infection after treatment with the
nducers, cause an underestimation of the event.

Because nuclear matrix proteins vary quantitatively
nd qualitatively during differentiation (Stuurman et al.,
989), it is conceivable that specific proteins present in
he nuclear matrix of either untreated or induced Raji
ells modulate the interaction with EBV origins of repli-
ation. In this respect, the incomplete release of ori P

rom the matrix of induced Raji cells could also depend
n the kinetics of degradation or inactivation of such
pecific nuclear matrix binding protein(s). Examples of
ellular proteins, specifically expressed after treating a
urkitt lymphoma cell line with phorbol ester and that
ind EBV origin of replication ori P, have been reported

Zhang and Nonoyama, 1994). In addition, cellular pro-
eins have been identified which bind ori P at the same
ites recognized by EBNA1 (Sang-jin et al., 1991) or that
ind different sites in the downstream element of ori Lyt

Gruffat et al., 1995). At present, the function of the bind-
ng of these cellular proteins to the viral DNA is not
nown, nor if any of them belong to the nuclear matrix.

In conclusion, the results here reported represent, to
ur knowledge, the first example of dynamic interactions
etween the DNA and the nuclear matrix. It is suggested

hat the binding of specific nuclear matrix proteins with
he two EBV origins of replication might be instrumental
n the regulation of viral genes expression and contribute
o determine, in vivo, the type of infection that the virus
stablishes in the host cell.

MATERIALS AND METHODS

ell culture

Latently infected Raji cells were maintained at a den-
ity of 5 3 105 cells ml21 in RPMI 1640 medium supple-
ented with 5% fetal calf serum (FCS) (Sigma).
B95.8 cells were cultured in serum-free conditions at

.5 3 105 cells ml21 in RPMI 1640 with antibiotics and 2%
v/v) Biogro 1 concentrated supplement (Biological In-
ustries).

BV lytic cycle-inducing treatments

Raji cells were exposed to a combination of agents,

ach previously reported, which individually induce the w
ytic cycle in a considerable proportion of cells (Bauer et
l., 1982; Di Renzo et al., 1994; Ooka et al., 1984). There-

ore, in order to induce the EBV lytic cycle, Raji cells
rown at a density of 106 ml21 were diluted to 5 3 105

l21 in RPMI 1640 with 2.5% FCS. Phorbol-12, 13-dibu-
yrate (P(BU)2) (Sigma), sodium butyrate (Sigma), and
ecombinant TGF-b2 (Genzyme, sp. act. 5 3 107 units/

g) were added to the cell culture at a final concentra-
ion of 20 ng ml21, 2 mM, and 0.04 ng ml21, respectively.
he viability of the cells during the treatment, estimated
y trypan blue exclusion, was never below 80%.

The proportion of EA-positive cells in the cultures was
ssessed by direct immunofluorescence. Samples of
ells were harvested 48 h after additions, briefly centri-

uged, washed with PBS, fixed on slides in methanol:
cetone (2:1) for 10 min at 220°C, and treated for 1 h
ith the FITC-conjugated direct F6-Esther reagent, di-

uted 1:60 in PBS, 1% BSA (Klein et al., 1972).
Evaluation of the samples was performed by a Leitz

rthoplan immunofluorescence microscope and photo-
raphed using 400 ASA Kodak Ektacrome Elite film.

uclei isolation

Nuclei were isolated (Jankelevich et al., 1992) from
ntreated or induced Raji cells.

Briefly, 1.5 3 108 cells were washed once with PBS and
wice with 40 ml of buffer I (10 mM Tris–HCl, pH 7.4, 5 mM

gCl2, 0.25 M sucrose). After centrifugation the cell
ellet was resuspended in 40 ml of buffer I containing
.1% NP-40 and 1 mM PMSF. The nuclear suspension,
ept on ice for 10 min was layered onto a 40-ml sucrose
ushion (10 mM Tris–HCl, pH 7.4, 5 mM MgCl2, 0.32 M
ucrose) and centrifuged for 10 min at 700 g at 4°C.
uclei were resuspended in 20 ml of buffer I, containing
.1% NP-40 and 1 mM PMSF, kept on ice for 10 min, and
entrifuged at 450 g for 25 min at 4°C. Nuclei were
tored at a density of 5 3 107 ml21 in a mixture containing
0% (v/v) buffer I, 50% (v/v) glycerol, and stored at 220°C.

uclear matrix isolation by in situ restriction
ndonuclease digestion of nuclei

For each digestion, 2 3 107 nuclei isolated from Raji
ells treated or not with the agents that induce the EBV

ytic cycle were washed briefly in buffer I and resus-
ended in the appropriate restriction enzyme buffer. Di-
estion was carried out for 2 h at 37°C with 50 U of each

estriction enzyme/mg of nuclear DNA. Digested nuclei
ere then centrifuged at 450 g for 25 min. Nuclear
atrices were prepared from in situ-digested nuclei ac-

ording to the high-salt method, as previously described
Jankelevich et al., 1992). The soluble fractions obtained
rom in situ digestion and salt extraction of the nuclei
ere combined.
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nalysis of EBV DNA

In order to analyze matrix-associated DNA and soluble
NA fractions, each of them was subjected to depro-

eination in the presence of 1% SDS and 300 mg ml21

roteinase K for 12 h at 42°C. Following phenol extrac-
ions and ethanol precipitation, the DNA, resuspended in
he appropriate restriction enzyme buffer, was redi-
ested for 2 h at 37°C with the same endonuclease(s)
sed for the in situ digestion of the nuclei. After ethanol
recipitation, equal amounts of DNA from each fraction

4 mg) were subjected to electrophoresis on a 1% aga-
ose gel.

The separated DNA fragments were transferred onto a
ylon membrane (Hybond N, Amersham) and probed
ith PCR-generated EBV fragments labeled by random
riming with digoxigenin–dUTP (Boehringer Mannheim).

CR-generated EBV probes

Viral DNA was isolated from B95.8 cells essentially as
escribed (Hirt, 1967). Purified EBV DNA was digested
ith BamHI, ethanol precipitated, and resuspended at a

oncentration of 0.5 mg/ml in 10 mM Tris, pH 7.5, 1 mM
DTA. The choice of the PCR primers was based on the
omplete sequence of EBV B95.8 strain (Baer et al.,
984). Primers (20-mer) were selected by the use of a
omputerized program and synthesized on a automated
olid-phase synthesizer (ABI394, Applied Biosystem Inc),
y standard cyanoethylphosphoramidite chemistry (M-
edical, Fi, Italy). All oligomers were ethanol precipi-

ated, washed several times with 70% ethanol, and re-
issolved in sterile water at a concentration of 125 pmol
l21. PCR amplifications were performed in a total vol-

me of 50 ml containing 1 mg template DNA, 200 mM
NTP, 1 mM each primer, 3 mM MgCl2, and 0.125 U Taq
ermoprime Plus in 13 PCR buffer (Advanced Biotec-
ologies).

The genomic probes, all generated during 35 cycles
n a Perkin–Elmer GeneAmp 2400 PCR System, are
hown in Table 1. Amplification conditions for ori P and
ri Lyt probes were denaturation at 95°C for 30 s, an-
ealing at 51°C for 30 s, and elongation at 72°C for 1
in; for probes to BamHI regions A, B, and Z of the viral
NA thus were denaturation at 95°C for 30 s, annealing
t 60°C for 1 min, and elongation at 72°C for 2.5 min.

PCR amplification products were resolved on a 1%
ow-melting agarose gel and the corresponding bands
xcised and purified by the QUIAquick gel extraction kit

Quiagen). DNA probes were labeled by random priming
ith digoxigenin–dUTP (Boehringer) according to the
rotocol supplied with the kit. Hybridization of filters with

he labeled probes was carried out at 42°C according to
he protocol supplied with the DIG luminescent detection
it (Boehringer). Specific signals were quantified by den-
itometric scanning after exposing the filters to Kodak

-Omat AR films for times ranging from 1 to 24 h.
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