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Mitochondrial disorders are an important group of genetic conditions characterized by impaired oxidative
phosphorylation. Mitochondrial disorders come with an impressive variability of symptoms, organ involve-
ment, and clinical course, which considerably impact the quality of life and quite often shorten the lifespan
expectancy. Although the last 20 years have witnessed an exponential increase in understanding the genet-
ic and biochemical mechanisms leading to disease, this has not resulted in the development of effective
therapeutic approaches, amenable of improving clinical course and outcome of these conditions to any sig-
nificant extent. Therapeutic options for mitochondrial diseases still remain focused on supportive interven-
tions aimed at relieving complications. However, new therapeutic strategies have recently been emerging,
some of which have shown potential efficacy at the pre-clinical level. This review will present the state of
the art on experimental therapy for mitochondrial disorders.
Crown Copyright © 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Basic concepts of mitochondrial biology and medicine

Mitochondria are semi-autonomousdouble-membrane organelles,
the inner membrane being folded to form mitochondrial cristae,
where respiratory chain (RC) complexes reside.

The main role of mitochondria is to extract energy from nutrients
through respiration, and convert it into heat, or store it as ATP, the
energy currency of cells. This is ultimately carried out by the respira-
tory chain (RC), through a process termed oxidative phosphorylation
(OXPHOS). Respiration is performed by four multiheteromeric RC
complexes, CI–IV, that transfer the electrons stripped off from
nutrient-derived substrates as hydrogen atoms, to molecular
oxygen. Electrons are conveyed to the RC through redox shuttle
moieties, NADH + H+ for complex I, FADH2 for complex II. This
electron flow is coupled with the translocation of protons across
the inner mitochondrial membrane from the matrix to the
intermembrane space, operated by complexes I, III and IV,
generating an electrochemical gradient which is then exploited by
RC complex V (or ATP synthase) to carry out the condensation of
ADP and Pi into ATP [1].

Mitochondria have their ownDNA (mtDNA), amaternally inherited,
double-stranded circular molecule of 16.5 kb in mammals, encoding 13
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subunits of the RC complexes I, III, IV and V (complex II is composed of
four nucleus-encoded subunit with no contribution from mtDNA). In
addition, mtDNA contains 22 tRNAs, and 2 rRNA genes, which form
the RNA apparatus serving the in situ translation of the 13 mtDNA-
encoded respiratory chain subunits. MtDNA is present in hundreds to
thousands of copies in the different cell types in an individual. In normal
individuals, mtDNAs are all identical to each other, a condition termed
homoplasmy. However, pathogenic mtDNA mutations are frequently
co-existing in variable amountwithwild-typemtDNAmolecules, a con-
dition termed heteroplasmy. The rest of the mitochondrial proteome,
which is estimated to consist of approximately 1500 polypeptides, is
encoded by nuclear genes, translated in the cytosol into proteins,
which are eventually targeted to and imported into the organelles by
an active process.

Complex I (NADH-ubiquinone oxidoreductase) contains seven
mtDNA-encoded subunits (ND1–ND6 and ND4L) and at least 37
nucleus-encoded subunits of complex I; electrons are transferred
from NADH, the main redox shuttle of pyruvate dehydrogenase and
TCA cycle, onto a hydrophobic mobile electron carrier, ubiquinone
(coenzyme Q, CoQ). Complex II (succinate-ubiquinone oxidoreduc-
tase) is composed of only four subunits, all encoded by the nuclear
genome and transfers electrons from FADH2, mainly derived from
beta-oxidation of fatty acids, to CoQ. Complex III (ubiquinol-
ferricytochrome c oxidoreductase) has a single mtDNA-encoded
subunit, apocytochrome b, and 10 subunits encoded by the nuclear
genome. Complex III transfers electrons from CoQ to another
electron shuttle, cytochrome c, which in turn transfers them
to complex IV. Complex IV (cytochrome c oxidase, COX), which is com-
posed of three mtDNA-encoded and 11 nucleus-encodedsubunits,
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Summary of the experimental therapies for mitochondrial diseases.

Strategy Method

Generalist • Activation of mitochondrial biogenesis
• Modulation of autophagy
• Inhibition of apoptosis
• Scavenging of ROS

Pharmacology

• Endurance training
• Dietary manipulation
• By-passing RC block
• ZFNs or TALENs to shift heteroplasmy
• Overexpressing aaRSs to stabilize mu-
tated mt-tRNA

• Somatic nuclear transfer

AAV-mediated gene
therapy

Disease-tailored • Scavenging of toxic compounds
• Supplementation of nucleotides

Pharmacology

• Replacement of the missing gene AAV-mediated gene
therapy
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transfers electrons to molecular oxygen, with the formation of water.
Complex V (oligomycin-sensitive ATP synthase), which utilizes the en-
ergy potential of the electrochemical gradient to carry out ATP synthe-
sis, is composed of twomtDNA-encoded subunits (ATPase 6 and 8), and
at least 13 nuclear DNA-encoded subunits. These subunits are arranged
to form two distinct particles. The membrane-embedded F0 particle
constitutes a rotor operated by protons flowing through it. The rotation
of this structure is transmitted to the matrix-protruding F1 particle,
which catalyzes the biosynthesis of ATP [2].

Numerous specific assembly factors and chaperons are needed to
assemble the protein backbone, insert suitable prosthetic groups and
metal-containing reactive centers and form each holocomplex [3].

Other components of themitochondrial proteome are required for a
huge array of biological processes, including replication, transcription,
and translation of the mtDNA, formation and assembly of the
respiratory chain complexes, fission–fusion of the mitochondrial
network, signaling and execution pathways (e.g. ROS production and
apoptosis), scavenging of toxic compounds, and many other metabolic
processes, as diverse as fatty acid oxidation, biosynthesis of pyrimidines,
heme, and Fe–S clusters, etc.

From a genetic standpoint, primary mitochondrial diseases can be
classified into twomajor categories, dependingonwhich genome,mito-
chondrial or nuclear, carries the responsible mutations. MtDNA
mutations include point mutations, either homo- or heteroplasmic,
and (invariably heteroplasmic) large-scale rearrangements. Hete-
roplasmic point mutations have been found in all mitochondrial
genes, and lead to different clinical phenotypes, including some
canonical syndromes such as mitochondrial encephalomyopathy with
lactic acidosis and stroke-like episodes (MELAS) [4], myoclonic epilepsy
with ragged red fibers (MERRF) [5], neurogenic weakness, ataxia and
retinitis pigmentosa (NARP) [6], and Leigh syndrome (LS). The main
disease entity associated with homoplasmic mtDNA mutations is
Leber's hereditary optic neuropathy (LHON) [7]. Rearrangements
(single deletions or duplications) ofmtDNA are responsible for sporadic
progressive external ophthalmoplegia (PEO) [8], Kearns–Sayre
syndrome (KSS) [8], and Pearson's syndrome [9].

Nuclearmutations have been found in ahugenumber of genes directly
or indirectly related to the respiratory chain, encoding, for instance,
(i) proteins involved in mtDNA maintenance and/or replication machin-
ery; (ii) structural subunits of the respiratory chain complexes; (iii) as-
sembly factors of the respiratory complexes; (iv) components of the
translation apparatus; and (v) proteins of the execution pathways, such
as fission/fusion and apoptosis (see [10] for an exhaustive list).

Mitochondrial diseases are hallmarked by huge clinical, biochem-
ical and genetic heterogeneity, which hampers the collection of
homogeneous cohorts of patients to establish the efficacy of a
treatment. For instance, clinical outcomes in primary coenzyme
Qdeficiency span from encephalomyopathy, multisystem disease,
cerebellar ataxia, isolated myopathy and nephrotic syndrome [11].
For unknown reasons only 20% of the patients respond to CoQ10,
the only available therapy [11]. Studies in cellular models suggest
that the slow pharmacokinetics of CoQ10 can explain the different
responses observed in humans, but more studies are needed to
clarify this issue. Similarly, riboflavin is effective in some cases of
mitochondrial disease due to mutations in genes encoding FMN- or
FAD-dependent proteins such as NDUFV1 (the FMN binding subunit
of complex I), AIFM1, ACAD9 [12,13], and SDHA (the FAD binding
subunit of complex II). However, not all patients respond to ribofla-
vin supplementation [14].

1.2. Experimental therapeutic strategies

Remarkable progress has been made in recent years on under-
standing both the fundamental pathogenic processes underlying
mitochondrial disease, and the mechanisms of mitochondrial
biogenesis and signaling. Based on this knowledge, sensible
therapeutic strategies have recently been proposed to combat
mitochondrial disorders, for which experimental evidence is
accumulating in cellular and animal models. These can be broadly
divided in “generalist” strategies, which could in principle be applied
to a wide spectrum of different disease conditions, and “disease-tai-
lored” strategies, applicable to a single disease (Table 1). The first
group includes: (i) regulation/activation of mitochondrial biogene-
sis; (ii) regulation/activation of mitochondrial autophagy; (iii)
inhibition of mitochondrial apoptosis; (iv) scavenging of toxic
compounds; (v) bypass of electron transfer chain defects; and (vi)
nuclear transfer. The second group includes (i) scavenging of specif-
ic toxic compounds in specific diseases, (ii) supplementation of
nucleotides, and (iii) gene- and cell-replacement therapies. Each of
these strategies can be pursued by different approaches, such as
pharmacological treatments, gene transfer to express the missing
or a therapeutic protein, stem-cell/organ transplantation. This
review will focus on emerging experimental (i.e. pre-clinical)
therapies for mitochondrial disease. Ongoing clinical trials have
recently been reviewed elsewhere [15].
2. Pharmacological and metabolic interventions

2.1. Increasing mitochondrial biogenesis

Mitochondrial diseases are hallmarked by bioenergetics defects,
ultimately leading to decreased ATP synthesis. Thus, therapeutic
interventions aimed at increasing the ATP levels available to cells may
be beneficial. Importantly, mitochondrial disease become manifest
when the residual activity of the defective gene product, either
mitochondrial or nuclear encoded, falls below a critical threshold,
suggesting that even partial restoration of the activity may be sufficient
to rescue or at least ameliorate the phenotype. The idea that
mitochondrial biogenesis is critical to determine the phenotypic
outcome of disease has been boosted by the recent observation that
increased mitochondrial content protects non-manifesting carriers of
the LHONmutations. This can partly explain the incomplete penetrance
of the disease and opens the possibility to stimulate mitochondrial
biogenesis as a therapeutic strategy for LHON [16].

Increased mitochondrial biogenesis is a physiological response to
stress conditions (e.g.: cold, exercise, nutritional status), which is
activated to meet the energetic requirements of tissues [17].

The pathways controlling mitochondrial biogenesis (Fig. 1) have
mainly been investigated in skeletal muscle and brown adipose tis-
sue, and shown to rely, in most of the cases, on the peroxisome
proliferator-activated receptor gamma (PPARγ) coactivators 1α
and β (the PGC family). PGC proteins interact with and activate
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Fig. 1. PGC1α-dependent mitochondriogenic pathway and its pharmacological modulation.
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several transcription factors, including the Nuclear Respiratory
Factors (NRF1 and 2), and the Peroxisomal Proliferator Activator
receptors (PPAR α, β, and γ) among others. NRFs and PPARs in turn
increase the transcription of genes related to oxidative phosphoryla-
tion (OXPHOS) and fatty acid oxidation (FAO) pathways, respective-
ly. PGC-1α is the best characterized PGC protein. Its activity is
inhibited by acetylation, which in turn is controlled by the acetylase
GCN5 and deacetylase SIRT1, and is increased by phosphorylation,
which depends on the activities of several kinases, including p38
MAPK, glycogen synthase kinase 3b (GSK3b) and AMP-dependent
kinase (AMPK) [18,19]. Importantly, as AMPK and SIRT1 are
druggable enzymes, they have been exploited in several pre-
clinical experiments to activate PGC-1α and induce mitochondrial
biogenesis.

The idea that increasing the amount and/or function of mitochon-
dria could be beneficial in mitochondrial disease, was tested by
treating fibroblasts from patients with different mitochondrial
diseases with bezafibrate [19], a pan-PPAR agonist widely used to
treat metabolic syndrome and diabetes. This treatment led to an
improvement in the defective activities of the respiratory chain
complexes, dependent on the induction of PGC-1α activity.
These findings were subsequently reinforced by in vivo observations
reported by Wenz et al. [20], who used both a muscle-specificPGC-
1α transgenic mouse and bezafibrate to improve the motor
performance of a muscle-specific knockout mouse for Cox10, a
farnesyltransferase involved in the biosynthesis of COX-specific
heme a. Notably, this effect was not due to restoration of COX activity
in isolated mitochondria but to increased mitochondrial content,
which determined an overall increase in ATP availability in the
muscle fibers. It is unclear why the stimulation of mitochondrial
biogenesis caused by genetic or pharmacological induction of PGC-
1α seems more effective than that spontaneously occurring in
pathological conditions such as for instance, ragged-red fibers. One
hypothesis is that while the mitochondriogenic pathway is activated
only in highly mutated, bioenergetically spent mitochondria
clustering in ragged red fibers, the mitochondrial biogenetic
activation through pharmacological modulation of PGC-1α is
generalized and involves also OXPHOS proficient mitochondria,
which can then exert effective functional complementation along
the entire muscle fiber [20]. A second beneficial effect of PGC-1α ac-
tivation is the switch towards oxidative fiber types, which increases
the energetic efficiency of the tissue [21].

Beneficial effects of bezafibrate were also reported in cybrids
harboring pathological tRNA mutations [22] and in the nervous
tissue of a brain-specificCox10 knockout mouse [23]. However,
these results failed to be confirmed in subsequent studies, including
bezafibrate treatment of three mouse models of COX deficiency
[24–26].

The reason(s) of these discrepant results are unclear. PGC-1α
seems to act predominantly upstream of the PPAR receptors, i.e. as
a co-activator of the PPAR-dependent pathways, rather than being
induced by PPARs, although work in a reporter-gene system in
cultured cells has shown that overexpressed PPARs can indeed bind
to a PPAR-responsive element in the promoter of PGC-1α gene, and
increase the reporter gene transcription [27]. However, these results
are based on highly engineered recombinant systems in cells, and
have never been confirmed in animal models [28–30].

An alternative pathway to induce PGC-1α dependent mito-
chondriogenesis is centered on the activation of the AMP-dependent ki-
nase (AMPK). By using the AMPK agonist AICAR Viscomi et al. obtained
robust induction of OXPHOS-related gene transcription and increase of
respiratory chain complex activities in three models of COX deficiency, a
Surf1 constitutive knockout mouse (Surf1−/−), a Sco2 knockout/knockin
(Sco2KOKI) mouse and a muscle-specific Cox15(ACTA-Cox15−/−) mouse
[24]. The increase in the respiratory chain activities resulted in striking
improvement of motor endurance in the Sco2KOKI, but not in ACTA-
Cox15−/−mice. This difference is likely related to the more severe clinical
phenotype of the ACTA-Cox15−/−mouse model, which could not be
corrected in spite of a clear, albeit partial, rescue of COX activity. In keep-
ing with this, we observed a partial but transient increase of the motor
performance in muscle-specific KO mice when the treatment with
AICAR was started early during the disease course, i.e. at 4 weeks of age.
Notably, ACTA-Cox15−/−mice overexpressing PGC-1α (PGC-1α−/−) also
showed improved motor performance compared to naive ACTA-
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Cox15−/−littermates, but this effectwas transient and, at 6months of age,
both ACTA-Cox15−/−and ACTA-Cox15−/−–PGC-1α−/−mice were able to
run only for a few minutes on a treadmill, suggesting that PGC-1α de-
layed, but did not arrest, the disease progression (Bottani et al., unpub-
lished). Interestingly, Saada and colleagues [31] found that AICAR was
the most effective compound in inducing mitochondrial biogenesis in
complex I deficient cells, whereas bezafibrate gave erratic results, as al-
ready reported by Bastin et al. [19] and also observed by us in either mu-
tant cells (Bottani et al., unpublished) or mouse models [24]. A single
report showed that bezafibrate can rescue the COX-defect of SCO2mutant
fibroblasts [32]. However, analysis of OxPhos activities and Seahorse oxy-
gen consumption carried out in our lab failed to showany beneficial effect
of bezafibrate on a fibroblast cell line from a SCO2mutant patient and in
Sco2KOKI MEFs (Bottani et al., unpublished). Finally, Bastin et al. [33] re-
ported an increase of OXPHOS markers in bezafibrate-treated CPT2-
mutant patients, but no evidence of efficacy in mitochondrial disease pa-
tients has so far been reported.

A further strategy to activate PGC-1α is to promote its deacetylation
via Sirtuin 1 (Sirt1). Sirt1 is a nuclear deacetylase that utilizes the NAD+

moiety to deacetylate acetyl-lysine residues of proteins. Notably, NAD+

exerts a substrate-dependent activation of Sirt1, which has homeostatic
significance, setting up mitochondrial biogenesis to NAD+ availability.
We recently showed that the NAD+ pool can be increased by diet
supplementation with its natural precursor nicotinamide riboside
(NR) or by genetic or pharmacological inhibition of poly(ADP) ribosyl-
polymerase 1 (Parp1), a NAD+ consumer and Sirt1 competitor. These
treatments lead to activation of Sirt1 (and other sirtuins) and boost
mitochondrial respiration by inducing OXPHOS genes via the PGC-1α
axis [34]. As a result, Sco2KOKI mice showed improved motor perfor-
mance up to normal values. NRwas also effective in delaying thedisease
progression of the deletor mouse, another model of mitochondrial
myopathy due to expression of a mutant variant of Twinkle, the
mtDNA helicase. Also in this model, NR induced robust mitochondrial
biogenesis, corrected abnormalities of mitochondrial ultrastructure,
and prevented the generation of multiple mtDNA rearrangements
[35]. Importantly, both studies showed that NR also induced the
mitochondrial unfolded protein response (UPRmt). UPRmt is a stress
response that activates transcription of mitochondrial chaperones to
preserve protein homeostasis within the organelle (see [36–38] for
extensive review). These observations suggest the involvement of
UPRmt in the protective effects provided by NR. In addition, we found
that PARP-inhibitors partially improved COX deficiency also in the
brain, raising the possibility for their use to target neurological defects.

Taken together these findings open the exciting perspective to use a
single therapeutic strategy to target a wide spectrum of genetically
heterogeneous mitochondrial diseases. However, more work is
warranted to refine and optimize the most effective strategies. For
instance, bezafibrate gave highly variable and poorly reproducible
results, and AICAR, although highly effective and widely used in
experimental work, has a short half-life after intravenous administra-
tion (1.4–2.2 h), poor bioavailability after oral ingestion (less than 5%)
and causes increased blood levels of lactic acid and uric acid, making it
a poor candidate for long-term use [39,40].

Conversely, the possibility to transfer into clinical practice the supple-
mentationwithNR (or otherNAD+precursors) and the administration of
PARP inhibitors (PARPi), seem to bemore realistic options. NR is a natural
compound, in fact part of vitamin B3, enriched inmaternal milk, and sev-
eral PARPis are currently under clinical trial as anticancer therapeutic
agents [41]. However, so far the effects of these compounds have been in-
vestigated in a limited number ofmousemodels ofmitochondrial disease.
Longer-term treatments, and studies in different disease models are
needed to confirm efficacy and prompt their use in clinical trials. In addi-
tion, the potential mutagenic effects of PARPis in non-cancer patients are
still to be adequately investigated, although a long-term study in mouse
models of diet-induced obesity, and data in patients treatedwithOlaparib
(AZD-2281) [42], both suggest limited genomic toxicity [43].
Resveratrol (RSV) is another compound reported to trigger
mitochondrial biogenesis in several animal models, including
Caenorhabditis elegans, Drosophila melanogaster and Mus musculus.
The mechanism by which RSV activates mitochondrial biogenesis is
still debated. The common idea that RSV operates via direct activa-
tion of Sirt1 has been recently challenged by showing that in fact
RSV inhibits phosphodiesterase IV [44]. The consequent raise in
cAMP levels triggers a Ca2+–calmodulin–kinase–kinase–β signaling
pathway, leading to the activation of AMPK. In addition, LopesCosta
and colleagues [45] have provided some evidence that RSV can cor-
rect complex I and IV defects in human fibroblasts via Sirt1- and
AMPK-independent mechanisms, which involve estrogen receptor
(ER) and estrogen-related receptor alpha (ERRα). These are nuclear
receptors co-activated by PGC-1α and β, which upregulate
mitochondriogenic pathways [46]. Wenz and colleagues [47] report-
ed that RSV and metformin, a biguanide largely used in diabetes
therapy, both stabilize mitochondrial respiratory chain
supercomplexes, without increasing mitochondrial protein content
in cells.

Finally, the stimulation of the retinoid X receptor-α (RXRα) by
retinoic acid has been shown to correct the OXPHOS defects in cybrid
cells containing different loads of the 3243ANG MELAS mutation,
possibly by increasing the RXRA–PGC-1α interaction [48]. Further
work is required to determine whether this also applies to other types
of mtDNA or nDNA mutations.

2.2. Endurance training

Endurance training has also been exploited to trigger mitochondrial
biogenesis, and shown to delay the effects of aging in mice [22,49]. In
addition to PGC-1α activation, endurance training seems to activate
PGC-1β, aswell as AMPK, p38γMAPK, and the hypoxia inducible factors
(HIFs) [50]. Notably, recent data showed that double PGC-1α and -1β
knockout mice had reduced respiration but normal mitochondrial
content andmorphology, normalmusclefibers composition andnormal
endurance performance [51]. This work challenges the central role of
PGC-1 proteins in regulating mitochondrial content but the decrease
of respiratory capacity indicates an effect of the system in setting
OxPhos proficiency. Irrespective of the molecular mechanism,
endurance exercise has been reported as beneficial and safe in patients
affected by mitochondrial myopathy [52–54], in muscle-specific Cox10
knockout mice [55], and in the mtDNA mutator mice, where it appears
to rescue progeroid aging [49]. Importantly, these beneficial effects
were not limited to skeletal muscle but also involved other organs,
including the brain.

2.3. Scavenging toxic compounds

Pharmacological interventions have been used to modify the
course of specific mitochondrial diseases characterized by metabolic
blocks in mitochondria, which lead to accumulation of toxic
substances. A first example is the use of N-acetylcysteine (NAC)
and metronidazole to dump high levels of hydrogen sulfide (H2S)
characteristic of ethylmalonic encephalopathy (EE) [56]. EE is a
devastating, multisystem disease of infancy due to mutations in
ETHE1, a gene encoding a mitochondrial sulfur dioxygenase (SDO)
involved in the disposal of H2S. H2S is produced by the catabolism
of sulfurated amino acids in tissues and by the anaerobic bacterial
flora in the large intestine, and in concentrations above nanomolar
is highly toxic, leading to profound inhibition of the terminal
segment of fatty acids beta oxidation and, more importantly, COX,
and direct damage to endothelial lining of small vessels [57].
Accumulation of H2S then causes a generalized microvasculopathy
and COX deficiency, with multiple organ damage, including brain,
skin (with petechial purpura and orthostatic acrocyanosis), skeletal
muscle and large intestine. The first step of H2S metabolism (Fig. 2)
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is catalyzed by sulfide:quinone oxido-reductase (SQOR) to form
thiosulfate (SSO3

2−) using sulfite (SO3
2−) as an acceptor for the sulfur

sulfane (HS−) moiety of H2S (H2S + SO3
2− + 2e− − N SSO3

2−).
Thiosulfate is the substrate of thiosulfate:sulfur transferase (TST)
[58], which uses reduced glutathione (GSH) to transfer its sulfane
sulphur to form glutathione persulfide (GSS−), whereas the rest
of the molecule generates sulfite, which is thus recycled
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antibiotic specifically active against H2S-producing anaerobic bacte-
ria and protozoa. Administration of NAC and metronidazole signifi-
cantly prolonged the lifespan and clinical conditions of an Ethe1−/−

mouse model, when administered singly or, more effectively, in combi-
nation [56]. The same compounds were also effective in a cohort of
EE patients, ameliorating some of the clinical hallmarks of the disease,
including chronic diarrhea, and diffuse microvasculopathy with
acrocyanosis. Some signs of CNS involvementwere also improved, lead-
ing to increased alertness and wakefulness, and decreased number and
duration of epileptic seizures [56].

Reactive oxygen species (ROS), generated as by-products of
mitochondrial respiration, play a double role, as theymay be potentially
harmful but are also important signaling molecules in a number of
pathways including adaptation to hypoxia, regulation of autophagy,
control of immunological responses, promotion of cell differentiation,
and set-up of longevity (Fig. 3) [59,60]. Within mitochondria, highly
reactive superoxide (O2

2−) is produced at several sites in the matrix
and intermembrane space, including the flavin moiety of complex I,
the ubiquinone-binding sites in complex III, glycerol 3-phosphate
dehydrogenase, the electron transferring flavoprotein:Q oxidoreduc-
tase (ETFQOR) of fatty acids and branched-chainamino acid oxidation,
and pyruvate and 2-oxoglutarate dehydrogenases [61]. O2

2−is rapidly
converted into the much less harmful hydrogen peroxide (H2O2) by
the mitochondrial manganese superoxide dismutase (SOD2) [60].
H2O2 can diffuse through both inner and outer mitochondrial
membranes and access the cytosol or can be converted to water by
mitochondrial glutathione peroxidases (GPX) or peroxiredoxins (PRX)
[60]. On the other hand, superoxide produced in the intermembrane
space can exit the mitochondria and be converted into hydrogen
peroxide in the cytosol by copper superoxide dismutase (SOD1).
Cytosolic H2O2 is believed to be the main form of ROS with signaling
function in the cell as it can oxidize protein thiol residues. Its levels
are tightly regulated by reduction to water, operated by cytosolic
GPXs and PRXs and peroxisomal catalase [60]. Increased ROS
production occurs as a consequence of respiratory chain dysfunction
due to, for instance, aging [62] or specific OXPHOS defects [63], and
may lead to damage of cellular structures, including proteins, lipids
and nucleic acids. These observations constitute the rational basis for
the use of antioxidants in the therapy of mitochondrial diseases. At
the same time, however, ROS can transduce signals in a number of
pathways [59]. Cocktails of antioxidant compounds, including lipoic
acid, vitamins C and E, and CoQ, have extensively been used in the
therapy of mitochondrial diseases for a long time, but no quantitative
studies have been carried out in animal models to validate their use.
Likewise, randomized double blind trials are still missing to support
their efficacy in patients [1,15]. In addition, although a transgenic
mouse overexpressing a mitochondrially-targeted catalase shows
increased lifespan and resistance to oxidative damage [64], the efficacy
of antioxidants in cellular and/or animal models of OXPHOS defects is
still controversial. However, two recent papers underline the
importance of ROS overproduction in the pathogenesis of cI-related
Leigh syndrome [65] and a potential therapeutic target in cI-related
disorders in cell models [66].

2.4. Supplementation of nucleotides

Supplementation of deoxyribonucleotides can effectively correct
mtDNA depletion in patients' fibroblasts carryingmutations in enzymes
involved in the control of the mitochondrial nucleotide and
deoxynucleotide pools (e.g. deoxy-guanosine kinase, dGK, and thymi-
dine phosphorylase, TP, encoded by the DGUOK and TYMP genes
respectively).

Likewise, mtDNA depletion has also been corrected in vivo, by
treating a Tymp knockout mouse model with either dCtd or
tetrahydrouridine, an inhibitor of nucleotide catabolism [67–70].
Mutations in human TYMP1, encoding TP, are responsible of
mitochondrial neuro-gastro-intestinal encephalomyopathy, MNGIE
[71]. MNGIE is a severe, autosomal recessive mitochondrial disorder of
early adulthood, characterized by painful gastrointestinal dysmotility
causing chronic diarrhea and leading to cachexia, progressive external
ophthalmoplegia with mitochondrial myopathy, and severe sensory-
motor peripheral neuropathy. Patients usually die of complications
due to their critical nutritional status, with an average age at death
of 37 years [72]. TP is a cytosolic enzyme catalyzing the first step
of thymidine (dThd) and deoxyuridine (dUrd) catabolism. As a
consequence of TP dysfunction, MNGIE patients accumulate dThd and
dUrd systemically, which ultimately results in imbalances of the
mitochondrial pool of deoxyribonucleoside triphosphates (dNTPs)
[73]. In fact, increased deoxythymidine triphosphate (dTTP) and
decreased deoxycytidine triphosphate (dCTP) have been measured
in vitro and in vivo. This dNTP imbalance ismutagenic formitochondrial
DNA (mtDNA), resulting in depletion, multiple deletions, and point
mutations accumulating in post-mitotic organs, notably intestinal
smooth muscle, skeletal muscle and the nervous system, and cause
progressive mitochondrial deficiency and organ failure. Although the
mouse model has hardly any clinical sign, it is clearly characterized by
markedly abnormal dNTP pools, similar to MNGIE patients.

Promising results were also obtained in a Thymidine Kinase 2 (Tk2)
H126N knockin mouse reproducing a pathological mutation found in
patients. Tk2 encodes the gene for the mitochondrial thymidine kinase,
which phosphorylates thymidine and deoxycytidine pyrimidine
nucleosides to generate deoxythymidine monophosphate (dTMP) and
deoxycytidine monophosphate (dCMP). Absence of Tk2 determines an
imbalance of dNTP pools leading to mtDNA instability and depletion.
The Tk2 H126N reproduces a human disease characterized by early-
onset fatal encephalomyopathy due to mtDNA depletion and multiple
RC defects. Treatment with 200 or 400 mg/kg/day leads to increased
dNTP concentrations and mtDNA content, rescuing the RC defects, and
significantly prolonging lifespan from 13 to 34 days.

2.5. Targeting autophagy

Autophagy (literally “self-eating”) is a physiological pathway aimed
at two fundamental and related goals: (i) to recycle energy by degrada-
tion of cellular components, and (ii) to warrant quality control of cellu-
lar organelles [74–76]. These two goals are achieved through complex
processes tailored to selectively eliminate single macromolecules
or small organellar portions (microautophagy), or entire organelles
that are damaged or supernumerary (macroautophagy), including
peroxisomes (pexophagy), endoplasmic reticulum (ER-phagy) and
mitochondria (mitophagy). Inmacroautophagy, the specific target is ul-
timately engulfed within a double-membrane vacuole called the
autophagosome, that eventually gets fused with lysosomes to form
the autolysosome, where complete digestion of the organelle compo-
nents takes place [77]. The specificity of the cargo is determined by spe-
cific receptors on the surface of the organelles, targeting them to the
pre-autophagosome [78].

Autophagy is regulated by severalmetabolic sensors, such as growth
factors, amino acids and glucose concentrations, and energy status.
Anabolic conditions, e.g. high glucose and amino acid availability,
activate transduction cascades converging on two main pathways
both causing inhibition of autophagy (Fig. 4). In the first pathway, the
mammalian target of rapamycin complex 1 (mTORC1) is activated and
inhibits autophagy. In the second pathway, which acts independently
from mTORC1, cyclic AMP (cAMP) levels are increased, leading to
increased inositol-1,4,5-trisphosphate (Ins(1,4,5)P3). This causes the
release of Ca2+ from the ER and inhibition of autophagy via Ca2+-
activated calpains. Conversely, catabolic conditions activate pathways
such as theAMPK cascade, and the basic helix–loop–helix leucine zipper
transcription factor EB (TFEB), which trigger autophagy. In conditions of
low energy (e.g. starvation) TFEB is phosphorylated and consequently
migrates to the nucleus, where it promotes autophagic and lysosome
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biogenetic programs. AMPK also inhibitsmTORC1 and activates UNC51-
like kinase 1 (ULK1) complex, a serine/threonine protein kinase, which
stimulates the autophagic cascade.

Chronic treatment with the mTOR inhibitor rapamycin, which
activates autophagy, significantly delayed both disease progression
and fatal outcome of a Ndufs4−/−mouse which lacks the 18 kDa
Ndufs4 subunit of complex I. Mutations of NDUFS4 are associated with
autosomal recessive, severe infantile Leigh disease in humans and
with rapidly progressive, early fatal neurological failure in the
Ndufs4−/−mouse model [79]. Although the underlying mechanism re-
mains partly unexplained, the effect of rapamycin seems to be exqui-
sitely metabolic, as no increase in complex I activity or amount was
detected in treated vs. untreated mice. In fact, metabolomic analysis of
Ndufs4−/−brains was hallmarked by accumulation of pyruvate, lactate,
and glycolytic intermediates, as well as reduced free amino acids, free
fatty acids, nucleotides, and products of nucleotide catabolism, in-
creased oxidative stressmarkers, and reduced levels of GABA and dopa-
mine. Rapamycin treatment corrected several of these abnormal
metabolic biomarkers. However, more investigation is warranted to
clarify the underlying mechanism, and to extend it to other models of
mitochondrial disease.

2.6. Dietary manipulations

Several approaches based ondietarymeasures havebeen attempted,
with controversial results. Ketogenic diet (KD), i.e. a high-fat, low-
carbohydrate diet, has been proposed to stimulate mitochondrial beta-
oxidation, and provide ketones, which constitute an alternative energy
source for the brain, heart and skeletal muscle. Ketone bodies are me-
tabolized to acetyl-CoA, which enters the Krebs cycle and is oxidized
to feed the RC and ultimately generate ATP via OXPHOS. This pathway
partially bypasses complex I via increased synthesis of succinate,
which donates electrons to the respiratory chain via complex II.
Increased ketone bodies have also been associated with increased
expression of OXPHOS genes, possibly via a starvation-like response
[80]. Starvation is a stressing condition to the cell, which results in
activation of many transcription factors and cofactors (including
SIRT1, AMPK, and PGC-1α) that ultimately increase mitochondrial
biogenesis [80]. KD reduced the mutation load of a heteroplasmic
mtDNA deletion in a cybrid cell line from a Kearns–Sayre syndrome pa-
tient [81], was shown to increase the expression levels of uncoupling
proteins and mitochondrial biogenesis in the hippocampus of mice
and rats [82,83], and increased mitochondrial GSH levels [84] in rat
brain. These phenomena could contribute to explain the anticonvulsant
effects of KD. In a preclinical trial on the deletor mouse, KD slowed the
progression of mitochondrial myopathy [85]. However, other reports
showed that KD can have the opposite effect, and worsens the mito-
chondrial defect in vivo, for instance in the Mterf2−/−[86], or the
Mpv17–/−mouse models [87].

Similar to KD, a high fat diet (HFD) was shown to have a protective
effect on fibroblasts with complex I deficiency and be effective in
delaying the neurological symptoms of the Harlequin mouse, a model
of partial complex I defect associated with a homozygous mutation of
AIFM1, encoding the mitochondrial apoptosis inducing factor [88].

Similar results could in principle be achieved using other
compounds that release succinate in mitochondria. An example is
triheptaoin, an anaplerotic compound inducing a rapid increase of
plasmatic C4- and C5-ketone bodies, the latter being a precursor of
propionyl-CoA, which is then converted into succinyl-CoA. Treatment
with triheptaoin has been reported to dramatically improve
cardiomyopathy in patients with VLCAD deficiency and myopathic
symptoms in CPT2 deficiency patients [89,90].

2.7. Targeting the PTP

The permeability transition pore is a transient channel deemed to be
formed by ATPase dimers [91], which opens upon stress stimuli, such as
excessive mitochondrial Ca2+ uptake, increased ROS, decreased
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mitochondrial membrane potential, and low ATP levels. The opening of
the PTP leads to complete dissipation of themitochondrialmembranepo-
tential, osmotic swelling of the organelle and ultimately mitochondrial
disruption; as a consequence of the release of cytochrome c and other ap-
optotic triggers, the cell can eventually die. Substantial cell loss or damage
may lead to organ failure and disease. Thus, targeting the PTP is a poten-
tially effective strategy to prolong cell survival, slow disease progression,
and diminish symptoms severity [92]. Cyclosporine A (CsA) has for long
been known to inhibit the PTP through a cyclophilin-D dependent
mechanism. CsA has recently been used in patients with Bethlem/Ullrich
congenital muscular dystrophy, which are allelic conditions due tomuta-
tions in the gene encoding collagen VI. Mitochondrial dysfunction and
proneness to apoptosis in skeletal muscle have been documented in
both syndromes, and CsA treatment for one month corrected these phe-
nomena in a cohort of five patients [93]. However, while apoptosis plays
well-established roles in several pathologies, its contribution to the path-
ogenesis of primary mitochondrial diseases is not univocally established.

3. Molecular approaches to treat mitochondrial diseases

3.1. Targeted re-expression of the mutated gene

Correction of a mutation by expressing thewild-type gene in critical
organs has for long been envisaged as the definitive cure for genetic
diseases. Although we are still far from having achieved a general
strategy for gene replacement in the whole body, large-size organs
(e.g. skeletal muscle), or impermeable organs (e.g. brain), several
successes have been reported in the last years for a number of genetic
diseases, in both preclinical models and patients. In fact, while
expression of therapeutic genes through the whole body is still
unachievable, and quantitative targeting of skeletal muscle is only
feasible in small rodents but not in humans, smaller organs can be
targeted by exploiting currently available technologies. In particular
the introduction of adeno-associated viral (AAVs) vectors has given
new stamina to gene therapy. AAVs belong to the parvoviridae family,
which are not associated with any disease in humans or animals, and
remain episomic in the cells for prolonged time, thus reducing the risk
of insertional mutagenesis [94]. In addition, several serotypes with õ-
different cellular specificity have been selected, allowing specific
targeting of several organs and tissues [95] (Fig. 5).
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Fig. 5. AAV-based gene therapies in mous
In the context of mitochondrial disease models, AAV2 was first
administered by local injections to correct the myopathy associated
with Ant1−/−mice [96]. More recently, we reported that a recombinant
construct expressing human Ethe1wt could be targeted to the liver using
a hepatotropic AAV2/8 serotype. When titers N 1012 viral genomes/kg
were injected in three-week old Ethe1−/−mice, Ethe1-associated SDO
activity was completely recovered in liver[57], leading to efficient
clearance of H2S from the bloodstream. This treatment was associated
with significant rescue of the profound COX deficiency due to
the inhibitory effect of H2S, correction of the other biomarkers of the
disease (e.g. high plasma and urine levels of ethylmalonate, lactate
and thiosulfate), remarkable clinical improvement and marked
prolongation of the lifespan, from a few weeks in untreated animals to
over 8 months in AAV-treated littermates [97]. Notably, preliminary
data in the same mouse model suggests that administration of the
AAV2/8 construct in two doses at P1 and P21 is even more effective,
leading to further prolongation of the lifespan to over 1.5 years (Di
Meo et al., unpublished).

The same liver-specific AAV2/8 vector has been exploited to treat a
mouse model for MNGIE [98]. Although the Tymp−/−mouse displays
hardly any clinical sign, it is characterized by markedly abnormal
dNTP pools, similar to MNGIE patients. Intra-venous injection of
AAV2/8 particles expressing human wt TYMP (1012–1013 viral DNA/
kg) normalized dCTP and dTTP levels in plasma and tissues for up to
8 months of age. This encouraging proof-of-principle result supports
the transferability of the AAV2/8 treatment to cure MNGIE patients.
The current standard treatment for MNGIE relies on bone marrow
transplantation [99,100], which is however burdened by a N50% post-
graft mortality due to poor clinical conditions of the recipient patients.
Anon-invasive and safe procedure like systemic administration of
suitably engineered AAV vectors is clearly more acceptable and can
lead to substantial improvement of the otherwise ominous prognosis
of this extremely invalidating disorder.

Another potential application of AAV2/8-mediated gene therapy is for
correcting liver-specific mitochondrial dysfunction. To demonstrate this,
we have used theMpv17−/−mouse.Mpv17 is a small protein of unknown
function embedded in the inner mitochondrial membrane, which is
mutated in patients affected by hepato-cerebral forms of severe mtDNA
depletion syndrome [101], including Navajo neuro-hepatopathy [102].
Similar to the humandisease, themousemodel shows profound decrease
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ofmtDNAcopynumber in the liver, but, in contrast to humans, hardly any
clinical phenotype of hepatopathy is detected in standard condi-
tions [103]. However, liver steatosis evolving into cirrhosis associated
with fatal liver failure is produced in Mpv17−/−exposed to KD [87]. We
showed that an AAV2/8 viral vector expressing humanMPV17wt fully res-
cued the mtDNA depletion and prevented the KD-induced cirrhosis in
Mpv17−/−mice, when the treatment was initiated before starting the
KD regime, whereas the same treatment significantly delayed but not
arrested disease progression when initiated after starting KD [87].

Notably, the recent introduction of new serotypes efficiently and
selectively targeting the liver, in particular AAV5, opens the possibility
to repeat the injection well after the first administration without incur-
ring in immunological neutralization [104,105].

Finally, an AAV2 vector [106] has also been used to re-express AIF in
the eye of the Harlequin mouse, leading to correction of complex I
deficiency and long-lasting protection of retinal ganglion cells and
optic nerve from degeneration [107].

Taken together, these preclinical results demonstrate the great
potential of AAV-mediated gene therapy to combat specific mitochon-
drial diseases. Nevertheless, a number of issues will need to be
addressed in the coming years, including the development of suitable
strategies to effectively target extra-hepatic, critical organs such as
skeletal muscle, heart and brain. Although some success has been
obtained in the treatment of non-mitochondrial myopathies and
dystrophies in preclinical models [108–110], their efficacy in humans
is still under investigation.

A strategy repeatedly proposed to correcting mtDNA mutations in
protein-encoding genes is based on allotopic expression. In this
approach, the recoded wild type gene, transfected to the nucleus,
expresses a recombinant protein containing a mitochondrial targeting
sequence (MTS), to address it tomitochondria. A 3′-UTR signal is usually
added, that in yeast serves to target transcripts of mitochondrial
proteins to the organelle surface. These transcripts are then translated
by a local pool of ribosomes into proteins, which can promptly be
imported into the organelle. This approach has been attempted in
fibroblasts carrying mutations in ND1, ND4 and ATP6 genes [111–113]
and in a rat model of LHON [114]. Taken together, the results from
these experiments are very controversial, as conflicting data have
been obtained by different groups on the ability of recoded,
mitochondrially targeted mtDNA gene products to be effectively
imported and correctly insertedwithin the respiratory chain complexes
[115]. In particular, allotopically expressed ND6 gene, recoded
according to the universal genetic code, failed to be imported into
mitochondria, remaining stuck onto the OMM. The correction of the
complex I defect reported in these experiment was later deemed to be
a spurious result due to selection of spontaneous revertants in the cell
culture [115]. Nevertheless, two open-label clinical trials based on
AAV-mediated allotopic expression of mtDNA genes for LHON are
currently recruiting patients (https://clinicaltrial.gov). Likewise, a
therapeutic strategy for LHON, based on the use of an AAV2 construct
has been proposed to express the wild type ND4 gene in LHON mutant
cybrids and in a transgenic rat model of LHON. The AAV2 capsid protein
VP2 has been engineered by adding an MTS in order to promote the
internalization of the viral particle into mitochondria [116]. Again,
convincing demonstration that the full viral particle is in fact
translocated within mitochondria and its ability to properly express
the therapeutic gene is, in our opinion, lacking; these controversial
results have not been replicated by others.

The multiploidy organization of mtDNA, its confinement within an
almost impermeable double-membrane barrier, and the virtual absence
of homologous recombination, are formidable hurdles against the
direct, controlled manipulation of this genome for therapeutic
intervention. Nevertheless, several approaches have been proposed to
this aim, and some are giving promising results. A first strategy was
based on the use of protein nucleic acids (PNAs) as an “antigenomic”
device [117,118]. PNAs are synthetic DNA-like molecules in which the
pyrimidine and purine residues are linked to an aminoethyl
(pseudopeptide) backbone. Since these molecules are not charged at
physiological pH, a PNA binds its complementary DNA with greater
affinity than natural nucleic acids, so that PNA–DNA hybrids are more
stable than DNA–DNA hybrids. PNAs complementary to either the
mtDNA stretch containing the 8344ANG MERRF mutation in mt-
tRNALys [5], or the breakpoint junction associated with the mtDNA
common deletion, were shown to be imported into mitochondria,
where they inhibited the replication of mutant but not wild type
mtDNA; however no such effect was demonstrated in cell lines [119].
In another approach, a synthetic N-terminal signal was used to
introduce oligonucleotides complementary to mtDNA into the
mitochondrial matrix. Oligonucleotides were annealed to complemen-
tary PNAs and the hybrid molecule was selectively imported into the
mitochondrial matrix, but its antigenomic effect was not demonstrated
[120].

Recently, an alternative approachhas beenused to target allotopically
expressed tRNAs and mRNAs to the mitochondria. This approach takes
advantage from the observation that RNase P, a ribonucleoprotein in-
volved in the processing of mitochondrial transcripts, is imported into
mitochondria through a specialized system (PNPase) that specifically
recognizes its RNA component (H1 RNA). By fusing the gene of interest
with a 20-ribonucleotide stem-loop sequence from the H1 RNA, some
evidence was provided in support of correction of mt-tRNA and COII
gene mutations in cell lines [121,122]. These findings deserve further in-
vestigation and independent confirmation.

3.2. Manipulating mtDNA heteroplasmy

As pathogenic mutations of mtDNA are often heteroplasmic, and
behave as “recessive-like” mutations, suitable therapeutic intervention
can be envisaged, aimed at eliminating or reducing the amount of
mutated DNA below the threshold at which the disease manifests.
This result has been achieved in cellular models by targeting to
mitochondria recombinant restriction endonucleases [123–125], zinc
finger-endonucleases [126] or TALENs [127]. Mitochondrially targeted
restriction enzymes have been used in a variety of systems to induce a
shift in heteroplasmy. For instance, the 8399TNG NARP mutations
forms a unique CCCGGG restriction site in mtDNA specific to the
restriction endonuclease SmaI (the wild type sequence is CCCGTG). A
mitochondrially targeted recombinant SmaI variant was in fact able to
substantially decrease the 8399TNG mutation load in heteroplasmic
mutant cybrids. This was followed by repopulation of cells with wild-
type mtDNA, restoration to normal of mitochondrial membrane
potential and increase of intracellular ATP levels [128,129]. The PstI
endonuclease, whose restriction site is present in human and mouse
but not rat mtDNA, was targeted to human mitochondria, where it
degraded mtDNA, and determined a shift towards the rat haplotype in
a hybrid cell line harboring both mouse and rat mtDNA [125].
Subsequent work has demonstrated the efficacy of this approach in
NZB/BalbC heteroplasmic mice in which AAV1,2 vectors expressing a
mitochondrially-targeted restriction endonuclease ApaLI were injected
locally into muscle or brain [130]; other vectors expressing the same
endonuclease were administered by i.v. infusion to target specific
organs, such as the liver (with adenovirus) or the heart (with AAV6)
[123,131]. In addition, an AAV9 vector expressing the mitochondria-
targeted ApaLI was also used to markedly shift mtDNA heteroplasmy
in skeletal and cardiac muscle of neonate mice harboring two mtDNA
haplotypes that differed for the presence or absence of a unique ApaLI
restriction site (GTGCAC) [124].

In practice, this approach can beused therapeutically only if a unique
restriction site is created by an mtDNA mutation, as in the case of the
8993TNG NARP, an exceptionally rare event. However, the recent
development of zinc-finger nuclease and TALEN technologies can offset
this limitation. Zinc finger nucleases (ZFNs) are chimeric enzymes in
which the modular Cys2His2 zinc finger DNA-binding domains present

https://clinicaltrial.gov
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in numerous transcription factors are conjugated to the C-
terminalcatalytic subunit of the type II restriction enzyme FokI [132,
133]. Each zinc finger domain recognizes three nucleotides, so that ap-
propriate arrangements of the zinc finger modules permit to target vir-
tually anyDNA sequence for nucleolytic cleavage. ZFN can be targeted to
mitochondria by adding a suitable MTS at the N-terminus. Likewise,
transcription activator-like effectors nucleases (TALEN) exploit DNA-
binding domains of the Xanthomonas bacteria composed of 33–35-
amino-acid repeats, each recognizing a single base pair, fused with the
FokI nuclease. Again, TALENs can be targeted to mitochondria via an
N-terminal MTS (MitoTALENs).

MitoTALENs [127] have been proven to eliminate heteroplasmic
mutant mtDNA in cybrid cells carrying either the
m.8483_13459del4977 common mtDNA deletion [134–136] or the
m.14459GNA LHON/Dystonia mutation in the MT-ND6 gene [137].
In both cases, a transient decrease in total mtDNA levels occurred,
followed by repopulation with wild type mtDNA up to normal
values.

Likewise,mitochondrially targeted ZFNs (mtZFNs)were successfully
used in heterolasmic cybrids to cleave mtDNA harboring either the
heteroplasmic m.8993TNG NARPmutation [6] or the common deletion.
As for TALENS and restriction enzymes, mtZFNs led to a reduction in
mutant mtDNA haplotype load, and subsequent repopulation of wild-
type mtDNA, associated with restoration of mitochondrial respiration
[126].
3.3. Stabilizing mutant mt-tRNA

More than 50% of the mtDNAmutations are localized in tRNA genes,
leading to a wide range of syndromes, such as MELAS or MERRF.
Aminoacyl-tRNA synthetases (aaRSs) are ubiquitously expressed,
essential enzymes performing the attachment of amino acids to their
cognate tRNA molecules as the first step of protein synthesis [138].
Several lines of evidence in yeast and human cell lines indicate that
overexpressing cognate mt-aaRS can attenuate the detrimental effects
of mt-tRNA point mutations [139–142]. For instance, overexpression
of mt-leucyl-tRNA synthetase (mt-LeuRS) corrects the respiratory
chain deficiency of transmitochondrial cybrids harboring the MELAS
mutation in the mt-tRNALeu(UUR) gene (MTTL1) [138,141]. Likewise,
overexpressing the cognate mt-valyl-tRNA synthetase (mt-ValRS)
restored, at least in part, steady-state levels of mutated mt-tRNAVal in
cybrid cell lines [142]. Finally, constitutive high levels of mt-isoleucyl-
tRNA synthetase (mt-IleRS) were shown to be associated with reduced
penetrance of thehomoplasmicm.4277TNCmt-tRNAIlemutation,which
causes hypertrophic cardiomyopathy [143]. In addition, experiments in
yeast and human cells have shown that the overexpression of either
human mt-LeuRS or mt-ValRS was able of rescuing the pathological
phenotype associated with mutations in both the cognate and the
non-cognate mt-tRNA. A region in the carboxy-terminal domain of
mt-LeuRS was found necessary and sufficient to determine this
phenomenon, probably via a chaperone-like stabilizing effect [144,145].

An alternative approach to the same issue was based on the
observation that in yeast some tRNAs were encoded in the nuclear
genome and imported into the mitochondria. So, tRNA mutations in
mtDNA may in principle be complemented by expressing a xenotopic
nDNA-encoded yeast mitochondrial tRNA from the mammalian
nucleus. This approach has been attempted for the treatment of
human cells harboring the tRNALys nucleotide 8344ANG mutation
using the yeast tRNALys nDNA gene [122,146,147]. This partially
restored the mitochondrial dysfunction associated with the
mitochondrial protein-synthesis defect. Similarly, a Leishmania-
mitochondrial RNA import complex has been exploited to introduce
the human cytosolic tRNALys into human cybrids harboring the tRNALys

8344ANG mtDNA mutation by a caveolin-1-dependent pathway,
obtaining a significant restoration of mitochondrial function [148].
These findings, however, are still controversial and need confirmation
from independent labs.

3.4. Targeting fission and fusion

Mitochondria are highly dynamic organelles whose shape and mass
are finely tuned by the activity of pro-fusion proteins, such asmitofusin
1 (MFN1), MFN2 and optic atrophy protein 1 (OPA1) and pro-fission
proteins, such as dynamin-related protein 1 (DRP1) and mitochondrial
fission 1 protein (FIS1) [78,149]. Alterations in the genes encoding these
complexmachineries lead to disease in humans. For instance,mutations
in OPA1 are associated with autosomal dominant optic atrophy [150]
and mutations in MFN2 cause Charcot–Marie–Tooth disease type 2A
[151]. In addition, disruption of Mfn1 and Mfn2 in the skeletal muscle
of the POLGD257A mutator mouse leads to striking worsening of the
phenotype, due to accumulation of mtDNA mutations, suggesting that
the physiological balance between fission and fusion protects the
integrity of mtDNA through continuous mixing of mtDNA pools [152].
Two additional observations are relevant in this context. First,
overexpression of Opa1, a multitasking GTPase involved in shaping
mitochondrial cristae and promoting fusion of the inner mitochondrial
membrane, has been shown to increase respiratory efficiency by
stabilizing the respiratory chain supercomplexes [153]. Second, some
compounds affecting fission and fusion have been identified, such as
the Drp1 inhibitor MDIVI-1 andM1-hydrazone that probably promotes
fusion by acting on Mfn or Opa1. However, the therapeutic potential of
these compounds for mitochondrial diseases has still to be proved.

3.5. Bypassing the block of the respiratory chain

An emerging concept in mitochondrial medicine is the possibility to
by-pass the block of OXPHOS due to mutations affecting the
RCcomplexes by using the “alternative” enzymes NADH dehydroge-
nase/CoQ reductase (Ndi1) and CoQ/O2 alternative oxidase (AOX).

These are single-peptide enzymes, located in the mitochondrial
inner membrane, which transfer electrons to (Ndi1) and from (AOX)
CoQ, without pumping protons across the membrane. Ndi1 substitutes
complex I in yeast mitochondria. AOX is an alternative electron
transport system present in lower eukaryotes, plants and several
invertebrates that by-passes the complex III + IV segment of the
respiratory chain. Expression of these proteins is well tolerated in
mammalian cells [154], flies and mice [155] and has successfully been
exploited to by-pass complex I or complex III/IV defects in human
cells [156,157] and Drosophila models [158–160]. The therapeutic
mechanism is based on the capacity of these enzymes to restore the
electron flow through the quinone pool, thus preventing accumulation
of reduced intermediates and oxidative damage [161]. However, this
is not accompanied by restoration of proton translocation across the
inner mitochondrial membrane, and does not directly increase
ATPproduction. Nevertheless, the restoration of the electron flow can
reactivate the unaffected RC complexes, thus indirectly promoting the
rebuilding of the proton gradient and the reactivation of OXPHOS.
AOX-expressing mice have recently been created and shown to be
viable and fertile [155], thus opening the possibility to test whether
this approach is amenable in a mammalian organism, using suitable
mouse models of complex III or IV deficiency.

3.6. Somatic nuclear transfer

Given the difficulty of manipulatingmtDNA and the uncertainties of
genetic counseling for mtDNA mutations, prenatal or pre-implantation
genetic diagnosis is nowadays the best option available to women
carrying pathogenic mtDNA mutations. However, these techniques
can only be applied to subjects with low levels of mtDNA mutations in
oocytes and are technically challenging. Recent technical improvements
in non-human primates [162] and non-viable human embryos [163,
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164] have paved the way to replace the mutatedmaternal mtDNAwith
that obtained from a healthywoman, by transferring either the spindle-
chromosomal complex of mature oocytes, or the pronuclei during the
pre-zygotic stage of fertilized egg. Both techniques have been refined
in order to minimize the amount of mutant mtDNA carried over into
the recipient ooplasm. A child born by these procedures will carry the
nuclear genes of the affected mother (and healthy father) but the
healthy mitochondrial genes of the donor (see also [165] for a very re-
cent summary of the ongoing debate on this important topic).

4. Conclusions

Mitochondrial diseases are amazingly complex and its biology
has so far prevented the development of effective therapy for most
of them. Nevertheless, the last few years witnessed numerous at-
tempts to significantly modify the phenotype in cellular and animal
models by using either disease-specific or wide-spectrum strategies
applicable to several disorders. The wealth of knowledge accumulat-
ed in over 25 years of intensive studies aimed at elucidating the ge-
netic causes and the pathogenic mechanisms of mitochondrial
diseases has driven these first “proof of concept” successes that
now need to be translated and tested on patients. In addition, mito-
chondrial dysfunction is nowadays recognized as central in several
medical conditions, including diabetes, inflammation, cancer and
neurodegeneration; this will certainly have a synergistic effect to ex-
pand our knowledge on the pathomechanisms underlying both pri-
mary and secondary mitochondrial impairment and to prompt the
development of more effective, evidence-based therapeutic
approaches.
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