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a b s t r a c t

Mathematical models of fullerenes are cubic spherical maps of type (5, 6), that is, with
pentagonal and hexagonal faces only. Any such map necessarily contains exactly 12
pentagons, and it is known that for any integer α ≥ 0 except α = 1 there exists a fullerene
map with precisely α hexagons.

In this paperwe consider hyperbolic analogues of fullerenes,modelled by cubicmaps of
face-type (6, k) for some k ≥ 7 on an orientable surface of genus at least 2. The number of
k-gons in this case depends on the genus but the number of hexagons is again independent
of the surface. We focus on the values of k that are ‘universal’ in the sense that there exist
cubic maps of face-type (6, k) for all genera g ≥ 2. By Euler’s formula, if k is universal, then
k ∈ {7, 8, 9, 10, 12, 18}.

We show that for any k ∈ {7, 8, 9, 12, 18} and any g ≥ 2 there exists a cubic map of
face-type (6, k)with any prescribed number of hexagons. For k = 7 and 8we also prove the
existence of polyhedral cubic maps of face-type (6, k) on surfaces of any prescribed genus
g ≥ 2 and with any number of hexagons α, except for the cases k = 8, g = 2 and α ≤ 2,
where we show that no such maps exist.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Fullerenes are carbon-cage molecules comprised of carbon atoms that are arranged on a sphere with pentagonal
and hexagonal faces. The icosahedral C60, well-known as buckminsterfullerene, was found by Kroto et al. [15], and later
confirmed by experiments by Krätchmer et al. [14] and Taylor et al. [19]. Since the discovery of C60, fullerenes have been of
interest to scientists all over the world; see e.g. [3,4,7,16,17].

From a graph theoretic point of view, fullerenes can be identified with spherical embeddings of cubic 3-connected
graphs, with faces bounded by cycles of length 5 and 6. Euler’s formula implies that each fullerene contains exactly twelve
pentagonal faces, but provides no restriction on the number of hexagonal faces. It is well-known that (mathematical models
of) fullerenes with precisely α hexagonal faces exist for all non-negative values of α with the sole exception of α = 1
[6, Section 13.4].

We will study mathematical models of fullerene analogues on orientable surfaces of higher genera. By a hyperbolic
k-gonal fullerene we understand any trivalent map on some orientable surface of genus at least 2, with all faces bounded
by cycles of length 6 or k for some fixed k ≥ 7, that is of face-type (6, k). The genus of the k-gonal fullerene is simply
the genus of its supporting surface. The adjective hyperbolic, which will sometimes be omitted, reflects the fact that the
supporting surfaces for such maps are hyperbolic in the sense that they arise as quotients by respect to suitable cocompact
subgroups of the isometry group of the hyperbolic plane.
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Analogues of fullerenes embedded on hyperbolic surfaces were considered earlier by a number of authors; see e.g.
[5,20] or [21] and references therein. Inmost cases, the objects under investigation are restricted classes of graphite networks
modelled by trivalent maps of face-type (6, 7) and (6, 8), including their geometry, stability, electronic structures, and
possible applications. Constructions of higher genus fullerenes with additional symmetry properties were suggested in [12].

Suppose that a hyperbolic k-gonal fullerene of genus g ≥ 2 has v vertices, e edges, and f faces, α of which are hexagonal
and β of which are bounded by k-gons. Then, 3v = 2e = 6α + kβ and f = α + β , which, when substituted into Euler’s
formula v − e + f = 2 − 2g , yields

β = 12(g − 1)/(k − 6) and v = 2α + 4k(g − 1)/(k − 6). (1)

In particular, we have no restriction on α while β is determined by k and g .
These necessary conditions for existence of a k-gonal fullerene of genus g ≥ 2 are also sufficient for large enough values

of α. More precisely, for any k ≥ 7 and for any g ≥ 2 such that k − 6 divides both 12(g − 1) and 4k(g − 1) there exists an
α(k, g) such that for all integers α ≥ α(k, g) there exists a map of type (6, k) on an orientable surface of genus g containing
exactly α hexagonal faces and β = 12(g − 1)/(k − 6) faces bounded by cycles of length k; see [10] and also [11] for more
general statements. A drawback of this result is that its proof does not offer any insight into a possible determination of
the smallest α(k, g) that guarantees the existence of a corresponding map. In fact, it transpires from [10] that it is the small
values of α that are the hardest to work with. (A similar feature is observed in the situation when the number of t-gons
is fixed, t ≠ 5, 7, and the number of pentagons and heptagons varies; see [2].) It appears hopeless to attempt an exact
determination of α(k, g) for all pairs k ≥ 7 and g ≥ 2 that satisfy the above conditions, that is, when k − 6 is a divisor of
12(g − 1) and 4k(g − 1). We therefore concentrate on the values of k ≥ 7 that are universal in the sense that there is a
trivalent map of type (6, k) for all genera g ≥ 2. In such a case, k − 6 must be a divisor of 12(g − 1) for all g ≥ 2 and hence
also for g = 2. The only universal values of k thus are 7, 8, 9, 10, 12, and 18.

The aim of this paper is a detailed investigation of hyperbolic k-gonal fullerenes for the universal values of k. Particular
attention will be given to polyhedral k-gonal fullerenes, that is, those satisfying the conditions that every edge lies on the
boundary of two distinct faces, and the boundary cycles of any two distinct faces share at most one edge.

Our first main result, proved in Section 2, states that for any universal values of k and any g ≥ 2 there exists a cubic
map of face-type (6, k)with any prescribed non-negative number of hexagons, with possible exceptions for k = 10 and any
even value of g . This settles the problem of determining the value of α(k, g) for all k ∈ {7, 8, 9, 12, 18} and all g ≥ 2 to
α(k, g) = 0. The correspondingmaps, however, are not polyhedral. What is more, it is not even possible for all suchmaps to
be polyhedral. For example, no cubic octagonal map (with no hexagons at all) of genus 2 can be polyhedral since, by Euler’s
formula, it would have to consist of six octagons and hence some of the faces would have to share more than one edge in
common.

We extend our study to polyhedralmaps for the values of k = 7 and 8,which are likely to be themost important values for
further development of the theory. We first discuss polyhexes in Section 3 which are needed for subsequent constructions.
Then, in Section 4 we show that a polyhedral heptagonal fullerene of genus g with exactly α hexagonal faces exists for any
g ≥ 2 and any α ≥ 0. In the final part, Section 5, we prove that an octagonal fullerene of genus g with exactly α hexagonal
faces exists whenever g = 2 and α ≥ 3, or g ≥ 3 and α ≥ 0.

We would like to point out that whilst surface models of analogues of fullerenes appear to be most natural to study, one
should still bear in mind that a graphite networkmay admit a number of topologically distinct embeddings in the Euclidean
3-space; cf. e.g. [13].

2. Non-polyhedral maps

Throughout, a map is any cellular embedding of a graph on an orientable surface. Our graphs may contain loops and
multiple edges. Our surfaceswill, for themost part, be compact and connected,with no boundary components. Nevertheless,
in a few instances we will allow surfaces to be disconnected or to contain non-empty boundary components; in the latter
case we will refer to a surface with holes. When considering a map on a surface with holes, we will always assume that each
boundary component is identified with a polygon of the embedded graph.

We begin with proving the following general result.

Theorem 2.1. Let g and α be arbitrary integers such that g ≥ 2 and α ≥ 0. If k ∈ {7, 8, 9, 12, 18} or if k = 10 and g is odd,
then there exists a cubic map of face-type (6, k) with genus g and α hexagonal faces.

Remark 2.2. Despite all the known results summed up in the Introduction, the existence of cubic maps of face-type (6, 10)
with an arbitrary number of hexagons remains open in the case of even genus.

In the proof of Theorem 2.1, we use the following general construction.

Construction A. Let M be a map on an orientable (not necessarily connected) surface with h holes, h ≥ 2. Assume that all
boundary components are identified with cycles of even length of the embedded graph, and that the degrees of the vertices
in each boundary cycle form an alternating sequence 2, 3, 2, 3, . . .. Select a pair of holes whose boundary cycles have the
same length and identify their boundaries in such a way that the vertices of degree 3 in one cycle are identified with the
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Fig. 1. Surface of genus 5 decomposed into eight ‘‘pants’’ (or four ‘‘double-pants’’).

Fig. 2. Building blocks for cubic maps of type (6, k), k ∈ {7, 8, 9, 10, 12, 18}.

vertices of degree 2 in the other cycle, retaining orientability of the resulting surface. The new map obtained this way will
be denoted asM∗.

Let us include a few remarks about the resulting map M∗. Suppose that the cycles identified in the course of the
construction are A = (a0, a1, . . . , a2k−1) and B = (b0, b1, . . . , b2k−1), where a0 and b0 have degree 2, with A and B listed in
opposite orientations with respect to some fixed orientation of the underlying surface. To guarantee orientability we may
assume that, for some fixed t ∈ {0, . . . , k − 1} and every i ∈ {0, . . . , 2k − 1}, the oriented edge aiai+1 is identified with the
oriented edge b2t−1+ib2t+i, subscripts being read mod 2k. Here, different choices of the parameter t , sometimes referred to
as the twist, may result in non-isomorphic maps.

Note that the resulting map M∗ has precisely the same faces as the original map M , but the number of holes in the new
underlying surface has been reduced by 2. Also, all the vertices obtained by identification have degree 3, and the degrees
of the remaining vertices in M∗ are the same as in M . Now assume that the original map M has face-type (k1, k2) and that
all the vertices not lying on the boundary components of the underlying surface have degree 3. Then the map obtained by
applying Construction A repeatedly until no holes remain is cubic and has face-type (k1, k2). Of course, Construction A can
be used repeatedly until no holes remain only if the holes in the initial map can be matched into pairs with boundary cycles
of equal length.

Proof of Theorem 2.1. We will make use of the well-known ‘‘pants decomposition’’ which decomposes an arbitrary
orientable surface of genus g ≥ 2 into 2(g − 1) pants, each homeomorphic to a sphere with three holes as in Fig. 1. The
surface can be re-assembled by gluing. In fact, one can do the gluing of pants in two steps. We begin with arranging the
pants into pairs; in every pair we identify a single hole in each of the two pants and glue the two pants along the selected
holes. This turns the original set of 2(g − 1) pants into g − 1 components each homeomorphic to a sphere with four holes,
called double-pants. These can then be pasted together as shown in Fig. 1 to obtain a surface of genus g .

Let us consider the maps Mk, k ∈ {7, 8, 9, 12, 18}, presented in Fig. 2. Each Mk contains only holes and k-gonal faces
one of which is the outer face in the figure. Note that holes are bounded by cycles of length 2. For k ∈ {7, 8, 9, 12}, Mk is
a map on a sphere with three holes (an embedding on pants) while M18 is on a sphere with four holes (an embedding on
double-pants), and all the holes satisfy the assumptions of Construction A. It follows that taking 2(g − 1) copies of Mk for
k ∈ {7, 8, 9, 12}, or g−1 copies ofM18, and identifying the holes according to Construction A and Fig. 1 yields a cubic k-gonal
map on an orientable surface of genus g with no holes. This is straightforward for k ≠ 9; if k = 9 we first glue pairs of pants
along the holes bounded by 4-cycles to obtain the ‘‘double-pants’’ and then proceed as indicated.

Now assume that k = 10 and that g is odd. Let us take the mapM10 embedded on the double-pants as depicted in Fig. 2.
Take g−1 copies of this map and use Construction A repeatedly to obtain amap of genus g in which all faces are bounded by



732 M.D. Sikirić et al. / Discrete Mathematics 312 (2012) 729–736

Fig. 3. Left: the map S1; right: four copies of S1 glued to form a cylinder.

Fig. 4. Hexagonal tessellation and fundamental region for T7,2 .

10-cycles. Note that here we need g −1 to be even, for otherwise the hexagonal holes would not match up and the resulting
surface would still have at least one hole.

It remains to extend themaps constructed thus far from α hexagons. To achieve this, take one hexagon and glue together
a pair of its opposite edges to obtain a cylinder S1 as on the left-hand side of Fig. 3. Take α copies of S1 and paste them
together according to Construction A to obtain a cylinder Sα with α hexagons as on the right-hand side of Fig. 3. We can
now attach Sα according to Construction A at any one of the holes bounded by a cycle of length 2 at any stage of our gluing
process, not affecting the numbers of pants or double-pants. The result is therefore a cubic map of genus g and face-type
(6, k) with exactly α hexagons, where k ∈ {7, 8, 9, 12, 18} and g ≥ 2 is arbitrary, or k = 10 and g ≥ 3 is odd. �

Of course, the maps obtained in the proof of Theorem 2.1 are not polyhedral. In the rest of the paper we restrict our
attention to polyhedral maps only. For the development of appropriate construction tools we need to make a digression
into toroidal hexagonal maps.

3. Some properties of tori polyhexes

In this section we introduce certain hexagonal toroidal tessellations that will be used later in Sections 4 and 5 in our
constructions of heptagonal and octagonal fullerenes.

Let us consider a tessellation of a plane by regular hexagons of side length
√
3
3 shown in Fig. 4. Take a pair of integers

a ≥ 1 and b ≥ 0 and consider the parallelogram with vertices (0, 0), (a, 0), ( 1
2 + b,

√
3
2 ), and ( 1

2 + b + a,
√
3
2 ), as in Fig. 4.

Identifying pairs of parallel sides in a standard way one obtains a cubic map Ta,b on the torus with precisely a hexagonal
faces. Note that Ta,b corresponds to what is usually called a tori polyhex H(a, 1, b); see e.g. [13,18,22].

For any i such that 0 ≤ i < a let fi be the face of Ta,b centered at the point (i, 0). Since the points (x, 0) and (b+
1
2 +x,

√
3
2 )

have been identified, the center of fi may also be identified with (b +
1
2 + i,

√
3
2 ).

In our constructions of polyhedral k-gonal fullerenes for k ∈ {7, 8} we begin with the maps Ta,b. It is therefore useful to
be able to determine which of these maps are polyhedral. Note that the underlying graph of Ta,b contains no loops since it
is bipartite. Further, it contains no parallel edges provided that a > 1 and b ∉ {0, a − 1}.

Proposition 3.1. The map Ta,b with a > 2 and 0 ≤ b ≤ a − 1 is polyhedral if and only if b ∉ {a − 2, a − 1, 0, 1} and
2b ∉ {a − 2, a − 1, a}.

Proof. Observe that the face f0 is adjacent to f1, fa−b, fa−b−1, fa−1, fb and fb+1 where subscripts are read mod a. Since Ta,b is
a face-transitive map, it suffices to consider only adjacencies and self-adjacency of the face f0. Clearly, f0 is not adjacent to
itself if and only if none of the neighboring faces is equal to f0, which occurs if and only if 1 ≠ 0, a − b ≠ 0, a − b − 1 ≠ 0,
a − 1 ≠ 0, b ≠ 0 and b + 1 ≠ 0, all mod a. This is equivalent to a > 1, b ≠ 0, and b ≠ a − 1.

Next, observe that f0 has more than one edge in common with some other face fc if and only if at least two entries in the
sequence L = (1, a − b, a − b − 1, a − 1, b, b + 1) mod a are identical and equal to c . Checking all pairs of entries in L we
see that two members in L coincide if and only if one of the following holds: a = 1, a = 2, b = a − 2, b = a − 1, b = 0,
b = 1, 2b = a − 2, 2b = a − 1, 2b = 0. Combining this with the facts in the previous paragraph we obtain the result. �

The previous statement has the following straightforward consequence.

Corollary 3.2. The map Ta,2 is polyhedral if and only if a ≥ 7. The map Ta,3 is polyhedral if and only if a ≥ 9.
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Fig. 5. Creating a hole bounded by a 6-cycle at the position of vertex v.

4. Cubic polyhedral maps of face-type (6, 7)

In this sectionwe construct cubic polyhedralmaps of face-type (6, 7) using the following construction that takes k toroidal
polyhexes as input.

Construction B. Suppose that we have k maps Ta1,b1 , . . . , Tak,bk . In each such map, select a set F of 2h faces so that each
face of the map is adjacent to at most one face in F . Cut out the faces in F from the (generally disconnected) surface
T = Ta1,b1 ∪ · · · ∪ Tak,bk . This way, we obtain 2h holes, which are bounded by 6-cycles of the underlying cubic graph.
Subdivide each edge in these 6-cycles to obtain 12-cycles whose vertices have degrees alternately 2 and 3. This results in
an orientable map M of face-type (6, 7) with 2h holes. Finally, apply Construction A to M repeatedly h times to obtain a
connected cubic mapM∗ of face-type (6, 7) with no holes.

Note that no matter how the holes ofM are matched up, the mapM∗ will always have genus h+ 1. Wemay now use the
maps Ta,2 to produce heptagonal fullerenes with any admissible number of hexagons and any genus.

Theorem 4.1. For arbitrary integers α ≥ 0 and g ≥ 2 there exists a heptagonal fullerene of genus g with exactly α hexagonal
faces.
Proof. Let G2, . . . ,Gg−1 be disjoint copies of T14,2. In each Gi, 2 ≤ i ≤ g − 1, denote by f i0 and f i7 the faces centered at (0, 0)
and (7, 0), respectively. Next, let G1 and Gg be disjoint copies of T7,2 and T7+α,2, and let f 10 and f g7 be the faces of G1 and Gg

centered at (0, 0) and (7, 0), respectively. Now, use Construction B by identifying f i0 with f i+1
7 for each i ∈ {1, . . . , g − 1} to

obtain a mapM∗ of genus g . Note that the holes have been chosen carefully enough so as to assure that the resulting map is
polyhedral (see also Corollary 3.2).

It remains to show thatM∗ has exactly α hexagonal faces. Note that during the construction, the edges of each of the f i0’s
and f i7’s have been subdivided. Hence the hexagons adjacent to any one of the f i0’s and f i7’s are transformed into heptagons.
Since every face of G1, . . . ,Gg−1 other than the f i0’s and f i7’s is adjacent to one of these, the only hexagons in M∗ are those
coming from Gg = T7+α,2. Since Gg has 7 + α faces, precisely α of them remain hexagons inM∗. �

5. Cubic polyhedral maps of face-type (6, 8)

In this final section we describe a generic construction of octagonal fullerenes. In three cases for small values of α we
have used the program CGF ([8], available from [1]) that allows us to enumerate maps, polyhedral or not, of a fixed genus
with a fixed combination of face sizes.

Construction C. In a toroidal polyhex Ta,b select 2h vertices in such a way that every face of Ta,b is incident with at most
one of the selected vertices. Truncate every one of the selected vertices, creating 2h triangles. Cut these 2h triangles out of
the surface and subdivide every edge in the boundary cycle of the resulting holes (see Fig. 5). This results in an orientable
map M of face-type (6, 8) with 2h holes each bounded by a 6-cycle with vertices of degrees alternately 2 and 3. Now apply
Construction A toM repeatedly h times to obtain a cubic mapM∗ of face-type (6, 8) with no holes.

Observe that the number of hexagonal faces in M∗ is a − 6h and the number of octagonal faces is 6h. Further, since Ta,b
is a toroidal map and each identification of boundaries of a pair of holes increases the genus by 1, the genus ofM∗ is h + 1.

In the next two theorems we construct cubic polyhedral maps of face-type (6, 8) for every genus g ≥ 2. We start with
g = 2.

Theorem 5.1. There are no octagonal fullerenes of genus 2with exactly α hexagonal faces if α ≤ 2. On the other hand, if α ≥ 3,
then there exists an octagonal fullerene of genus 2 with exactly α hexagonal faces.
Proof. By (1), a cubic map of face-type (6, 8) and of genus 2 must have exactly six octagonal faces. If the map is polyhedral
then the eight faces adjacent to every octagon must be distinct. Therefore we have at least nine faces in the map, and so
α ≥ 3, which proves the first part of the statement.
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Fig. 6. Left: gluing the holes for g = 2 and α ≥ 6; right: R3 .

Table 1
A rotation scheme for a polyhedral octagonal fullerene of genus 2 with α = 4.

1:2 3 4 6:2 13 14 11:5 19 20 16:7 20 23 21:13 17 24
2:1 5 6 7:3 15 16 12:5 9 8 17:8 10 21 22:14 24 15
3:1 7 8 8:3 17 12 13:6 21 20 18:10 23 19 23:16 24 18
4:1 9 10 9:4 12 15 14:6 19 22 19:11 18 14 24:21 22 23
5:2 11 12 10:4 17 18 15:7 22 9 20:11 13 16

Now suppose that α ≥ 6 and consider Ta,2, where a = 6 + α. In this polyhex let us select vertices v1 and v2 with
coordinates v1 = ( 1

2 ,
√
3
6 ) and v2 = ( 1

2 + 6,
√
3
6 ); see Fig. 4. Then v1 is incident with faces f0, f1 and fa−2, while v2 is incident

with f4, f6 and f7, where fi is the face the centered at (i, 0). Since a ≥ 12, the faces f0, f1, fa−2, f4, f6 and f7 are distinct. Hence,
Construction C, applied to Ta,2 with {v1, v2} as the set of the chosen vertices, gives a cubic map M∗ of face-type (6, 8). By
Corollary 3.2, Ta,2 is a polyhedral map, although this may not be the case for the map M∗. However, if none of f0, f1 and fa−2
are adjacent to any of f4, f6 and f7, then the map M∗ is polyhedral. As we show now, this can be achieved by selecting the
twist (parameter t) in Construction C appropriately.

Denote by Li the list of faces adjacent to fi. Then L0 = {f1, fa−2, fa−3, fa−1, f2, f3}, L1 = {f2, fa−1, fa−2, f0, f3, f4} and
La−2 = {fa−1, fa−4, fa−5, fa−3, f0, f1}. Let us consider the possibility of having one of f4, f6 or f7 in these lists. Let V2 = {f4, f6, f7}.
Since a ≥ 12, we have L0 ∩ V2 = ∅, L1 ∩ V2 = {f4}, La−2 ∩ V2 = {f7} if a = 12, and La−2 ∩ V2 = ∅ if a > 12. Thus, it is
possible to construct a required 8-gonal fullerene if one can glue the boundaries of the holes corresponding to v1 and v2 in
such a way that f1 will not be adjacent to f4 and fa−2 will be not adjacent to f7 on this boundary.

Let us orient the map Ta,2 counter-clockwise. Then the faces around v1 appear in the cyclic order f0, f1, fa−2, while those
around v2 appear in the order f4, f6, f7. Therefore the pasting can be organized in such a way that f1 is ‘‘opposite’’ to f4 and
fa−2 is ‘‘opposite’’ to f7, preserving the orientability of the surface; see Fig. 6. The constructed mapM∗ is then polyhedral.

Suppose now that α = 5 and consider T8,2. In this polyhex let us select vertices v1 = (8 +
1
2 ,

√
3
6 ) (which may also be

thought of as vertex (8 +
1
2 ,

√
3
6 )) and v2 = ( 1

2 + 4,
√
3
6 ). Then v1 is incident with f0, f1 and f6, while v2 is incident with f2, f4

and f5. Thus, after creating holes at the locations of v1 and v2 we obtain a mapM of face-type (6, 8) with two holes. Let R3 be
the cylindrical map with three hexagons shown in Fig. 6. Then R3 is a map on the sphere with two holes (i.e., on a cylinder),
where each hole is bounded by a 6-cycle with vertices of degrees alternately 2 and 3. It follows that one can paste the two
holes of this cylinder to the two holes ofM according to Construction A. Since the faces incident to v1 are different from the
faces incident to v2, in this way we obtain a polyhedral mapM∗ on a double torus with α = 5.

In the case α = 4 the CGF program [1] found two maps. A rotation scheme for one of them is given in Table 1.
Finally suppose that α = 3. Note that the graph K9 − K3, the complete graph on nine vertices with three edges forming a

triangle removed, canbe embeddedon the orientable surfacewith genus 3due toHeffter [9]; see also [23, pp. 199].Moreover,
this embedding is a triangulation with three vertices of degree 6 and six vertices of degree 8. Its dual is a polyhedral cubic
map of genus 2 of type (6, 8) with three hexagons. �

Theorem 5.2. Let g and α be integers such that g ≥ 3 and α ≥ 0. Then there exists an octagonal fullerene of genus g with
exactly α hexagonal faces.

Proof. Consider the polyhex Ta,3 for a = 6(g − 1) + α and select in it the vertices ui and vi, 1 ≤ i ≤ g − 1, with coordinates
ui = ( 1

2 +6(i−1),
√
3
6 ) and vi = (2+6(i−1),

√
3
3 ). Since ui is incidentwith faces f6i−6, f6i−5 and f6i−9, while vi is incidentwith

faces f6i−4, f6i−7 and f6i−8, the two vertices ui and vi are incident with f6i−9, f6i−8, f6i−7, f6i−6, f6i−5 and f6i−4. As a ≥ 6(g − 1),
each face of Ta,3 is incident with at most one of the selected vertices. Thus, applying Construction C on Ta,3 with the selected
vertices gives a cubicmap of face-type (6, 8). In the remaining part of the proofwe show that ifwe pair up the holes appearing
at ui and vi carefully, then the resulting mapM is polyhedral.
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Fig. 7. Initial toroidal map for g = 4 and α = 0.

Table 2
Rotation schemes for two polyhedral octagonal fullerenes of genus 3 corresponding to α = 1 and α = 2.

1:2 3 4 8:3 12 17 15:7 25 26 22:11 26 31 29:17 30 18
2:1 5 6 9:4 18 16 16:7 9 27 23:12 32 33 30:20 29 34
3:1 7 8 10:4 19 20 17:8 28 29 24:13 33 18 31:22 27 28
4:1 9 10 11:5 21 22 18:9 29 24 25:14 34 15 32:23 27 34
5:2 11 12 12:5 8 23 19:10 26 13 26:15 22 19 33:23 28 24
6:2 13 14 13:6 24 19 20:10 30 21 27:16 31 32 34:25 30 32
7:3 15 16 14:6 21 25 21:11 20 14 28:17 31 33

1:2 3 4 9:4 19 20 17:8 30 25 25:12 15 17 33:21 35 36
2:1 5 6 10:4 21 22 18:8 31 32 26:12 21 34 34:26 32 27
3:1 7 8 11:5 23 24 19:9 32 29 27:13 34 20 35:28 33 31
4:1 9 10 12:5 25 26 20:9 27 31 28:14 35 15 36:29 33 30
5:2 11 12 13:6 27 24 21:10 33 26 29:16 19 36
6:2 13 14 14:6 23 28 22:10 30 23 30:17 36 22
7:3 15 16 15:7 28 25 23:11 22 14 31:18 35 20
8:3 17 18 16:7 24 29 24:11 13 16 32:18 34 19

Observe that as g ≥ 3 we have a ≥ 12, so Ta,3 is a polyhedral map by Corollary 3.2. Our intention is to paste the hole
appearing at the position of ui to the one at the position of ui+1 and also to paste the hole at vi to that at vi+1 for some values of
i. Since the underlying graph of Ta,b is vertex-transitive, it suffices to check the pair u1 and u2. The faces incidentwith u1 are f0,
f1 and fa−3, while u2 is incidentwith f6, f7 and f3. Nowwehave to checkwhether these faces are not already adjacent. As in the
previous proof, denote by Li the list of faces adjacent to fi. Then L0 = {f1, fa−3, fa−4, fa−1, f3, f4}, L1 = {f2, fa−2, fa−3, f0, f4, f5}
and La−3 = {fa−2, fa−6, fa−7, fa−4, f0, f1}. Further, let V2 = {f6, f7, f3}.

First, consider the case g = 3 and α = 0. Then a = 12 and we have four selected vertices, u1, u2, v1 and v2. We would
like to glue the hole appearing at the position of u1 (v1) to the one appearing at the position of u2 (v2); let us denote these
match-ups for short by u1–u2 and v1–v2. In this case we have L0 ∩ V2 = {f3}, L1 ∩ V2 = ∅ and La−3 ∩ V2 = {f6}. Thus, we
would be able to construct a required 8-gonal fullerene if it is possible to paste the boundaries of the holes corresponding
to u1 and u2 in such a way that f0 will be not adjacent to f3 on this boundary and fa−3 will be not adjacent to f6. Since in the
counter-clockwise rotation the faces around u1 appear in the cyclic order f0, f1, fa−3 while those around u2 appear in the
order f3, f6, f7, the gluing can be organized in such a way that f0 is ‘‘opposite’’ to f3 and fa−3 is ‘‘opposite’’ to f6, preserving the
orientability of the surface. Hence,M∗ is a polyhedral map.

Now consider the case when either g = 3 and α ≥ 3, or g is odd and g ≥ 5. In this case we have even numbers of u’s and
also even numbers of v’s. Hence, we will glue them in the fashion u1–u2, u3–u4, . . . and also v1–v2, v3–v4, . . .. Now a ≥ 15
and L0 ∩ V2 = {f3}, L1 ∩ V2 = ∅ and La−3 ∩ V2 = ∅. Thus, we can glue the holes with a twist, forcing that the face f0 will be
‘‘opposite’’ to f3, which gives the required 8-gonal fullerene.

Finally suppose that g is even (i.e., g−1 is odd), g ≥ 4.Moreover, suppose that if g = 4 thenα ≥ 1, and so a ≥ 19.We glue
the holes in the fashion u2–u3, u4–u5, . . . , v1–v2, v4–v5, v6–v7, . . . , u1–v3. All the pairs with the exception of the last one are
correct according to our previous discussion. In the last one, v3 is incident with faces f14, f11 and f10. LetW3 = {f14, f11, f10}.
Since a ≥ 19, we have L0 ∩ W3 = ∅, L1 ∩ W3 = ∅, La−3 ∩ W3 = {f14} if a = 20 or a = 21 and La−3 ∩ W3 = ∅ if a = 19
or a ≥ 22. Thus, we can glue the holes with a twist forcing the face fa−3 to appear ‘‘opposite’’ f14 in the cases a = 20 and
a = 21, which gives the required octagonal fullerene.

It remains to consider three small cases. We begin with g = 4 and α = 0. Here we start with a hexagonal grid with the
fundamental region depicted in Fig. 7 and we paste the opposite edges in order to obtain a polyhex M ′

= H(6, 3, 0). Select
in M ′ the six vertices u1, u2, v1, v2, w1 and w2, depicted as white circles in Fig. 7. Then it is obvious that no face incident
with v1 is adjacent to any face incident with v2, and a similar statement holds for the pair u1 and u2, as well as for w1 and
w2. Therefore, supplementing Construction C onM ′ with gluing the pairs of holes according to the scheme u1–u2, v1–v2 and
w1–w2 we obtain a polyhedral octagonal fullerene of genus 4 with no hexagonal faces.

For α = 1 and 2 the CGF program [1] found a number of maps. In Table 2 we give a rotation scheme for each of the two
values of α. �
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