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In this article we consider only associative rings with nonzero identity 
and unitary modules. A ring R is called a two-sided PF-ring or a ring with 
perfect duality if it is a left and right PF-ring or equivalently both RR and 
R, are injective cogenerators. Two-sided PF-rings are natural generaliza- 
tions of quasi-Frobenius rings. The aim of this work is to describe two- 
sided PF-rings, using the methods developed in [Z]. This description is 
similar to the classical definition of Nakayama for quasi-Frobenius rings 
and clarifies the role of the descending chain condition in the theory of 
quasi-Frobenius rings. 

Recall that an R-module M is linearly compact in the discrete topology or 
simply linearly compact if every finitely solvable system of congruences 
m = mar (mod M,) is solvable where the M, are submodules of M and 
m, E M. M is finitely cogenerated if M is an essential extension of a finite 
direct sum of simple modules. For every module RM(MR) the dual M* of 
M is a right (left) R-module Hom,(M, R). 

THEOREM 1. A ring R is a two-sided PF-ring iff the modules RR and R, 
are both finitely cogenerated and linearly compact and the duals of simple 
modules are also simple. 

Proof: The necessity is well known by [3, p. 291, 12.5.2 Satz and 
Exercise 4(b)]. We have to show only the sufficiency. We do it in several 
steps. 

(1) For each subset A of R we denote by Z(A) and r(A) the left and 
right annihilators of A, respectively. For every filter base (L,} of left ideals 
L, the equality r( n L,) = U r( L,) holds. In fact, each x E R induces a con- 
tinuous homomorphism x: R + R : r -+ rx and hence the linear compact- 
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ness of RR implies by [4, Satz l] that 0 = ((7 L,)x= n L,x, provided 
x E r( n L,). This shows by [6, Prop. 3.191 that x E r( L,) for some index c( 
because RR is finitely cogenerated. Therefore, r( n L,) = u r( L,). 

(2) The left and right socles So( RR) and So(R,) are equal. Consider 
a minimal left ideal Ra. By Ju = 0 we obtain a E r(J), where J is the radical 
of R. This shows that a can be considered as an element of the dual of the 
left R-module R/J. Since the left R-module R/J is a finite direct sum of sim- 
ple modules and by the assumption finite direct sums of simple modules are 
reflexive, UR is clearly semisimple. Thus UR E So(R,) and consequently 
Ru E So(R,) because So(R,) is an ideal of R. Hence So( RR) E So(R,) and 
by symmetry So(R,) E So( RR) follows, i.e., So( RR) = So(R,). 

(3) Let e be an arbitrary primitive idempotent of R. By the assump- 
tion eR is an essential extension of its socle .So(eR). Since Z(So(eR)) 
contains clearly R( 1 -e) + J and e$l(So(eR)), f(So(eR)) is obviously a 
maximal left ideal of R. Therefore, So(eR) can be considered as a nonzero 
submodule of the dual of the simple module R/I(So(eR)) and thus So(eR) 
is simple. By symmetry So(Re) is also simple. The linear compactness 
of R ensures that R is a semiperfect ring and hence there is a complete 
system of pairwise orthogonal idempotents ei (i= 1, . . . . n) such that 
R=Re,@ ... @Re,=eR,@ ... @eR,. Together with the above con- 
siderations we obtain that the dual of the left R-module R/J is 
So(R,) = r(J) and the dual of the right R-module R/J is So( RR) = f(J). 

(4) r(L) # r(JL) for each finitely generated left ideal L # 0. In the 
case L = Ru there is b E R such that ubR is a minimal right ideal because 
R, is finitely cogenerated. Consequently, Jab = 0 by So( RR) = So(R,) and 
hence bEr(Ju)\r(u), i.e., r(Ju) # r(u). Suppose now by induction that 
L=Ru,+ ... +Ru, and for L,=Ru,+ ... + Run-, we have r(JL,)# 
r(L,). Choose bEr(JLl)\r(L,). If u,b=O, then we are done. In the 
case u,b # 0 there is c E R such that u,bcR is a minimal right ideal and 
thus a,zbc E So(R,) = So( RR), i.e., Ju,bc = 0 and then it follows clearly 
bc E r( JL)\r( L). Thus we have always r(JL) # r(L). 

(5) For each left ideal L and a E R with r(L) E r(u) there is a minimal 
finitely generated left ideal Kc L satisfying r(K) E r(u). In fact, the equality 
rW)=n,,, r(x) implies by [S, Lemma 21 the existence of finitely many 
elements x,, . . . . x, with ni r(xi)c r(u) because uRz R/r(u) is finitely 
cogenerated. This shows that the set of finitely generated left ideals K E L 
with r(K) G r(u) is nonempty. If {K,} . IS a descending chain of finitely 
generated left ideals satisfying r(K,) E r(u), then r( n K,) = lJ r(K,) s r(u). 
Therefore, we obtain a finitely generated left ideal TG n K, with 
r(T) E r(u). Henceforth, Zorn’s Lemma ensures existence of a minimal 
finitely generated left ideal K with r(K) E r(u). If now T is any left ideal 
contained in K with r(T)sr(u), then the above result ensures a finitely 
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generated left ideal T’ with T’ E T and r( T’) c T(U). This means that 
T= T’ = K and hence we obtain that K is a minimal left ideal contained in 
L satisfying r(K) G r( a ). 

(6) For each left ideal L and a E R with r(L) G r(a) there is h E L with 
r(a) = r(b). Indeed, if a = 0 there is nothing to prove. Therefore, we may 
suppose a # 0. Then by Step (5) there is a minimal finitely generated 
left ideal KE L with r(K) c r(a). In particular K # 0. Let q, denote the 
following mapping defined by 

‘p, :r(JK)/r(K)+(K/JK)* : (~+JK)(P~(x+Y(K)) 

= yx, ?I E r(JK), y E K. 

One can easily see that ‘p, is a monomorphism. Let N= q,(r(JK)/r(K)). 
Then N is a nonzero submodule of A4 = (K/JK)*. Assume now indirectly 
that N # M. In this case there is a nonzero submodule P properly con- 
tained in KIJK such that for each 0 #n E N there is JE P with j% #O. 
Henceforth for the inverse image P of P under the epimorphism K + K/JK 
we obtain JKc PC K and for each XE r(JK)\r(K) there exists J’E P with 
y~#0. Thus r(P) = r(K) G r(a), so that by Step (5) there exists a finitely 
generated left ideal P’ G P satisfying r( P’) 5 r(u), which contradicts to the 
minimality of K. Hence N = M and cp, is an isomorphism. 

Consider a nonzero element .f of K*. Since Kf is a nonzero finitely 
generated left ideal, there is c E r(JKf )\r(Kf) by Step (4). This shows that 
fc can be considered as an element of (K/JK)*, and hence fcR is a semi- 
simple. Consequently, we obtain that K* is an essential extension of its 
socle So(K*). On the other hand, it is routine to verify that So(K*) is the 
dual of KIJK which is a finite direct sum of simple modules and hence K* 
is finitely cogenerated and (K/JK)* is the socle of K*. 

For A = K+ Ra the equality r(A) = r(K) n r(u) = r(K) holds and thus we 
can define a mapping rpz by putting 

cp2 : r(a)/r(K) + (AIRa)* : (y + Ra) cp2(x + r(K)) = y-u, x E r(u), y E A. 

One can verify that cpZ is a monomorphism. By the isomorphism A/Ra= 
(K + Ra)/Ra z K/( K n Ru) the module r(a)/r( K) can be considered as a 
submodule of (K/(Kn Ra))* and hence of K*. Since K* is finitely 
cogenerated, we have the nonzero intersection H = (r(a)/r( K)) A 
(r(JK)/r(K)) in the case r(u) # r(K). H is properly contained in the scale of 
K*, otherwise we have r(JK) E r(a) which is a contradiction to the mini- 
mality of K. Suppose indirectly r(u) # r(K). Then ‘p, implies the nontrivial 
direct decomposition K/JK= is@ 0 such that the dual of & is H and is is 
the annihilator of H. This shows for the inverse image P of P under the 
epimorphism K 4 KIJK that P is properly contained in K and 



CHARACTERISATION OF TWO-SIDED PF-RINGS 319 

r(P)/r(K) = ZZ. Thus r(P) E r(a) and hence there is a finitely generated left 
ideal properly contained in K with r(T) G r(a). This contradicts to the mini- 
mality of K. Therefore, we have r(K) = r(a). Since aR ‘Y R/r(a) and 
r(JK)/r(K) = (K/JR)*, we obtain that (K/JR)* can be considered as a sub- 
module of So(R,). Consequently, K/JK is isomorphic to a direct summand 
of a left R-module RJJ= (So(R,))* and hence KJJK can be generated by 
one element. Since K is finitely generated, we deduce immediately that K is 
a principal left ideal, i.e., K = Rb for some b E R and hence r(K) = 
r(b) = r(a). 

(7) For any two elements a, bE R satisfying r(a)=r(b) there is an 
element s E R with b = sa. If a = 0 there is nothing to prove. Suppose a # 0. 
The equality r(a) = r(b) implies that the mapping aR + bR : ar + br is well 
defined and it is an isomorphism. Let t E R such that atR is a minimal right 
ideal of R. The above isomorphism ensures that the minimal right ideals 
atR and btR are isomorphic. Thus r(at) = r(bt) is a maximal right ideal, 
and the dual of the simple module R/r(at) is fr(at) as it is easy to check. 
Consequently, at and bt generate the same simple module Ir(at). Hence- 
forth, there is an element s E R with br = sat. From this fact it follows that 
r(b - sa) contains properly r(a). Now consider the family of all right ideals 
Z, such that there exists s, E R with (b- s,a) Z, =0 and Z,I r(a). This 
family of right ideals is partially ordered by inclusion. Note that if I,, I, are 
in the family, I, E Z, and sr, SUER are such that (b -.~,a) I, =0 and 
(b-s2a)Z2=0, then (So--s2)aZ,=((b-s2a)-(b-s,a))Z,~(b--s2a)Z,+ 
(b-s,a)Z,~(b-s,a)Z,+(b-s,a)Z,=O,i.e.,s,-s,~L(~Z~).Nowconsider 
an ascending chain Z, in the family. For each c( let s, E R be such that 
(b -~,a) I, = 0. Then the system of congruences SES, (mod /(aZ,)) is 
finitely solvable, because if I, E . . . E Z, are in the family, then si - s, E 
[(ali) for i = 1, . . . . n that is s, E si (mod f(aZ,)) for i = 1, . . . . n. Therefore, the 
linear compactness ensures the existence of a solution s for this system. 
If I= IJ I,, then (s--J al, =0 for all a, so that (b -.~a) Z, = 0 for all a, 
i.e., (b - sa)Z= 0 and Z is in the family. Therefore, Zorn’s Lemma implies 
the existence of a right ideal Z maximal in the family. Let s E R be such 
that (b - sa)Z= 0. We claim I= R. Suppose indirectly Z # R. Then by 
Step (6) there is an element u of R with r(b - sa) = r(ua). Consequently, 
by the similar way to the case r(a) = r(b) there is u E R with r(b - sa) c 
r(b-sa- uua)=r(b- (s+ uu)a). This shows Z is properly contained in 
r(b - (s + ~)a) which contradicts to the maximality of the I. Henceforth, 
I= R and thus b=sa. 

(8) For any left ideal L we have Zr( L) = L. In fact, if a E Zr( L), then 
r(L) E r(a) and hence there is b E L with r(a) = r(b) and thus a = sb for 
some s E R, i.e., a E L. This shows L = Ir( L). Since our conditions are sym- 
metrical, the above results are true for left annihilators and right ideals. In 
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fact, for all right ideals A we have A = r/(A) and hence R is a ring with 
annihilator condition. 

By [ 1, Corollary 5.91 we have that RR and R, are injective and hence 
they are cogenerators, too, i.e., R is a two-sided PF-ring. 

COROLLARY 1. A ring R is a two-sided PF-ring iff the modules RR and 
R, are both linearlJ7 compact and finitely congenerated and for any module 
M of finite length )t’e have lg( M) = lg( M* ), where Ig means the length of the 
module. 

The proof of the following consequence is the same as in [3, Satz 13.4.21 
hence we omit it. 

COROLLARY 2. Let R be a ring such that the modules RR and R, are 
both linearly compact and finitely* congenerated. Then the follobiing 
statements are equivalent. 

(1) R is a two-sided PF-ring. 

(2) For each primitive idempotent e the socles So(Re) and So(eR) of 
Re and eR, respectively are simple and all simple left and right modules have 
nonzero homomorphic images in the socles So( nR) and So(R,), respectively. 

(3) For each primitive idempotent e the socles So(Re) and So(eR) are 
simple and So(,R) = So(R,) holds. 

(4) For a maximal set (e,, . . . . e,, 1 of pairwise orthogonal primitive 
idempotents such that Re, and Rej are not isomorphic for all i # j, there is a 
permutation z of the set (1, . . . . n} satisfying 

So(e, R) z cY,~~,R, So( Re,,,,) z Rei, 

where R denotes the factor ring of R by its radical. 
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