Characterisation of Two-Sided PF-Rings*

Phạ Ngọc Ánh
Mathematical Institute, Hungarian Academy of Sciences, P.O. Box 127, H-1364, Budapest and Vien Khoa Học giao duc Viet Nam, 101-Tran Hung Dao, Ha Noi

Communicated by Kent R. Fuller
Received July 3, 1989

In this article we consider only associative rings with nonzero identity and unitary modules. A ring R is called a two-sided PF-ring or a ring with perfect duality if it is a left and right PF-ring or equivalently both ${ }_{R} R$ and R_{R} are injective cogenerators. Two-sided PF-rings are natural generalizations of quasi-Frobenius rings. The aim of this work is to describe twosided PF-rings, using the methods developed in [2]. This description is similar to the classical definition of Nakayama for quasi-Frobenius rings and clarifies the role of the descending chain condition in the theory of quasi-Frobenius rings.

Recall that an R-module M is linearly compact in the discrete topology or simply linearly compact if every finitely solvable system of congruences $m \equiv m_{\alpha}\left(\bmod M_{\alpha}\right)$ is solvable where the M_{α} are submodules of M and $m_{\alpha} \in M . M$ is finitely cogenerated if M is an essential extension of a finite direct sum of simple modules. For every module ${ }_{R} M\left(M_{R}\right)$ the dual M^{*} of M is a right (left) R-module $\operatorname{Hom}_{R}(M, R)$.

Theorem 1. A ring R is a two-sided PF-ring iff the modules ${ }_{R} R$ and R_{R} are both finitely cogenerated and linearly compact and the duals of simple modules are also simple.

Proof. The necessity is well known by [3, p. 291, 12.5.2 Satz and Exercise 4(b)]. We have to show only the sufficiency. We do it in several steps.
(1) For each subset A of R we denote by $l(A)$ and $r(A)$ the left and right annihilators of A, respectively. For every filter base $\left\{L_{\alpha}\right\}$ of left ideals L_{α} the equality $r\left(\cap L_{\alpha}\right)=\bigcup r\left(L_{\alpha}\right)$ holds. In fact, each $x \in R$ induces a continuous homomorphism $x: R \rightarrow R: r \rightarrow r x$ and hence the linear compact-

[^0]ness of ${ }_{R} R$ implies by [4, Satz 1] that $0=\left(\cap L_{\alpha}\right) x=\cap L_{\alpha} x$, provided $x \in r\left(\cap L_{\alpha}\right)$. This shows by [6, Prop. 3.19] that $x \in r\left(L_{\alpha}\right)$ for some index α because ${ }_{R} R$ is finitely cogenerated. Therefore, $r\left(\cap L_{\alpha}\right)=\bigcup r\left(L_{\alpha}\right)$.
(2) The left and right socles $\operatorname{So}\left({ }_{R} R\right)$ and $\operatorname{So}\left(R_{R}\right)$ are equal. Consider a minimal left ideal $R a$. By $J a=0$ we obtain $a \in r(J)$, where J is the radical of R. This shows that a can be considered as an element of the dual of the left R-module R / J. Since the left R-module R / J is a finite direct sum of simple modules and by the assumption finite direct sums of simple modules are reflexive, $a R$ is clearly semisimple. Thus $a R \in \operatorname{So}\left(R_{R}\right)$ and consequently $R a \in \operatorname{So}\left(R_{R}\right)$ because $\operatorname{So}\left(R_{R}\right)$ is an ideal of R. Hence $\operatorname{So}\left({ }_{R} R\right) \subseteq \operatorname{So}\left(R_{R}\right)$ and by symmetry $\operatorname{So}\left(R_{R}\right) \subseteq \operatorname{So}\left({ }_{R} R\right)$ follows, i.e., $\operatorname{So}\left({ }_{R} R\right)=\operatorname{So}\left(R_{R}\right)$.
(3) Let e be an arbitrary primitive idempotent of R. By the assumption $e R$ is an essential extension of its socle $S o(e R)$. Since $l(S o(e R))$ contains clearly $R(1-e)+J$ and $e \notin l(S o(e R)), l(S o(e R))$ is obviously a maximal left ideal of R. Therefore, $S o(e R)$ can be considered as a nonzero submodule of the dual of the simple module $R / l(S o(e R))$ and thus $S o(e R)$ is simple. By symmetry $S o(R e)$ is also simple. The linear compactness of R ensures that R is a semiperfect ring and hence there is a complete system of pairwise orthogonal idempotents $e_{i}(i=1, \ldots, n)$ such that $R=R e_{1} \oplus \cdots \oplus R e_{n}=e R_{1} \oplus \cdots \oplus e R_{n}$. Together with the above considerations we obtain that the dual of the left R-module R / J is $\operatorname{So}\left(R_{R}\right)=r(J)$ and the dual of the right R-module R / J is $S o\left({ }_{R} R\right)=l(J)$.
(4) $r(L) \neq r(J L)$ for each finitely generated left ideal $L \neq 0$. In the case $L=R a$ there is $b \in R$ such that $a b R$ is a minimal right ideal because R_{R} is finitely cogenerated. Consequently, $J a b=0$ by $\operatorname{So}\left({ }_{R} R\right)=\operatorname{So}\left(R_{R}\right)$ and hence $b \in r(J a) \backslash r(a)$, i.e., $r(J a) \neq r(a)$. Suppose now by induction that $L=R a_{1}+\cdots+R a_{n}$ and for $L_{1}=R a_{1}+\cdots+R a_{n-1}$ we have $r\left(J L_{1}\right) \neq$ $r\left(L_{1}\right)$. Choose $b \in r\left(J L_{1}\right) \backslash r\left(L_{1}\right)$. If $a_{n} b=0$, then we are done. In the case $a_{n} b \neq 0$ there is $c \in R$ such that $a_{n} b c R$ is a minimal right ideal and thus $a_{n} b c \in S o\left(R_{R}\right)=S o\left({ }_{R} R\right)$, i.e., $J a_{n} b c=0$ and then it follows clearly $b c \in r(J L) \backslash r(L)$. Thus we have always $r(J L) \neq r(L)$.
(5) For each left ideal L and $a \in R$ with $r(L) \subseteq r(a)$ there is a minimal finitely generated left ideal $K \subseteq L$ satisfying $r(K) \subseteq r(a)$. In fact, the equality $r(L)=\bigcap_{x \in L} r(x)$ implies by [5, Lemma 2] the existence of finitely many elements x_{1}, \ldots, x_{n} with $\bigcap_{i} r\left(x_{i}\right) \subset r(a)$ because $a R \approx R / r(a)$ is finitely cogenerated. This shows that the set of finitely generated left ideals $K \subseteq L$ with $r(K) \subseteq r(a)$ is nonempty. If $\left\{K_{\alpha}\right\}$ is a descending chain of finitely generated left ideals satisfying $r\left(K_{\alpha}\right) \subseteq r(a)$, then $r\left(\cap K_{\alpha}\right)=\bigcup r\left(K_{\alpha}\right) \subseteq r(a)$. Therefore, we obtain a finitely generated left ideal $T \subseteq \cap K_{\alpha}$ with $r(T) \subseteq r(a)$. Henceforth, Zorn's Lemma ensures existence of a minimal finitely generated left ideal K with $r(K) \subseteq r(a)$. If now T is any left ideal contained in K with $r(T) \subseteq r(a)$, then the above result ensures a finitely
generated left ideal T^{\prime} with $T^{\prime} \subseteq T$ and $r\left(T^{\prime}\right) \subseteq r(a)$. This means that $T=T^{\prime}=K$ and hence we obtain that K is a minimal left ideal contained in L satisfying $r(K) \subseteq r(a)$.
(6) For each left ideal L and $a \in R$ with $r(L) \subseteq r(a)$ there is $b \in L$ with $r(a)=r(b)$. Indeed, if $a=0$ there is nothing to prove. Therefore, we may suppose $a \neq 0$. Then by Step (5) there is a minimal finitely generated left ideal $K \subseteq L$ with $r(K) \subseteq r(a)$. In particular $K \neq 0$. Let φ_{1} denote the following mapping defined by
\[

$$
\begin{aligned}
& \varphi_{1}: r(J K) / r(K) \rightarrow(K / J K)^{*}:(y+J K) \varphi_{1}(x+r(K)) \\
&=y x, \quad x \in r(J K), y \in K .
\end{aligned}
$$
\]

One can easily see that φ_{1} is a monomorphism. Let $N=\varphi_{1}(r(J K) / r(K))$. Then N is a nonzero submodule of $M=(K / J K)^{*}$. Assume now indirectly that $N \neq M$. In this case there is a nonzero submodule \bar{P} properly contained in $K / J K$ such that for each $0 \neq n \in N$ there is $\bar{y} \in \bar{P}$ with $\bar{y} n \neq 0$. Henceforth for the inverse image P of \bar{P} under the epimorphism $K \rightarrow K / J K$ we obtain $J K \subset P \subset K$ and for each $x \in r(J K) \backslash r(K)$ there exists $y \in P$ with $y x \neq 0$. Thus $r(P)=r(K) \subseteq r(a)$, so that by Step (5) there exists a finitely generated left ideal $P^{\prime} \subseteq P$ satisfying $r\left(P^{\prime}\right) \subseteq r(a)$, which contradicts to the minimality of K. Hence $N=M$ and φ_{1} is an isomorphism.

Consider a nonzero element f of K^{*}. Since $K f$ is a nonzero finitely generated left ideal, there is $c \in r(J K f) \backslash r(K f)$ by Step (4). This shows that $f c$ can be considered as an element of $(K / J K)^{*}$, and hence $f c R$ is a semisimple. Consequently, we obtain that K^{*} is an essential extension of its socle $\operatorname{So}\left(K^{*}\right)$. On the other hand, it is routine to verify that $\operatorname{So}\left(K^{*}\right)$ is the dual of $K / J K$ which is a finite direct sum of simple modules and hence K^{*} is finitely cogenerated and $(K / J K)^{*}$ is the socle of K^{*}.

For $A=K+R a$ the equality $r(A)=r(K) \cap r(a)=r(K)$ holds and thus we can define a mapping φ_{2} by putting

$$
\varphi_{2}: r(a) / r(K) \rightarrow(A / R a)^{*}:(y+R a) \varphi_{2}(x+r(K))=y x, \quad x \in r(a), y \in A
$$

One can verify that φ_{2} is a monomorphism. By the isomorphism $A / R a=$ $(K+R a) / R a \approx K /(K \cap R a)$ the module $r(a) / r(K)$ can be considered as a submodule of $(K /(K \cap R a))^{*}$ and hence of K^{*}. Since K^{*} is finitely cogenerated, we have the nonzero intersection $H=(r(a) / r(K)) \cap$ $(r(J K) / r(K))$ in the case $r(a) \neq r(K) . H$ is properly contained in the scale of K^{*}, otherwise we have $r(J K) \subseteq r(a)$ which is a contradiction to the minimality of K. Suppose indirectly $r(a) \neq r(K)$. Then φ_{1} implies the nontrivial direct decomposition $K / J K=\bar{P} \oplus \bar{Q}$ such that the dual of \bar{Q} is H and \bar{P} is the annihilator of H. This shows for the inverse image P of \bar{P} under the epimorphism $K \rightarrow K / J K$ that P is properly contained in K and
$r(P) / r(K)=H$. Thus $r(P) \subseteq r(a)$ and hence there is a finitely generated left ideal properly contained in K with $r(T) \subseteq r(a)$. This contradicts to the minimality of K. Therefore, we have $r(K)=r(a)$. Since $a R \simeq R / r(a)$ and $r(J K) / r(K)=(K / J K)^{*}$, we obtain that $(K / J K)^{*}$ can be considered as a submodule of $\operatorname{So}\left(R_{R}\right)$. Consequently, $K / J K$ is isomorphic to a direct summand of a left R-module $R / J=\left(S o\left(R_{R}\right)\right)^{*}$ and hence $K / J K$ can be generated by one element. Since K is finitely generated, we deduce immediately that K is a principal left ideal, i.e., $K=R b$ for some $b \in R$ and hence $r(K)=$ $r(b)=r(a)$.
(7) For any two elements $a, b \in R$ satisfying $r(a)=r(b)$ there is an element $s \in R$ with $b=s a$. If $a=0$ there is nothing to prove. Suppose $a \neq 0$. The equality $r(a)=r(b)$ implies that the mapping $a R \rightarrow b R: a r \rightarrow b r$ is well defined and it is an isomorphism. Let $t \in R$ such that at R is a minimal right ideal of R. The above isomorphism ensures that the minimal right ideals $a t R$ and $b t R$ are isomorphic. Thus $r(a t)=r(b t)$ is a maximal right ideal, and the dual of the simple module $R / r(a t)$ is $\operatorname{lr}(a t)$ as it is easy to check. Consequently, at and bt generate the same simple module $\operatorname{lr}(a t)$. Henceforth, there is an element $s \in R$ with $b t=s a t$. From this fact it follows that $r(b-s a)$ contains properly $r(a)$. Now consider the family of all right ideals I_{α} such that there exists $s_{\alpha} \in R$ with $\left(b-s_{\alpha} a\right) I_{\alpha}=0$ and $I_{\alpha} \supset r(a)$. This family of right ideals is partially ordered by inclusion. Note that if I_{1}, I_{2} are in the family, $I_{1} \subseteq I_{2}$ and $s_{1}, s_{2} \in R$ are such that $\left(b-s_{1} a\right) I_{1}=0$ and $\left(b-s_{2} a\right) I_{2}=0$, then $\left(s_{1}-s_{2}\right) a I_{1}=\left(\left(b-s_{2} a\right)-\left(b-s_{1} a\right)\right) I_{1} \subseteq\left(b-s_{2} a\right) I_{1}+$ $\left(b-s_{1} a\right) I_{1} \subseteq\left(b-s_{2} a\right) I_{2}+\left(b-s_{1} a\right) I_{1}=0$, i.e., $s_{1}-s_{2} \in \ell\left(a I_{1}\right)$. Now consider an ascending chain I_{α} in the family. For each α let $s_{\alpha} \in R$ be such that $\left(b-s_{\alpha} a\right) I_{\alpha}=0$. Then the system of congruences $s \equiv s_{\alpha}\left(\bmod \ell\left(a I_{\alpha}\right)\right)$ is finitely solvable, because if $I_{1} \subseteq \cdots \subseteq I_{n}$ are in the family, then $s_{i}-s_{n} \in$ $\ell\left(a I_{i}\right)$ for $i=1, \ldots, n$ that is $s_{n} \equiv s_{i}\left(\bmod \ell\left(a I_{i}\right)\right)$ for $i=1, \ldots, n$. Therefore, the linear compactness ensures the existence of a solution s for this system. If $I=\bigcup I_{\alpha}$, then $\left(s-s_{\alpha}\right) a I_{\alpha}=0$ for all α, so that $(b-s a) I_{\alpha}=0$ for all α, i.e., $(b-s a) I=0$ and I is in the family. Therefore, Zorn's Lemma implies the existence of a right ideal I maximal in the family. Let $s \in R$ be such that $(b-s a) I=0$. We claim $I=R$. Suppose indirectly $I \neq R$. Then by Step (6) there is an element u of R with $r(b-s a)=r(u a)$. Consequently, by the similar way to the case $r(a)=r(b)$ there is $v \in R$ with $r(b-s a) \subset$ $r(b-s a-v u a)=r(b-(s+v u) a)$. This shows I is properly contained in $r(b-(s+v u) a)$ which contradicts to the maximality of the I. Henceforth, $I=R$ and thus $b=s a$.
(8) For any left ideal L we have $\operatorname{lr}(L)=L$. In fact, if $a \in \operatorname{lr}(L)$, then $r(L) \subseteq r(a)$ and hence there is $b \in L$ with $r(a)=r(b)$ and thus $a=s b$ for some $s \in R$, i.e., $a \in L$. This shows $L=\operatorname{lr}(L)$. Since our conditions are symmetrical, the above results are true for left annihilators and right ideals. In
fact, for all right ideals A we have $A=r l(A)$ and hence R is a ring with annihilator condition.

By [1, Corollary 5.9] we have that ${ }_{R} R$ and R_{R} are injective and hence they are cogenerators, too, i.e., R is a two-sided PF-ring.

Corollary 1. A ring R is a two-sided PF-ring iff the modules ${ }_{R} R$ and R_{R} are both linearly compact and finitely congenerated and for any module M of finite length we have $\lg (M)=\lg \left(M^{*}\right)$, where \lg means the length of the module.

The proof of the following consequence is the same as in [3, Satz 13.4.2] hence we omit it.

Corollary 2. Let R be a ring such that the modules ${ }_{R} R$ and R_{R} are both linearly compact and finitely congenerated. Then the following statements are equivalent.
(1) R is a two-sided PF-ring.
(2) For each primitive idempotent e the socles $\operatorname{So}(\operatorname{Re})$ and $\operatorname{So}(e R)$ of Re and e R, respectively' are simple and all simple left and right modules have nonzero homomorphic images in the socles $\operatorname{So}\left({ }_{R} R\right)$ and $\operatorname{So}\left(R_{R}\right)$, respectively.
(3) For each primitive idempotent e the socles $\operatorname{So}(\operatorname{Re})$ and $\operatorname{So}(e R)$ are simple and $\operatorname{So}\left({ }_{R} R\right)=\operatorname{So}\left(R_{R}\right)$ holds.
(4) For a maximal set $\left\{e_{1}, \ldots, e_{n}\right\}$ of pairwise orthogonal primitive idempotents such that $R e_{i}$ and $R e_{j}$ are not isomorphic for all $i \neq j$, there is a permutation π of the set $\{1, \ldots, n\}$ satisfying

$$
S o\left(e_{i} R\right) \approx \bar{e}_{\pi(i)} \bar{R}, \quad S o\left(R e_{\pi i i)}\right) \approx \bar{R} \bar{e}_{i}
$$

where \bar{R} denotes the factor ring of R by its radical.

References

1. P. N. ÁNH, Duality of modules over topological rings, J. Algebra 75 (1982), 359-425.
2. P. N. ANH, Morita duality for commutative rings, Comm. Algebra, to appear.
3. F. Kasch, Moduln und Ringe, Teubner, Stuttgart, 1977.
4. H. Leptin, Linear kompakte Moduln und Ringe, Math. Z. 62 (1955), 2441-267.
5. B. J. Müller, Linear compactness and Morita duality, J. Algebra 16 (1970), 60-66.
6. D. W. Sharpe and P. Vámos, Injective modules, Cambridge Univ. Press, London, 1972.

[^0]: * Research supported by Hungarian National Foundation for Scientific Research Grant 1813.

