Characterisation of Two-Sided PF-Rings*

Phạm Ngọc Ánh

Mathematical Institute, Hungarian Academy of Sciences, P.O. Box 127, H-1364, Budapest and Vien Khoa Hoc giao duc Viet Nam, 101-Tran Hung Dao, Ha Noi

Communicated by Kent R. Fuller

Received July 3, 1989

In this article we consider only associative rings with nonzero identity and unitary modules. A ring R is called a *two-sided* PF-*ring* or a *ring with perfect duality* if it is a left and right PF-ring or equivalently both $_{R}R$ and R_{R} are injective cogenerators. Two-sided PF-rings are natural generalizations of quasi-Frobenius rings. The aim of this work is to describe twosided PF-rings, using the methods developed in [2]. This description is similar to the classical definition of Nakayama for quasi-Frobenius rings and clarifies the role of the descending chain condition in the theory of quasi-Frobenius rings.

Recall that an *R*-module *M* is *linearly compact in the discrete topology* or simply *linearly compact* if every finitely solvable system of congruences $m \equiv m_{\alpha} \pmod{M_{\alpha}}$ is solvable where the M_{α} are submodules of *M* and $m_{\alpha} \in M$. *M* is *finitely cogenerated* if *M* is an essential extension of a finite direct sum of simple modules. For every module $_{R}M(M_{R})$ the dual M^{*} of *M* is a right (left) *R*-module $\operatorname{Hom}_{R}(M, R)$.

THEOREM 1. A ring R is a two-sided PF-ring iff the modules $_{R}R$ and R_{R} are both finitely cogenerated and linearly compact and the duals of simple modules are also simple.

Proof. The necessity is well known by [3, p. 291, 12.5.2 Satz and Exercise 4(b)]. We have to show only the sufficiency. We do it in several steps.

(1) For each subset A of R we denote by l(A) and r(A) the left and right annihilators of A, respectively. For every filter base $\{L_{\alpha}\}$ of left ideals L_{α} the equality $r(\bigcap L_{\alpha}) = \bigcup r(L_{\alpha})$ holds. In fact, each $x \in R$ induces a continuous homomorphism $x: R \to R: r \to rx$ and hence the linear compact-

* Research supported by Hungarian National Foundation for Scientific Research Grant 1813.

ness of _RR implies by [4, Satz 1] that $0 = (\bigcap L_{\alpha})x = \bigcap L_{\alpha}x$, provided $x \in r(\bigcap L_{\alpha})$. This shows by [6, Prop. 3.19] that $x \in r(L_{\alpha})$ for some index α because _RR is finitely cogenerated. Therefore, $r(\bigcap L_{\alpha}) = \bigcup r(L_{\alpha})$.

(2) The left and right socles $So(_RR)$ and $So(R_R)$ are equal. Consider a minimal left ideal Ra. By Ja = 0 we obtain $a \in r(J)$, where J is the radical of R. This shows that a can be considered as an element of the dual of the left R-module R/J. Since the left R-module R/J is a finite direct sum of simple modules and by the assumption finite direct sums of simple modules are reflexive, aR is clearly semisimple. Thus $aR \in So(R_R)$ and consequently $Ra \in So(R_R)$ because $So(R_R)$ is an ideal of R. Hence $So(_RR) \subseteq So(R_R)$ and by symmetry $So(R_R) \subseteq So(_RR)$ follows, i.e., $So(_RR) = So(R_R)$.

(3) Let *e* be an arbitrary primitive idempotent of *R*. By the assumption *eR* is an essential extension of its socle So(eR). Since l(So(eR)) contains clearly R(1-e)+J and $e \notin l(So(eR))$, l(So(eR)) is obviously a maximal left ideal of *R*. Therefore, So(eR) can be considered as a nonzero submodule of the dual of the simple module R/l(So(eR)) and thus So(eR) is simple. By symmetry So(Re) is also simple. The linear compactness of *R* ensures that *R* is a semiperfect ring and hence there is a complete system of pairwise orthogonal idempotents e_i (i=1,...,n) such that $R = Re_1 \oplus \cdots \oplus Re_n = eR_1 \oplus \cdots \oplus eR_n$. Together with the above considerations we obtain that the dual of the left *R*-module R/J is $So(R_R) = r(J)$ and the dual of the right *R*-module R/J is $So(R_R) = l(J)$.

(4) $r(L) \neq r(JL)$ for each finitely generated left ideal $L \neq 0$. In the case L = Ra there is $b \in R$ such that abR is a minimal right ideal because R_R is finitely cogenerated. Consequently, Jab = 0 by $So(_RR) = So(R_R)$ and hence $b \in r(Ja) \setminus r(a)$, i.e., $r(Ja) \neq r(a)$. Suppose now by induction that $L = Ra_1 + \cdots + Ra_n$ and for $L_1 = Ra_1 + \cdots + Ra_{n-1}$ we have $r(JL_1) \neq r(L_1)$. Choose $b \in r(JL_1) \setminus r(L_1)$. If $a_n b = 0$, then we are done. In the case $a_n b \neq 0$ there is $c \in R$ such that $a_n bcR$ is a minimal right ideal and thus $a_n bc \in So(R_R) = So(_RR)$, i.e., $Ja_n bc = 0$ and then it follows clearly $bc \in r(JL) \setminus r(L)$. Thus we have always $r(JL) \neq r(L)$.

(5) For each left ideal L and $a \in R$ with $r(L) \subseteq r(a)$ there is a minimal finitely generated left ideal $K \subseteq L$ satisfying $r(K) \subseteq r(a)$. In fact, the equality $r(L) = \bigcap_{x \in L} r(x)$ implies by [5, Lemma 2] the existence of finitely many elements $x_1, ..., x_n$ with $\bigcap_i r(x_i) \subset r(a)$ because $aR \approx R/r(a)$ is finitely cogenerated. This shows that the set of finitely generated left ideals $K \subseteq L$ with $r(K) \subseteq r(a)$ is nonempty. If $\{K_{\alpha}\}$ is a descending chain of finitely generated left ideals satisfying $r(K_{\alpha}) \subseteq r(a)$, then $r(\bigcap K_{\alpha}) = \bigcup r(K_{\alpha}) \subseteq r(a)$. Therefore, we obtain a finitely generated left ideal $T \subseteq \bigcap K_{\alpha}$ with $r(T) \subseteq r(a)$. Henceforth, Zorn's Lemma ensures existence of a minimal finitely generated left ideal K with $r(K) \subseteq r(a)$. If now T is any left ideal contained in K with $r(T) \subseteq r(a)$, then the above result ensures a finitely generated left ideal T' with $T' \subseteq T$ and $r(T') \subseteq r(a)$. This means that T = T' = K and hence we obtain that K is a minimal left ideal contained in L satisfying $r(K) \subseteq r(a)$.

(6) For each left ideal L and $a \in R$ with $r(L) \subseteq r(a)$ there is $b \in L$ with r(a) = r(b). Indeed, if a = 0 there is nothing to prove. Therefore, we may suppose $a \neq 0$. Then by Step (5) there is a minimal finitely generated left ideal $K \subseteq L$ with $r(K) \subseteq r(a)$. In particular $K \neq 0$. Let φ_1 denote the following mapping defined by

$$\varphi_1 : r(JK)/r(K) \to (K/JK)^* : (y+JK) \varphi_1(x+r(K))$$
$$= yx, \qquad x \in r(JK), \ y \in K.$$

One can easily see that φ_1 is a monomorphism. Let $N = \varphi_1(r(JK)/r(K))$. Then N is a nonzero submodule of $M = (K/JK)^*$. Assume now indirectly that $N \neq M$. In this case there is a nonzero submodule \overline{P} properly contained in K/JK such that for each $0 \neq n \in N$ there is $\overline{y} \in \overline{P}$ with $\overline{y}n \neq 0$. Henceforth for the inverse image P of \overline{P} under the epimorphism $K \to K/JK$ we obtain $JK \subset P \subset K$ and for each $x \in r(JK) \setminus r(K)$ there exists $y \in P$ with $yx \neq 0$. Thus $r(P) = r(K) \subseteq r(a)$, so that by Step (5) there exists a finitely generated left ideal $P' \subseteq P$ satisfying $r(P') \subseteq r(a)$, which contradicts to the minimality of K. Hence N = M and φ_1 is an isomorphism.

Consider a nonzero element f of K^* . Since Kf is a nonzero finitely generated left ideal, there is $c \in r(JKf) \setminus r(Kf)$ by Step (4). This shows that fc can be considered as an element of $(K/JK)^*$, and hence fcR is a semisimple. Consequently, we obtain that K^* is an essential extension of its socle $So(K^*)$. On the other hand, it is routine to verify that $So(K^*)$ is the dual of K/JK which is a finite direct sum of simple modules and hence K^* is finitely cogenerated and $(K/JK)^*$ is the socle of K^* .

For A = K + Ra the equality $r(A) = r(K) \cap r(a) = r(K)$ holds and thus we can define a mapping φ_2 by putting

$$\varphi_2: r(a)/r(K) \to (A/Ra)^*: (y+Ra) \varphi_2(x+r(K)) = yx, \qquad x \in r(a), \ y \in A.$$

One can verify that φ_2 is a monomorphism. By the isomorphism $A/Ra = (K+Ra)/Ra \approx K/(K \cap Ra)$ the module r(a)/r(K) can be considered as a submodule of $(K/(K \cap Ra))^*$ and hence of K^* . Since K^* is finitely cogenerated, we have the nonzero intersection $H = (r(a)/r(K)) \cap (r(JK)/r(K))$ in the case $r(a) \neq r(K)$. H is properly contained in the scale of K^* , otherwise we have $r(JK) \subseteq r(a)$ which is a contradiction to the minimality of K. Suppose indirectly $r(a) \neq r(K)$. Then φ_1 implies the nontrivial direct decomposition $K/JK = \overline{P} \oplus \overline{Q}$ such that the dual of \overline{Q} is H and \overline{P} is the annihilator of H. This shows for the inverse image P of \overline{P} under the epimorphism $K \to K/JK$ that P is properly contained in K and

r(P)/r(K) = H. Thus $r(P) \subseteq r(a)$ and hence there is a finitely generated left ideal properly contained in K with $r(T) \subseteq r(a)$. This contradicts to the minimality of K. Therefore, we have r(K) = r(a). Since $aR \simeq R/r(a)$ and $r(JK)/r(K) = (K/JK)^*$, we obtain that $(K/JK)^*$ can be considered as a submodule of $So(R_R)$. Consequently, K/JK is isomorphic to a direct summand of a left R-module $R/J = (So(R_R))^*$ and hence K/JK can be generated by one element. Since K is finitely generated, we deduce immediately that K is a principal left ideal, i.e., K = Rb for some $b \in R$ and hence r(K) =r(b) = r(a).

(7) For any two elements a, $b \in R$ satisfying r(a) = r(b) there is an element $s \in R$ with b = sa. If a = 0 there is nothing to prove. Suppose $a \neq 0$. The equality r(a) = r(b) implies that the mapping $aR \rightarrow bR : ar \rightarrow br$ is well defined and it is an isomorphism. Let $t \in R$ such that atR is a minimal right ideal of R. The above isomorphism ensures that the minimal right ideals atR and btR are isomorphic. Thus r(at) = r(bt) is a maximal right ideal, and the dual of the simple module R/r(at) is lr(at) as it is easy to check. Consequently, at and bt generate the same simple module lr(at). Henceforth, there is an element $s \in R$ with bt = sat. From this fact it follows that r(b-sa) contains properly r(a). Now consider the family of all right ideals I_{α} such that there exists $s_{\alpha} \in R$ with $(b - s_{\alpha}a) I_{\alpha} = 0$ and $I_{\alpha} \supset r(a)$. This family of right ideals is partially ordered by inclusion. Note that if I_1 , I_2 are in the family, $I_1 \subseteq I_2$ and $s_1, s_2 \in R$ are such that $(b - s_1 a) I_1 = 0$ and $(b-s_2a)I_2 = 0$, then $(s_1-s_2)aI_1 = ((b-s_2a)-(b-s_1a))I_1 \subseteq (b-s_2a)I_1 +$ $(b-s_1a) I_1 \subseteq (b-s_2a) I_2 + (b-s_1a) I_1 = 0$, i.e., $s_1 - s_2 \in \ell(aI_1)$. Now consider an ascending chain I_{α} in the family. For each α let $s_{\alpha} \in R$ be such that $(b - s_{\alpha}a) I_{\alpha} = 0$. Then the system of congruences $s \equiv s_{\alpha} \pmod{\ell(aI_{\alpha})}$ is finitely solvable, because if $I_1 \subseteq \cdots \subseteq I_n$ are in the family, then $s_i - s_n \in$ $\ell(aI_i)$ for i = 1, ..., n that is $s_n \equiv s_i \pmod{\ell(aI_i)}$ for i = 1, ..., n. Therefore, the linear compactness ensures the existence of a solution s for this system. If $I = \bigcup I_{\alpha}$, then $(s - s_{\alpha}) aI_{\alpha} = 0$ for all α , so that $(b - sa) I_{\alpha} = 0$ for all α , i.e., (b - sa)I = 0 and I is in the family. Therefore, Zorn's Lemma implies the existence of a right ideal I maximal in the family. Let $s \in R$ be such that (b-sa)I=0. We claim I=R. Suppose indirectly $I \neq R$. Then by Step (6) there is an element u of R with r(b-sa) = r(ua). Consequently, by the similar way to the case r(a) = r(b) there is $v \in R$ with $r(b - sa) \subset c$ r(b - sa - vua) = r(b - (s + vu)a). This shows I is properly contained in r(b - (s + vu)a) which contradicts to the maximality of the I. Henceforth, I = R and thus b = sa.

(8) For any left ideal L we have lr(L) = L. In fact, if $a \in lr(L)$, then $r(L) \subseteq r(a)$ and hence there is $b \in L$ with r(a) = r(b) and thus a = sb for some $s \in R$, i.e., $a \in L$. This shows L = lr(L). Since our conditions are symmetrical, the above results are true for left annihilators and right ideals. In

fact, for all right ideals A we have A = rl(A) and hence R is a ring with annihilator condition.

By [1, Corollary 5.9] we have that $_{R}R$ and R_{R} are injective and hence they are cogenerators, too, i.e., R is a two-sided PF-ring.

COROLLARY 1. A ring R is a two-sided PF-ring iff the modules $_{R}R$ and R_{R} are both linearly compact and finitely congenerated and for any module M of finite length we have $lg(M) = lg(M^*)$, where lg means the length of the module.

The proof of the following consequence is the same as in [3, Satz 13.4.2] hence we omit it.

COROLLARY 2. Let R be a ring such that the modules $_{R}R$ and R_{R} are both linearly compact and finitely congenerated. Then the following statements are equivalent.

(1) R is a two-sided PF-ring.

(2) For each primitive idempotent e the socles So(Re) and So(eR) of Re and eR, respectively are simple and all simple left and right modules have nonzero homomorphic images in the socles $So(_RR)$ and $So(R_R)$, respectively.

(3) For each primitive idempotent e the socles So(Re) and So(eR) are simple and $So(_RR) = So(R_R)$ holds.

(4) For a maximal set $\{e_1, ..., e_n\}$ of pairwise orthogonal primitive idempotents such that Re_i and Re_j are not isomorphic for all $i \neq j$, there is a permutation π of the set $\{1, ..., n\}$ satisfying

$$So(e_i R) \approx \bar{e}_{\pi(i)} \bar{R}, \qquad So(Re_{\pi(i)}) \approx \bar{R}\bar{e}_i,$$

where \vec{R} denotes the factor ring of R by its radical.

References

- 1. P. N. ÁNH, Duality of modules over topological rings, J. Algebra 75 (1982), 359-425.
- 2. P. N. ANH, Morita duality for commutative rings, Comm. Algebra, to appear.
- 3. F. KASCH, Moduln und Ringe, Teubner, Stuttgart, 1977.
- 4. H. LEPTIN, Linear kompakte Moduln und Ringe, Math. Z. 62 (1955), 2441-267.
- 5. B. J. MÜLLER, Linear compactness and Morita duality, J. Algebra 16 (1970), 60-66.
- 6. D. W. SHARPE AND P. VÁMOS, Injective modules, Cambridge Univ. Press, London, 1972.