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Abstract

In chiral models with SU(3) group structure, strange form factors of baryon octet are evaluated by constructing their sum
rules to yield theoretical predictions comparable to the recent experimental data of the SAMPLE Collaboration. We also study
sum rules for the flavor singlet axial currents for the EMC experiment in a modified quark model.
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1. Introduction

There have been many interesting developments concerning the strange flavor structures in the nucleon and the
hyperons. Especially, the internal structure of the nucleon is still a subject of great interest to both experimentalists
and theorists. In 1933, Frisch and Stern [1] performed the first measurement of the magnetic moment of the proton
and obtained the earliest experimental evidence for the internal structure of the nucleon. However, it was not until
40 years later that the quark structure of the nucleon was directly observed in deep inelastic electron scattering
experiments and we still lack a quantitative theoretical understanding of these properties including the magnetic
moments.

Quite recently, the SAMPLE Collaboration [2] reported the experimental data of the proton strange form factor
through parity violating electron scattering [3]. To be more precise, they measured the neutral weak form factors at
a small momentum transf@§ = 0.1 (GeV/c)? to yield the proton strange magnetic form factor in units of Bohr
nuclear magnetons (n.n@‘M(Q?g) = +0.14+ 0.29(staj + 0.31(sys)n.m. [2]. This positive experimental value is
contrary to the negative values of the proton strange form factor which result from most of the model calculations
except the predictions [4,5] based on the SU(3) chiral bag model [6] and the recent predictions of the chiral quark
soliton model [7] and the heavy baryon chiral perturbation theory [8]. (See [9] for more details.)

On the other hand, the EMC experiment [10] also reported the highly nontrivial data that less than 30% of
the proton spin may be carried by the quark spin, which is quite different from the well-known prediction from
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constituent quark model. To explain this discrepancy, it has been proposed [11] that the experimentally measured
quantity is not merely the quark spin polarizatidtt’ but rather the flavor singlet axial current (FSAC) via the axial
anomaly mechanism [12]. Recently, at the quark model renormalization scale, the gluon polarization contribution
to the FSAC in the chiral bag model has been calculated [13] to yield a significant reduction in the relative fraction
of the proton spin carried by the quark spin, consistent with the small FSAC measured in the EMC experiments.

In this Letter, in the chiral models with SU(3) group structure, we will investigate the strange form factors of
octet baryons in terms of the sum rules of the baryon octet magnetic moments to predict the proton strange form
factor. We will also study the modified quark model with SU(3) group structure to obtain sum rules for the strange
flavor singlet axial current of the nucleon in terms of the octet magnetic momegndsid the nucleon axial vector
coupling constang 4. In Section 2, we construct the sum rules of the baryon octet magnetic moments in the SU(3)
chiral models. In Section 3 we construct the sum rules for the nucleon strange flavor singlet axial current in the
modified quark model.

2. Strangeform factors
Now we consider the baryon magnetic moments in the chiral models such as skyrmion [14], MIT bag [15] and

chiral bag [6] with the general chiral SU(3) group structure. In these models, the EM currents yield the magnetic
moment operatord’ = 1/ + f [1'® wherei!@ = 4@ 4 152} with
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whereM, N, N7, P, Q andR are the inertia parameters calculable in the chiral models. Note that we include the
inertia parameteR neglected in [5].

In the higher-dimensional irreducible representation of SU(3) group, the baryon wave function is described
as [4,16]

|B) =1|B)g — CJ|B) 1o — C34|B)27, (2.2)

where the representation mixing coefficients are givenafy_ +»(B|Hsp|B)g/(E, — Eg). Here E, is the
eigenvalue of the eigenequatidhy| B), = E,|B),. (For explicit expressions for the Hamiltonidh= Hp+ Hsg in

the chiral models, see [5].) Using the above baryon wave function, the spectrum of the magnetic moment operator
A’ in (2.1) has the hyperfine structure
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where the coefficients are solely given by the SU(3) group structure of the chiral models and the physical
informations such as decay constants and masses are included in the above inertia parameters{ sitlaag
so on. Note that the SU(3) group structure in the coefficients is generic property shared by the chiral models which
exploit the hedgehog ansatz solution corresponding to the little grodp)S{Z, [17]. In the chiral perturbation
theory to which the hedgehog ansatz does not apply, one can thus see the coefficients different from those in (2.3)
even though the SU(3) flavor group is used in the theory [18].

Now it seems appropriate to comment on thi&/Lexpansion [17,19-21]. In the above relations (2.3), the inertia
parameterd/, N/, P, Q andR are of ordev,. while M is of orderNC*l. However, since the inertia parametet
is multiplied by an explicit facto, in (2.1), the terms with\ are of orderN°. Moreover, the inertia parameter
m is of order ofm,. (For details of further AN, andm; orders, see [17,21].)

Using theV -spin symmetry sum rules [5], one can obtain the relation

1 1 4
EM =Up — Ug- — §(Mz+ — Hg0) + 5 (kn — ws-) (2.4)

which will be used later to obtain sum rules of the strange form factors of octet baryons.
Now we consider the form factors of the octet baryons which, in the chiral models, are definitely extended
objects with internal structure associated with the electromagnetic (EM) current, to which the photon couples,

N 2 1- 1

V)iL = :—gﬁy“u — §d)/ﬂd — §§)/ILS. (25)
According to the Feynman rules the matrix elemenf/#ffor the baryon with transition from momentum state
to momentum state + ¢ is given by the following covariant decomposition

(p+qlV/|p)=i(p +q)[F{/B(q2)y“ S —F},

(4 )0“”qu}u(p), (2.6)
whereu(p) is the spinor for the baryon states apds the momentum transfer ard*” = é(y“y” —yYyH*) and

MB is the baryon mass ankll’ and F}" are the Dirac and Pauli EM form factors, which are Lorentz scalars and
PP=(p+q?= M2 on shell so that they depend only on the Lorentz scalar varigigle —02). We will also

use the Sachs form factors, which are linear combinations of the Dirac and Pauli form factors

612
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B
which can be rewritten as
2 1, 1
GE,M = §G7€,M - §GE,M - :—SG%,M- (2.8)

On the other hand, the neutral weak current operator is given by an expression analogous to (2.5) but with
different coefficients:

N 1 2 1 1 - 1 1
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Here the coefficients depend on the weak mixing angle, which has recently been determined [22] with high
precision: siRfy = 0.2315+ 0.0004.In direct analogy to (2.8), we have expressions for the neutral weak form
factorsG7 ,, in terms of the different quark flavor components:

1 2 1 1 1 1.
GgMz(Z—gsmzew)Gg’MJr(—Z+§sm29W)G§M+(—Z+§sm29W)G§5,M. (2.10)

Here one notes that the form factc@é’M (f =u,d, s) appearing in this expression are exactly the same as those
in the EM form factors, as in (2.8).

Utilizing isospin symmetry, one then can eliminate the up and down quark contributions to the neutral weak
form factors by using the proton and neutron EM form factors and obtain the expressions

Gyh = (% - sin29W>Gg’,’V, - %GQ”M iG% M- (2.11)
It shows how the neutral weak form factors are related to the EM form factors plus a contribution from the strange
(electric or magnetic) form factor. Measurement of the neutral weak form factor will thus allow (after combination
with the EM form factors) determination of the strange form factor of interest. It should be mentioned that there
are electroweak radiative corrections to the coefficients in (2.10), which are generally small corrections, of order
1-2%, and can be reliably calculated [23].

The EM form factors present in (2.11) are very accurately known (1-2%) for the proton in the momentum
transfer regior0? < 1 (GeV/c)?. The neutron form factors are not known as accurately as the proton form factors
(the electric form factoG'; is at present rather poorly constrained by experiment), although considerable work to
improve our knowledge of these quantities is in progress. Thus, the present lack of knowledge of the neutron form
factors will significantly hinder the interpretation of the neutral weak form factors.

At zero momentum transfer, one can have the relations between the EM form factors and the static physical
quantities of the baryon octet, name%(O) Qp andG” 1 (0) = up with the electric charg® 3 and magnetic
momentu g of the baryon. In the strange flavor sector, the Sachs magnetic form factor in (2.7) yields the strange
form factors of baryon octet degenerate in isomultiplefs(0) = G, (0) — F{;(0) whereF;, = —3Q7% with the
fractional strange EM charg@’;,. Here note that one can express the slop&pfat 0?2 =0 in the usual fashion
in terms of a strangeness radiygdefined ans2 —6[dG, /d Q? lp2=o-

Now we construct model independent sum rules for the strange form factors of baryon octet in the chiral models
with the SU(3) flavor group structure. Since the nucleon has no net strangeness the nucleon strange form factor is
given by [5]

s T 1 1,
FZN(O)_X)M—l—S<N+§N>——P——Q+m2<—ﬁ/\/l 1125/\/ 112 ) (2.12)

Substituting (2.4) into the relatioRy, (0) + p + wy — %M = 0 calculated from (2.3) and (2.12), we obtain the
sum rules for the nucleon strange form factor
1 4
FzsN(o) =MUp — HUg- — (Mp + Un) — §(MZ‘+ - /LEO) + :_S(Mn —x-) (2.13)

which, at least within the SU(3) flavor chiral models, is independent of the values of the model dependent inertia
parameters. Inserting into (2.13) the experimental data for the baryon octet magnetic moments, one can evaluate
the nucleon strange form factor

F55(0) = G},(0)=0.32 nm. (2.14)

On the other hand, the quantiti%M in (2.11) for the proton can be determined via elastic parity-violating
electron scattering to yield the experimental détj;—,}(Q%) = 4+0.14 4+ 0.29(staj + 0.31(sys)n.m. [2] for the
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Table 1

The baryon octet strange form factors in units of Bohr nuclear magnetons calculated via model independent relations. For input data for the
baryon octet magnetic moments we have used the experimental data (Exp) and the theoretical predictions from the chiral bag model (CBM),
skyrmion model (SM) and chiral quark soliton model (CQSM)

Input F3y(0) F5,(0) F52(0) F35.(0)
Exp 0.32 142 1.10 ~1.10
CBM 0.30 049 0.25 —154
SM ~0.02 0.51 0.09 -175
CQSM -0.02 1.06 0.86 -1.89

proton strange magnetic form factor. Here one notes that the prediction for the proton strange form factor (2.14)
obtained from the sum rule (2.13) is comparable to the SAMPLE data. Moreover, from the relation (2.11) at zero
momentum transfer, the neutral weak magnetic moment of the nucleon can be written in terms of the nucleon
magnetic moments and the proton strange form factor [24]

4l = pp — pn — 4sirf Oy, — F3y(0). (2.15)
Next, we obtain the other octet baryon strange form factors [5]

9 1 1 2 4
N _ - - / _ _ = - A _
FZA(O)_20/\/”5@\”2]\/)4r 57 T 10 QJ”"IZ( 250" 12@”125\[)
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which, similarly to the nucleon strange form factors, can be rewritten in terms of the octet magnetic moments to
yield the sum rules for the other octet strange form factors

1 4
F3,0) =pp —puz-—2ua — §(M2+ —mgo)+ 5(”” —ux-)—1
1 4
Fo5(0)=pp —pz- — (kgo+png-) — §(M2+ —ugo) + §('u” —ux-)—2

1 4
FysO)=pup—puz- — (ug+ +pg-) — 3z = Hgo0) + §(un —py-)—1 (2.17)

Note that these sum rules (2.13) and (2.17) are extracted only from the intrinsic SU(3) flavor group structures of
the octet baryons. Using the experimental data for the known baryon octet magnetic moments, we can predict the
octet baryon strange form factors as shown in Table 1. We also evaluate the strange form factors by using the
theoretical predictions from the chiral bag model, skyrmion model and chiral quark soliton model as input data of
the sum rules (2.13) and (2.17) given in the SU(3) flavor chiral models. Here one notes that, since the values of the
magnetic moments used in the theoretical model predictions of the baryon strange form factors have already had
discrepancies deviated from the corresponding experimental values of the baryon magnetic moments, the predicted
values of the baryon octet strange form factors listed in Table 1 are unreliably sensitive in the strange flavor channel.

3. Strangeflavor singlet axial currents

In this section, we consider a modified quark model [25]. In the nonrelativistic quark model, the quarks possess
the static properties such as mass, electromagnetic charge and magnetic moments, which are independent o
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their surroundings. However this assumption seems to be irrelevant to the realistic experimental situation. In the
literature [25], the magnetic moments of the quarks were proposed to be different in the different isomultiplets, but
to be the same within an isomultiplet. The magnetic moments are then given by

;ng,quuB+,u§AdB+qusB, (3.1)

where u2 is an effective magnetic moment of the quark of flavorfor the baryonB degenerate in the
f q

corresponding baryon isomultiplet, angf ? is the spin polarization for the baryon.
Using the SU(3) charge symmetry one can obtain the magnetic moments of the octet baryons as follows [25]

p,,,:,u,iVAu—I—,thivAd—i—/L;VAs, Mn:,u,ivAd—l—,ufivAu—i—M;VAs,

wa = %(u;‘ + 14)(Au +4Ad + As) + %u;‘(ZAu — Ad + 2As),
/Lgozqud+qus+quu, ,ugfzqus+,u5Ad+,quu,

Ps+ = p Au+ps As + u Ad, U0 = %(Mf + 17 ) (Au+ As) + p Ad,

ps-=p As +p> Au+ pZ Ad. (3.2)

)
Here one notes that it is difficult to figure out which terms are of the order; @nd whetheA f contain symmetry
breaking or whether the symmetry breaking manifests itself only in the fact that the quark magnetic moments are
different for different baryons.
After some algebra we obtain the novel sum rules for spin polarizatighsvith the flavor f in terms of the

octet magnetic momentsg and the nucleon axial vector coupling constant
Ry —2Rz 4+ Rs +3Rz(Rs — Ry) —2Rx + Rg + Rs +3Rx(Rs — Rz)
Au =gy , Ad=gxp
3(Rx — Rz)(1— Ry) 3(Rx — Rz)(1— Ry)

Ry + Rz —2Rs + 3(R2 — Rz Rz)

)

As=gx (3.3)
3(Ry — Rz)(1— Ry)
with
+ - 50+ e~
RN:M’ R2=M, RE:M’
Mp — Un Up+ — Hx- Hz0— z-
Rs=(RyRs + RxRz — RzRyn)"?, (3.4)

where we have assumed the isospin symmetfy= —2,u§. Here one notes that the above sum rules (3.3) are
given only in terms of the physical quantities, the coupling congiardand baryon octet magnetic momepts,
which are independent of details involved in the modified quark model, as in the sum rules in (2.13) and (2.17).
Moreover these sum rules are governed only by the SU(3) flavor group structure of the models.

Using the experimental data fgi andu g, we obtain the strange flavor spin polarizatitmn

As = —0.20 (3.5)

which is comparable to the recent SMC measurement —0.124 0.04 [27] and, together with the other flavor
spin polarizationg\u = 0.88 andAd = —0.38, one can arrive at the flavor singlet axial current of the nucleon as
follows?

AY = Au+ Ad + As = 0.30 (3.6)

1 In the literature [26], the similar equalities are used in connection with the quark-loops.

2 In fact, in the literature [25]A ¥ is evaluated using the sum rule fars. However, here we have explicitly obtained the sum rules for its

flavor component&\f (f =u,d,s) and Fgl(\?) as shown in (3.3) and (3.8) to predict the valuesAerand Fé‘,(\?) in (3.5) and (3.9).
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which is comparable to the recent valne~ = 0.28 obtained from the deep inelastic lepton—nucleon scattering
experiments [28]. Here note that the strange flavor singlet axial cuxerin (3.5) is significantly noticeable
even though the flavor singlet axial curreaty¥ in (3.6) is not quite large. The above predictions are quite
consistent with the analysis in the literature [29] wherdn m; corrections are used to predisic = 0.77+ 0.04,
Ad = —0.494 0.04 andAs = —0.18+ 0.09.

Now it seems appropriate to discuss the strange form factor in this modified quark model. Exploiting the
relations (3.2), together with the isospin symmeu,ﬁ/z —Z;Lf, one can easily obtain

tp + tn = —p) (Au+ Ad) +2u) As,  pp — pa = —3ul (Au — Ad). (3.7)
We thus arrive at the sum rule for the nucleon strange form factor in the modified quark model

© N 3 1 Au+ Ad
FZSN =—3u; As = —E(Mp + in) + E(/’Lp - Mn)m-

Substituting the experimental values fop andu,, and the above predictionsu = 0.81 andAd = —0.44, we
obtain

(3.8)

FY =—-039nm, (3.9)

which reveals the discrepancy from the SAMPLE experimental values, differently from the prediction (2.14) of the
SU(3) chiral model case. However, as expected, this result is quite comparable to the prediction in the literature [26]
where, similar to (3.2), the SU(3) charge symmetry relations with the quark-loops are used. The difference between
the predictions ofFZSI(\?) in the SU(3) modified quark model and the SU(3) chiral model originates from the
assumptions of these models, for instance, those in the SU(3) modified quark model that the magnetic moments of
the quarks are different in the different isomultiplets, but do not change within an isomultiplet.

On the other hand, in this modified quark modalf are defined through the semileptonic hyperon decays
and thus theX — n decay is not well reproduced singﬁ” = Ad — As = —0.18 is quite different from
its experimental valu%rf” = —0.340+ 0.017 [22]. Moreover, the SU(3) symmetry breaking in the hyperon
semileptonic decays can be parameterized by the value of the nonsinglet axialgharge: + Ad — 2As in the
hyperong-decay [30]. Exploiting the above values farf in the modified quark model, we obtain the prediction
ag = 0.90, which is quite higher than the standard SU(3) valie 3F — D = 0.5794+0.025 [22,30]. Note that the
SU(3) skyrmion model [31] and largg, QCD [21] predictag = 0.41 andag = 0.30, respectively. It is interesting
to see that the large value a§ in the modified quark model is incompatible with the SAMPLE experimental
values.

4. Conclusions

In summary, we have investigated the strange flavor structure of the octet baryon magnetic moments in the chiral
models with SU(3) group structure. The strange form factors of octet baryons are explicitly constructed in terms
of the sum rules of the baryon octet magnetic moments to yield the theoretical predictions. Especially in case of
using the experimental data for the baryon magnetic moments as input data of the sum rules, the predicted proton
strange form factor is comparable to the recent SAMPLE experimental data.

On the other hand, we have studied the modified quark model with SU(3) group structure, where the magnetic
moments of the quarks are different in the different isomultiplets, but do not change within an isomultiplet. In this
model, we have obtained the sum rules for the spin polarizatighsvith the flavor f (f =u, d, s) in terms of
the octet magnetic moments; and the nucleon axial vector coupling constani to yield the flavor singlet axial
current of the nucleon, comparable to the recent experimental data. Moreover, the strange flavor spin polarization
has been shown to be quite noticeable. However, exploiting the sum rule for the nucleon strange form factor
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constructed in the modified quark model, we have obtained the prediction, which shows discrepancy from the
SAMPLE experimental values but is comparable to the prediction in the previous literature.
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