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Origins of Highly Mosaic Mycobacteriophage Genomes
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Summary

Bacteriophages are the most abundant organisms in
the biosphere and play major roles in the ecological
balance of microbial life. The genomic sequences of
ten newly isolated mycobacteriophages suggest that
the bacteriophage population as a whole is amazingly
diverse and may represent the largest unexplored res-
ervoir of sequence information in the biosphere. Geno-
mic comparison of these mycobacteriophages con-
tributes to our understanding of the mechanisms of
viral evolution and provides compelling evidence for
the role of illegitimate recombination in horizontal ge-
netic exchange. The promiscuity of these recombina-
tion events results in the inclusion of many unexpected
genes including those implicated in mycobacterial la-
tency, the cellular and immune responses to mycobac-
terial infections, and autoimmune diseases such as
human lupus. While the role of phages as vehicles of
toxin genes is well established, these observations
suggest a much broader involvement of phages in bac-
terial virulence and the host response to bacterial in-
fections.

Introduction

Bacteriophages may be the dark matter of the biological
universe. The vast number of tailed phage particles on
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Earth—estimated at 10" (Wommack and Colwell,
2000)—has been appreciated only recently, but it is in-
creasingly clear that these phages exert enormous influ-
ence over the microbial world (Brussow and Hendrix,
2002; Wilhelm and Suttle, 1999). The overall diversity
of this population appears to be great: no genomically
defined phage has been isolated more than once, and
the relatively few sequenced phage genomes are highly
varied. This is perhaps not unexpected since the phage
population is wonderfully dynamic, turning over rapidly
through constant attrition and subsequent amplification
in permissive hosts (Garza and Suttle, 1998; Short and
Suttle, 1999). On a global scale, we estimate that ~10%
phages initiate an infection every second, and in each
of those infections the phage encounters DNA—of bac-
terial or prophage origin—with which it can potentially
recombine to generate new genomic arrangements. It
is likely that this process has been underway for over 3
billion years (Hendrix et al., 1999). This is combinatorial
chemistry on a grand scale.

Mycobacteriophages —phages of the mycobacteria—
have proven useful for diagnosis of mycobacterial infec-
tions such as tuberculosis, and in the development of
tools for mycobacterial genetics (Eltringham et al., 1999;
Hatfull, 2000; Jacobs et al., 1993; Jones, 1990). While
many mycobacteriophages have been isolated (Hatfull
and Jacobs, 1994), only four have been characterized
genomically: L5, D29, Bxb1, and TM4 (Ford et al., 1998a,
1998b; Hatfull, 2000; Hatfull and Sarkis, 1993; Mediavilla
et al., 2000). Although these were isolated at different
times and in different locations, they have many features
in common. For example, they are morphologically simi-
lar (see Figure 1), have similarly sized genomes (49.1-
52.8 kbp), and have similar arrangements of structure
and assembly genes, many of which encode related
gene products. The two most closely related genomes
are those of L5 and D29, which share over 75% of their
genes (as determined by amino acid sequence similarity)
and have extensive similarity at the DNA sequence level
(Ford et al., 1998a). Bxb1 shares only little DNA se-
quence similarity with these although more than 40%
of the predicted protein products are related to those
of L5 and D29 (Mediavilla et al., 2000). All three also have
a common genomic architecture with genes transcribed
from the cohesive termini toward an attachment site
(attP) in the center of the genome. TM4 represents a
departure from these in both genome organization and
sequence. All of the genes are transcribed in the same
direction and relatively few genes (~10%) are shared
with L5, D29, or Bxb1; nevertheless, these four phages
appear to share a common block of genes involved in
virion structure and assembly arranged in a similar order
(Ford et al., 1998b).

Questions about how phages generate genomic diver-
sity were first addressed (albeit at low resolution) 35
years ago with the “lambdoid” phages of enteric hosts
(Simon et al., 1971; Westmoreland et al., 1969). These
experiments showed for the first time that lambdoid
phage genomes are extensively mosaic with respect to
each other. It was clear, furthermore, that the mosaic
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Figure 1. Mycobacteriophage Virion Morphologies
Electron micrographs of representative particles of fourteen mycobacteriophages illustrate a variety of virion morphologies.

joints—presumably sites of ancestral recombination—
were not positioned randomly across the genome but
rather recurred at certain locations, possibly between
genes or conserved clusters of genes. These results led
to the “modular evolution” model (Susskind and Bot-
stein, 1978), in which it was postulated that phages
evolve by genetic exchange at special intergenic sites,
either through homologous recombination or by a site-
specific mechanism. The recent availability of complete
genome sequences for several lambdoid phages has
allowed reexamination of these questions at higher reso-
lution, and this has led to a different picture of mosaic
formation (Hendrix, 2002; Juhala et al., 2000). In this
view, illegitimate recombination takes place quasi-ran-
domly along the recombining genomes, generating an
unholy mélange of recombinant types, almost all of
which will be defective for phage growth as a conse-
quence of their misplaced recombination. Natural selec-
tion eliminates all but the tiny minority of recombinants
in which biological function is intact—for the most part,
phages with mosaic joints that lie between genes—thus
giving rise to an observable population in which the sites
of recombination are anything but random.

It has not been clear to what degree this picture of
rampant horizontal exchange extends to other phage
groups. For the Dairy phages (Brussow, 2001), although
there is clear evidence of horizontal exchange, the many
sequenced genomes of these phages are remarkable

Che9c

Rosebush

for their similarity of size, organization, and sequence
(Brussow and Desiere, 2001; Brussow and Hendrix,
2002). This may be a consequence of the narrow range of
habitats from which most of these phages were derived
(commercial dairy fermentors), or alternatively, it may
indicate a fundamental difference in their evolutionary
mechanisms. In the case of the four previously se-
quenced mycobacteriophages, described above, there
is also clearly substantial horizontal exchange, but the
overall diversity is again somewhat limited. Regardless
of the resolution of such questions about the nature and
magnitude of genetic exchange within groups of closely
related phages, it can be shown that exchange also
happens, albeit at a much lower rate, across the entire
range of characterized tailed phages (Hendrix et al.,
1999), implying that all tailed phages are partaking of a
common gene pool.

Phages acquire genes from, and contribute genes to,
not only other phage genomes but also bacterial ge-
nomes, and they are thus powerful forces in the evolu-
tion, physiology, and pathogenicity of their hosts (Boyd
et al., 2001; Dobrindt and Reidl, 2000; Wagner and
Waldor, 2002). The role of phages in the virulence of
mycobacterial pathogens is unclear and the genomes
of M. tuberculosis and Mycobacterium leprae contain
no full-length prophages. However, both of the two se-
quenced genomes of M. tuberculosis contain two small
prophage-like elements, ¢Rv1 and ¢Rv2, at least one
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of which (¢)Rv1) has an active integration system (Bibb
and Hatfull, 2002); both ¢)Rv1 and ¢Rv2 contain capsid
genes and could in principle form virus-like particles.
However, while all clinical isolates of M. tuberculosis
appear to contain at least one of these elements, it is
unclear whether they play any role in the physiology of
the host. Furthermore, the broader question as to what
role mycobacteriophages might play in the evolution
and physiology of their numerous mycobacterial hosts
remains unresolved and largely unaddressed.

We describe here the isolation of ten additional myco-
bacteriophages and their morphological and genomic
characterization. Surprisingly, the diversity of the myco-
bacteriophage population appears to be substantially
greater than what could have been inferred from the
four previously sequenced mycobacteriophages. Many
of these phages share very few genes with other myco-
bacteriophages and a very high proportion of genes do
not match existing database entries; of those that do
match, many are unexpected, not having been identified
previously within phage genomes and having no obvious
role in viral growth. A comparative analysis of all 14
mycobacteriophages reveals their pervasively mosaic
nature and illuminates the underlying evolutionary
mechanisms that generate new viruses. Moreover, the
presence of genes involved in host responses to bacte-
rial infections as well as autoimmune diseases such as
lupus suggests a more central role of bacteriophages
in human diseases than previously recognized.

Results and Discussion

Phage Isolation

Ten bacteriophages were isolated from a variety of
sources and geographical locations, using M. smeg-
matis as a host, without amplification. Phages were
identified as individual plaques on lawns of M. smeg-
matis, purified, amplified, and characterized further. The
plague morphologies of these phages vary consider-
ably. Bxz2 forms turbid plaques—similar to those of L5
and Bxb1—from which stable lysogens can be recov-
ered, but most of the other phages form plaques with
a hazy appearance, not obviously either clear (like D29)
or turbid. Stable lysogens could not be recovered from
these hazy plaques. One of the phages (Cjw1) forms
hazy plaques at 37°C but turbid plaques at 42°C from
which cold-sensitive lysogens can be propagated. Al-
though M. smegmatis is saprophytic, it cannot be as-
sumed that it—rather than one or more other bacterial
species—were recent hosts for these phages in their
natural environment. Thus, these plaque morphologies
are more likely to reflect how these phages interact
with M. smegmatis rather than revealing fundamental
aspects of their viral life cycles.

Particles of these phages were characterized by elec-
tron microscopy and viral morphologies compared with
those of L5, D29, Bxb1, and TM4 (Figure 1). Seven of
the new phages (Bxz2, Che8, Che9c, Che9d, Barnyard,
Rosebush, and Cjw1) have similar morphologies to the
comparison group, with isometric, icosahedral heads
approximately 60 nM in diameter and long flexible tails
(a common phage morphology; Ackermann, 2001). Two
phages (Che9c and Corndog) have flexible tails but have

more unusual prolate heads, and one (Bxz1) has a larger
head and a contractile tail. These viral morphologies
alone suggest that the mycobacteriophage diversity
may be greater than previously indicated, although re-
cent genomic analyses suggest that virion morphology
may not be as reliable an indicator of phylogenetic rela-
tionships as was once thought (Ackermann, 1987; Law-
rence et al., 2002).

Mycobacteriophage Genometrics

The complete genome sequences were determined for
the ten mycobacteriophages and putative genes identi-
fied by a variety of bioinformatic analyses. The lengths
of these genomes vary considerably, but with the excep-
tion of Bxz2 (50.9 kbp), all are larger than the previously
sequenced mycobacteriophages (Figure 2A). Moreover,
the genome lengths do not fall into discrete size classes,
but rather form a continuum between the smallest (49.1
kbp) and the largest (156 kbp). Six of the newly se-
quenced genomes (Bxz1, Omega, Cjw1, Barnyard, Cor-
ndog, and Rosebush) rank among the ten largest com-
pletely sequenced phage genomes (the other four are
phiKZ [280 Kbp], T4 [169 Kbp], SPBc2 [134 Kbp], and
HF2 [78 Kbp]). The reason why mycobacteriophage ge-
nomes are among the largest is not clear, although it
seems unlikely that growth in a mycobacterial host im-
poses greater genetic demands than in other bacteria,
particularly since genome size (and the total number of
genes) varies considerably within the mycobacterio-
phage group (Figure 2A). Thus, the determinants of phage
genome length remain obscure. We note, however, that
while mycobacteriophage %GC (which varies from
57.3% to 69%, similarly to their mycobacterial hosts;
57% and 65.6% GC in M. leprae and M. tuberculosis
respectively; Cole et al., 1998, 2001; Figure 2A) does not
correlate with their genome lengths, there is a surprising
statistically significant positive correlation between
%GC content and genome size when all sequenced
tailed phage genomes are examined (excluding the 5
phages with genomes larger than 100 Kbp; Figure 2B).
Interestingly, the E. coli, Dairy, and mycobacteriophages
represent discrete groups with nonoverlapping %GC
contents and distinct average genome sizes. Whether
this relationship among bacteriophages arises from
DNA packaging constraints, the effect of nucleotide
composition on genome stability or some other parame-
ter remains to be elucidated. Nevertheless, it provides
a context for trying to understand why these mycobac-
teriophage genomes are large relative to other dsDNA
phages.

The extent of nucleotide sequence similarity shared
among all fourteen mycobacteriophages varies consid-
erably (Figure 2C). Only one of the newly characterized
phages (Bxz2) has detectable sequence similarity with
L5, D29, and Bxb1. Phages Che9d, Che8, and Omega
appear to share limited segments of nucleotide se-
quence similarity, but the other phages appear unrelated
to any others at this level. There is no obvious relation-
ship between geographical origin and sequence similar-
ity, consistent with the generally rapid turnover rates of
the phage population as a whole (Garza and Suttle, 1998;
Short and Suttle, 1999). We note that the average open
reading frame (ORF) length is small (200 codons) relative
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Figure 2. Mycobacteriophages Genometrics

(A) Genome length, %GC, and gene content is shown for 14 mycobacteriophages.

(B) Genome length of dsDNA tailed phages and their %GC content share a positive correlation with an R? value of 0.4336. The slope inferred
by linear regression does not change significantly if the Dairy phage, mycobacteriophage, or coliphage group is eliminated from the analysis.
Symbols are as follows: (red), mycobacteriophages; (yellow) E. coli and Salmonella phages; (green) Dairy phages; (pale blue) other dsDNA
phages. Dots in symbols indicate phages sharing a gene with a mycobacteriophage that is not present in other sequenced mycobacteriophage
genomes. The 82 data points represent all completely sequenced dsDNA tailed phages with the exception of 5 with genomes larger than 100
Kbp.

(C) The extent of DNA sequence similarity among the mycobacteriophages is illustrated in a Dotter plot using a sliding window of 25 bp
(Sonnhammer and Durbin, 1995).

(D) The distribution of all 1659 mycobacteriophage genes according to their database matches. Approximately half (blue) have no database
match (NDM), and most of the remainder (green) matches other mycobacteriophage genes; a subset (stippled) of these also has non-
mycobacteriophage homologs. Mycobacteriophage genes matching either only other phage genes or only host genes (i.e., not mycobacterio-

phages) are shown in red and yellow, respectively.

to bacterial genomes (339 codons in M. tuberculosis;
Cole et al., 1998); this does not appear to arise from
either pseudogenes or errant annotation since homo-
logs of many small genes are present elsewhere within
other mycobacteriophage genomes (see below). Six of
the phages carry tRNA genes and the 26 in Bxz1 (with
anticodons corresponding to 15 amino acids and a puta-
tive suppressor) are the most identified in any virus (Fig-
ure 2A). A more detailed picture of the relationships
among these genomes is revealed by comparison of the
predicted gene products, and this is described below.

Mycobacteriophage Genome Organization

Genome maps of the ten mycobacteriophages along
with the four described previously are shown in Figure
3 (see foldout). All fourteen genomes contain high num-
bers of closely packed protein-coding genes with few
intergenic spaces. Generally, these genes are organized
into long cotranscribed operons that are presumably
expressed from a small number of promoters (Figure 3)
as shown previously in L5 (Hatfull and Sarkis, 1993;
Nesbit et al., 1995). However, the transcriptional organi-
zations—as assessed by gene order and direction—are
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highly varied, and apart from the common clustering of
structural genes there is no single global architectural
feature that characterizes this group of genomes. In
many of the newly sequenced genomes (with Bxz1 being
the notable exception), a structural gene cluster can be
identified which occupies 20-25 Kbp of the genome,
similar to that described previously in L5, D29, Bxb1,
TM4, and many other dsDNA tailed phages. However,
some of these genomes (e.g., Barnyard and Rosebush)
share so few genes with the other mycobacteriophages
that the identity and organization of the structural genes
remains unclear. Nevertheless, a notable consequence
of the relatively large sizes of these newly sequenced
genomes is that they contain rather large expanses of
genes that are likely involved in processes other than
assembly and structure of their virions. The functions
of these genes thus becomes of primary interest.

Comparative Genomic Analysis
The nucleotide sequences of the ten mycobacterio-
phage genomes clearly suggest that this group of vi-
ruses is substantially more diverse than suggested from
the smaller sample sequenced previously. However, the
manner in which all fourteen phages are related to each
other can be further explored through a comparative
analysis of the putative gene products. Using BLAST
and PsiBLAST to compare all 1659 ORF’s with data-
bases of currently available sequences and a separate
database of bacteriophage sequences, the following
conclusions emerged. First, there is a high proportion
of unique genes (~50%) that are unrelated to those
of other mycobacteriophages or any other previously
sequenced organism (Figure 2D); these >800 genes out-
number all of the genes without database matches iden-
tified in the M. tuberculosis genome (Cole et al., 1998).
Furthermore, three-quarters of the remaining 50% of
genes match only other mycobacteriophage genes such
that 87% of all mycobacteriophage genes are unrelated
to the gene pool outside of the mycobacteriophages.
Clearly, not only must the diversity of the mycobacterio-
phage population as a whole be substantially greater
than represented by these 14 examples, but if this accu-
rately reflects the broader phage population, bacterio-
phages perhaps represent the biggest unexplored reser-
voir of sequence information in the biosphere.
Secondly, a high proportion (>90%) of the genes with
identifiable homologs are shared by one or more myco-
bacteriophages (Figure 2D), which argues that genetic
exchange occurs more frequently within the mycobac-
teriophage population than between mycobacteriophages
and either other bacteriophage or host genomes. This
is supported by the observation that a high proportion
of genes that do match either host or other phage genes
are also found elsewhere in the mycobacteriophage
group (Figure 2D), suggesting that acquisition of genes
by the mycobacteriophage pool is relatively rare com-
pared to the rate at which they disseminate within the
population once acquired. If it is assumed that genes
with homologs outside the mycobacteriophages, but
which are not present elsewhere within the mycobacteri-
ophage group, are those that have been recently ac-
quired, then it appears as though genes are picked up

at similar rates from the host chromosome as they are
from other phages (Figure 2D). We recognize, however,
that the number of genes examined is still small and a
considerably larger group of phage genomes must be
examined to verify the relative rates of gene exchange
between and within groups of phages.

Thirdly, these phages cannot be phylogenetically or-
dered into any single hierarchical relationship. For ex-
ample, when the numbers of genes shared between
pairs of genomes are examined (Table 1), it is clear
that these phages are related in a reticulate rather than
hierarchical manner (Lawrence et al., 2002; Rohwer and
Edwards, 2002). Using moderately stringent criteria for
similarity, the pattern of pairwise shared genes reveals
that this group is not homogenously diverse and that
two phage groups emerge, a closely knit one containing
L5, D29, Bxz2, and Bxb1 and a more diverse group
containing Corndog, Cjw1, Che8, Che9c, Che9d, and
Omega; 12 pairs of phages have no closely related genes
at all (Table 1). Using more relaxed parameters, it is
evident that all phages share at least some genes and
some (e.g., Bxb1, Bxz1, and Omega) share a significant
number of genes with both groups.

Mechanisms of Phage Evolution and the Origins
of Genomic Mosaicism
Previous comparison of the four sequenced mycobac-
teriophages showed that the genomes share a mosaic
relationship (Ford et al., 1998a, 1998b; Hatfull and Sarkis,
1993; Mediavilla et al., 2000). For example, the cognate
copies of genes 36 and 38 in L5 and D29 are clearly
related (90% and 38% amino acid sequence identity,
respectively) but the intervening genes (37 in L5 and
36.1 in D29) are apparently unrelated. D29 36.7 encodes
a dCTP deaminase that shares 52% amino acid identity
with gp20 of Streptomyces phage ¢C31 (Smith et al.,
1999); L5 gene 37 is of unknown function but its product
shares 55% identity with gp19 of Roseophage SI01
(Rohwer et al., 2000). As expected, the ten newly se-
quenced mycobacteriophage genomes also participate
in a mosaic relationship, and the extent of this mosa-
icism is quite striking. Frequently, each module in the
mosaic is a single gene, related at the amino acid level
of its product to genes in one or more other phages
(Figure 4); module and gene boundaries correspond
closely as reported for lambdoid and dairy phages
(Brussow, 2001; Juhala et al., 2000). Each of the fourteen
mycobacteriophage genomes can thus be thought of
as a unique assemblage of individual mosaic modules.
The availability of fourteen highly mosaic mycobacter-
iophage genomes provides an opportunity for elucidat-
ing the evolutionary mechanisms that generate this
characteristic mosaicism. There are two alternative
models to consider. One explanation is that genetic
modules are reassorted by homologous recombination
at short conserved boundary (or linker) sequences, as
suggested initially by Susskind and Botstein (1978) and
proposed to play a role in the evolution of coliphages
HK620 and P27 (Clark et al., 2001; Recktenwald and
Schmidt, 2002). An alternative model is that illegitimate
exchange plays the major role, recombining viral and
nonviral DNA molecules in a sequence-independent
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Table 1. Mycobacteriophage Shared Genes

L5 D29 Bxz2 Bxbl Che9¢c Che9d Che8 Omega Cjwl Corndog TM4 Rosebush Barnyard Bxzi
L5 87 67 53 36 4 8 5 9 8 5 7 2 2 4
D29 58 77 51 33 4 7 4 8 5 3 7 4 2 2
Bxz2 32 37 86 37 4 7 3 10 5 5 9 3 4 3
Bxb1 24 26 27 86 2 15 12 22 11 7 8 6 3 10
Che9c 0 o0 1 1 84 9 19 15 9 14 5 3 3 4
Che9d 1 3 3 6 2 113 66 1 17 17 12 4 3 8
Che8 1 1 1 5 10 44 114 28 22 21 10 3 4 11
Omega 4 4 4 6 6 8 17 239 49 25 13 2 4 8
Cjwi1 1 1 1 5 3 6 9 22 143 12 9 2 3 7
Corndog 3 3 2 5 8 11 13 13 4 122 9 3 6 10
T™4 1 1 3 2 0 4 3 3 2 5 92 3 5 6
Rosebush 1 2 2 2 2 1 0 1 0 0 0 90 5 3
Barnyard 0 0 0 0 1 3 1 1 2 3 2 2 109 5
Bxz1 1 1 1 2 2 4 3 2 3 5 3 0 2 229

Values represent the numbers of genes shared by pairs of mycobacteriophages. The numbers in the top part (in plain type) and bottom parts
(in italics) are derived using BLAST cutoff E values of 107* and 102, respectively. Where numbers for reciprocal searches are different the

higher number is shown. Self-matches are shown in bold.

manner that generates mostly genomic trash that is ei-
therincorrectly sized for packaging into capsids or lacks
required genes (Hendrix, 2002). The viable genomes that
pass this filter for function and size will retain recombi-
nant boundaries that have had minimal impact on gene
function, occurring either at or close to gene boundaries.
While both models can account for the generation of
mosaic junctions, it is important to note that such junc-
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tions will be subsequently reassorted by homologous
recombination between flanking sequences.

The four previously sequenced mycobacteriophages
provide little evidence to distinguish between these pos-
sibilities, since while there is no evidence of linker se-
quences, it is also impossible to determine where possible
illegitimate recombination events could have occurred,
obscured by the passage of evolutionary time. The more

Figure 4. Genomic Mosaicism and Its Origins

(A) Highly mosaic segments of Che8 and
Omega genomes showing homologous
genes, levels of amino acid identity, and
(where appropriate) matching regions. Red
genomic segments are shared at >98% nu-
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is located 40 bp in from the start codons of
Che8 97 and Omega 74.
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also shared by phage Corndog. The 378 bp
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joint appearance in these phages must be
derived from a recent evolutionary event.
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substantial body of genomic evidence provided by the
additional mycobacteriophage genomes provides new
insights. First, even though a large number of module
boundaries can be identified (>500) there is no evidence
of linker sequences and this model can thus be excluded
as playing a major role in mycobacteriophage evolution.
Second, we can identify at least three recombination
events that appear to have arisen by illegitimate recom-
bination, having occurred sufficiently recently that the
recombinant boundaries are unlikely to have been ob-
scured by further evolutionary events (Figure 4A). Two
of these are in a highly mosaic segment of Che8 and
contain nucleotide segments shared by phage Omega
with greater than 98% nucleotide identity. Three of the
four junctions are close to the ends of genes, but do
not correspond precisely. The fourth is within Che8 and
Omega genes 87 and 78 respectively and results in gene
products in which only the N-terminal segment is shared
(Figure 4A). The third event—involving phages Che8 and
Corndog—is yet more compelling in that the exchange
involves quite different parts of the genomes but the
common segments are 100% identical (Figure 4B). The
recombination event is unlikely to have occurred more
than a few thousand years ago (see Experimental Proce-
dures) and the junctions have probably remained unal-
tered; they are located 28 bp in from the 3’ ends of
genes 88 and 24 of Che8 and Corndog respectively, and
within the adjacent genes 89 and 25. The observation
that all three of these recent exchange events apparently
result from illegitimate recombination, give rise to new
module junctions and generate coding sequences, indi-
cates that this is a very creative process and—given the
profuse mosaicism—suggests it is a dominant force in
genome evolution.

Phage Genes Involved in Bacterial Infections

and Human Diseases

lllegitimate recombination can readily account for how
phages acquire genes that are not usually involved in
viral propagation, but which may be retained if they
confer some selective advantage upon their bacterial
host. For example, there are many examples of toxin
genes present in phage and prophage genomes (Wagner
and Waldor, 2002). However, such toxin genes have not
been implicated in mycobacterial virulence and none
have been identified in the previously sequenced myco-
bacterial or mycobacteriophage genomes. We have also
been unable to find toxin genes in any of the newly
sequenced mycobacteriophages. These genomes do,
however, contain many unexpected genes that were not
previously thought to be phage-encoded; some of which
have connections in other contexts to human disease.
If these genes move into bacterial genomes with the
help of the mycobacteriophages, as appears to be the
case for toxin genes in the case of other phages, then
bacteriophages may play a larger role in human diseases
than previously recognized.

Table 2 shows a list of over fifty genes present in the
ten mycobacteriophages sequenced here that were not
previously phage-associated, several of which are pres-
ent in more than one of the mycobacteriophages. In
light of the discussion above, it should be noted that
since bacteriophages of one host do not evolve indepen-

dently of those of other hosts, all of these genes also
have the potential to reside in phage genomes of other
hosts. We also note that the presence of these genes
alone does not confirm that they confer a selective ad-
vantage; their presence could be transitory and could
have arisen from alternative selective forces (such as
for an appropriate genome size). Nevertheless, they are
intriguing and we will comment further on three that
implicate bacteriophages in novel aspects of bacterial
pathogenesis and human disease.

First, Cjw1 and Omega encode close homologs (genes
39 and 61, respectively) of the leprosy and tuberculosis
immunodominant antigen Lsr2 that is a potent stimulator
of both cellular and humoral immune responses (Laal
et al., 1991; Oftung et al., 2000), suggesting a possible
role for phages in mycobacterial virulence. The function
of the Lsr2 protein is unknown but it seems likely that
these phages could influence immune responses of their
hosts through the introduction of this gene. Secondly,
phage Rosebush contains two genes (4 and 6) encoding
homologs of enzymes involved in biosynthesis of tetra-
hydrobiopterin, a cofactor for a key enzyme in the host
defense against mycobacterial infections, nitric oxide
synthase (Roman et al., 2002; Scanga et al., 2001).
Whether these genes promote the synthesis of the co-
factor itself or an inactive form of the cofactor is not
clear, but these functions have the potential to influence
akey player in the host response to mycobacterial infec-
tions. Lastly, Bxz1 gp220 encodes a homolog ~35%
identical to the human Ro protein, a major target of the
autoimmune response in Lupus and Sjogren’s diseases
(Harley et al., 1992; McCauliffe et al., 1989). The function
of the Ro ribonucleoprotein is not known, but it is impli-
cated in 5S RNA processing in Xenopus, dauer formation
in Caenorhabditis elegans, and resistance to UV light in
Deinococcus radiodurans (Chen et al., 2000; Labbe et
al., 2000; Shi et al., 1996). Although bacterial infections
have been considered as playing a role in the onset of
autoimmune infections, there is a rather poor correlation
between these events (Fessler, 2002); the presence of
a Ro homologin Bxz1 raises the possibility that bacterio-
phages could act in concert with their hosts to stimulate
autoimmunity.

Phage Tape Measures as Signaling Molecules

A particularly intriguing finding that emerges from the
analysis of these ten mycobacteriophages is that spe-
cific phage tail proteins may act as signaling molecules
to awaken dormant bacterial hosts. The tail proteins
involved are the tape-measure proteins (TMP) found in
virtually all phages with flexible noncontractile tails; in
coliphage \, the length of the virion tail shaft is deter-
mined by the size of the TMP which spans and measures
the length of the tail as an « helix (Katsura, 1987; Katsura
and Hendrix, 1984). While TMPs are typically diverse in
their sequences, the genes can usually be identified
due to their large size (>2000 bp) and their location
immediately downstream from a pair of genes ex-
pressed via a translational frameshift (Levin et al., 1993;
Xu, 2000). The TMP gene homologs for the 13 mycobac-
teriophages with simple (noncontractile) tails could thus
readily be identified (see Figure 3, foldout) and as ex-
pected a close correspondence between TMP gene
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Figure 5. Phage Tape Measure Proteins as Signaling Molecules

(A) Relationship between tail length and tape measure size. Red symbols represent the mycobacteriophages; green symbols represent three
E. coli phages, including \. The line shows the dimensions of an « helix (1.5 A length per amino acid). Error in tail length determination from

all sources is estimated to be =10%.

(B) The tape measure proteins of mycobacteriophages are shown with numbered boxes representing sequence motifs 1, 2, and 3.
(C) Sequence alignments of three motifs in phage tape-measure proteins. Motifs 2 and 3 are less well conserved but do not reflect simply an
overall relatedness between the gene products since motif 2 is the only segment of similarity between Rosebush gp29 and Cjw1 gp22.

length and phage tail length is observed (Figure 5A).
The relationship is consistent with length determination
by an extended «a-helical protein, although for some of
the phages (Omega, Rosebush, and Barnyard), the TMP
is somewhat longer than needed to span the tail as
an « helix, suggesting that these proteins may have
segments that do not participate in the length determi-
nation.

The tape measure protein of phage Barnyard (gp33)
contains a 70 residue segment with strong similarity
to a family of proteins that includes the resuscitation
promoting factor (Rpf) of Micrococcus luteus, a secreted
protein that promotes regrowth of dormant cells (Figures
5B and 5C) (Kell and Young, 2000). There are multiple
copies of related genes in M. tuberculosis, M. leprae,
Streptomyces coelicolor, and Corynebacterium glu-
tamicum (five, three, three, and four genes, respec-
tively). While these are encoded as small primary poly-
peptides (typically smaller than 200 aa; Rv0867c is the
largest at 407 aa) that are proteolytically processed to
their mature forms (Mukamolova et al., 1998), the homol-
ogous segment in Barnyard gp33 is embedded within
a primary gene product that is over 2000 residues long

(Figure 5B). One may infer that this motif signals meta-
bolic activation of dormant mycobacterial hosts during
phage infection, facilitating a productive viral infection.
During infection, the tape measure protein must be
ejected from the tail, presumably entering the bacterial
cytoplasm, and is thus ideally suited for this function
(Roessner and lhler, 1984).

Since the vast majority of bacterial cells are in a dor-
mant or nongrowing state in their natural environment
(Kell and Young, 2000), the use of such a portable alarm
clock presents a clever viral strategy and might be ex-
pected to be amore widespread phenomenon. Barnyard
is the only sequenced mycobacteriophage to encode
this particular motif (motif 1), but other mycobacterio-
phage tape measure proteins contain other motifs in
similar parts of their tape measures (Figure 5). These
motifs fall into two groups, one (motif 2) related to M.
tuberculosis protein Rv1115, and another (motif 3) re-
lated to M. tuberculosis Rv0320, Rv1728c, and a putative
protease of Rhodococcus equi (Figure 5C). The func-
tions of these proteins are unknown, but we predict
that they may also act in cellular signaling. Since M.
tuberculosis latency is of clinical importance it is of par-
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ticular interest whether these proteins play roles in regu-
lating the growth patterns of this pathogen (Flynn and
Chan, 2001; Shleeva et al., 2002).

Concluding Remarks

The isolation and genomic characterization of additional
mycobacteriophages reveals that these phages are sub-
stantially more varied and diverse than was apparent
from the four previously sequenced mycobacteriophage
genomes. These mycobacteriophage genomes not only
reveal the unrepresentative nature of L5, D29, Bxb1, and
TM4, but also show that the overall mycobacteriophage
diversity is greater than that represented by this group
of fourteen sequenced genomes. Thus, the extent of
mycobacteriophage diversity remains unclear and many
more genomes must be sequenced before this question
can be fully addressed. Furthermore, this situation ex-
tends to the phage population as a whole; bacterio-
phage genomics is clearly in its infancy.

The abundance of phages attests to their evolutionary
success, and their enormous diversity results from an
environment in which random recombination events
generate novel genomes. While horizontal exchange is
now recognized to play a central role in the evolution
of bacterial genomes (Ochman et al., 2000), the rampant
mosaicism of phage genomes illustrates the powerful
creativity of this process. Moreover, the variety of genes
that participate in this process is large and includes
many genes without database matches (and whose
functions are unknown) as well as many “bacterial”
genes. Some of these genes suggest that bacterio-
phages may play previously unrecognized roles in bac-
terial infections and human diseases, influencing cellular
and immune responses in addition to conferring viru-
lence determinants. Given the size and diversity of the
population, bacteriophages represent a rich and largely
uncharted territory for genomic exploration.

Experimental Procedures

Phage Isolation

Phages were isolated from the following sources: Barnyard and
Rosebush, Latrobe, PA; Bxz1 and Bxz2, the grounds near the Zebra
House and Monkey House pits respectively at the Bronx Zoo, Bronx,
NY; Omega and Corndog, Pittsburgh, PA; Cjw1, Edinburg, OH; Che8
was isolated from soil near a cow shed on the banks of Cuum
river; and Che9c and Che9d from the soil near the TB clinic of the
Tuberculosis Research Centre in Chennai, India. L5 was isolated in
Japan in the 1960’s (Doke, 1960); D29 was isolated in California in
1954 (Froman et al., 1954); TM4 was isolated in Colorado in 1984
(Timme and Brennan, 1984); and Bxb1 was isolated in Bronx, NY in
the 1990’s (Mediavilla et al., 2000). Samples of soil, compost, road-
side dirt, animal waste, and other sources were extracted with phage
buffer and plated directly on solid overlays containing 0.35% agar
and Mycobacterium smegmatis mc?155 and incubated at 37°C for
24 hr. Individual plaques were picked and purified.

Genome Sequencing and Analysis

Approximately 10 pg of purified phage DNA was sheared hydrody-
namically and repaired, and 1-3 Kbp fragments were inserted into
plasmid pBluescript. Individual clones were sequenced using an
ABI377 or ABI3100 instrument and assembled (Gordon et al., 1998).
At approximately 8-fold redundancy oligonucleotide primers were
used with genomic template to generate a single contig and resolve
sequence ambiguities. Genome termini were often identifiable as an
overabundance of clone ends and a comparison of the sequences

generated using primers annealed to ligated and unligated phage
DNA provided an unambiguous determination of the ends; no termini
could be identified for Barnyard or Rosebush and we assume these
have circularly permuted genomes. The Bxz1 genome assembled
into a single linear contig with each end having a string of G residues
that cause premature termination of sequencing reactions. PCR
amplification indicated that there are approximately 150 bp between
the unique regions that we assume are all G:C base pairs.

Rates of Divergence

The 378 bp region that is 100% identical in Che8 and Omega con-
tains 87 synonymous sites. Given that synonymous sites in bacterial
chromosomal genes with little or no codon usage bias diverge by
3% per million years, a maximal likely separation time would be
~300,000 years. However, the 46 intergenic bases experience far
less selection, likely only at the Shine Dalgarno sequences of Corn-
dog 25 and Che8 89; since these sites evolve more quickly, both
by point mutation and by insertion/deletion, this time of divergence
is an overestimate by 10-100-fold, yielding a maximal time of diver-
gence no more than 3,000-30,000 years. A caveat to these estimates
is the unknown time spent by bacteriophage particles without repli-
cation, making comparisons with bacterial rates of divergence tenu-
ous at best.
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