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Abstract 

This paper presents a new analytic model for the estimation of the trapping efficiency of two-stroke engines using an 
extremely reduced number of measured physical variables. Mainly, the model estimates the trapping efficiency 
according to the Ostwald diagram, to the molal concentration of carbon dioxide and oxygen at tailpipe and according 
to the mass flow of air and fuel. In order to provide a measure of effectiveness for the proposed model, a use case has 
been chosen. The model’s effectiveness has been evaluated comparing its outcomes with the results obtained by 
thermo-fluid dynamic simulation of the use case on a 0D-1D commercial code, whose scavenging model has been 
previously validated by an extensive experimental activity. The present study shows that, for all the cases considered, 
the model results differ no more than 11% in absolute value from the simulated ones. In brief, the accuracy of the 
model allows the estimation of the trapping efficiency for two-stroke engines with reasonable confidence, reduced 
computational effort and time and costs lower than the currently available techniques. 
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1. Introduction 

Methods for quantifying the scavenging process in two-stroke engines are usually classified into two 
main categories: measurements in motored engines and measurements in fired engines [1]. While the 
former postulates that the scavenging characteristics does not depend on the combustion process, the 
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latter depicts the process under real operating conditions in full-size engine tests. When operating in lean 
conditions, the current methods for estimating the trapping and/or scavenging efficiency are based on gas 
samples at both intake opening and exhaust closing. Although this system allows studying cyclic 
variability, yet requires to buy and install fast sampling valves close to scavenging and exhaust ports. 
Moreover, a homogeneous composition of the gaseous mixture into the cylinder must be assumed [1]. 
The aim of this paper is to describe and test a new method for quantifying the trapping efficiency for a 
two-stroke engine possibly operating in lean conditions through: the Ostwald diagram related to the fuel 
used; the measurement of the molal concentration of Carbon Dioxide and Oxygen at tailpipe; the intake 
air and fuel mass flows. 
 

Nomenclature 

E Air Excess [%] 

 Mass flow of residual air from the previous cycle [kg/s] 

 Supplied air mass flow [kg/s] 

 Fuel mass flow [kg/s] 

 Mass flow trapped into the cylinder[kg/s] 

 Mass flow at tailpipe [kg/s] 

 Combustion products mass flow [kg/s] 

 Short-circuited air mass flow [kg/s] 

 Reference air mass flow rate [kg/s] 

 Total trapped air mass flow [kg/s] 

 Fraction of the supplied air mass flow trapped into the cylinder [kg/s] 

 Theoretically required air mass flow for complete combustion [kg/s] 

 Scavenging efficiency [%] 

 Scavenge ratio [%] 

 Trapping Efficiency [%] 

 Volumetric flow rate of the gaseous species [m3/s] 

 Stoichiometric air-to-fuel ratio [-] 

 Concentration of the gaseous species at tailpipe [-] 

 Density of the gaseous species [kg/m3] 

 Molal concentration of the gaseous species referred to combustion products [-] 

2. Theory 

2.1. Definitions and notations 
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One of the indicators of the scavenging behavior of two-stroke engines is the Trapping Efficiency (TE) 
definedas [1]: 

                (1) 

where SE is the Scavenging Efficiency and SR is the Scavenge Ratio, defined as :, 
, respectively. Another important parameter is the air excessE, defined as the percentage 

difference between the total airmass flow trapped into the cylinder, mta=mtas+mar, and the air mass flow 
mth theoretically required for the complete combustion of the fuel injected into the cylinder: 

                             (2) 

2.2. Model theoretical frame 

Figure 1(a) shows the schematic model of the real scavenging process used during this work. The 
model relies on the assumption of perfect displacement originally proposed by Hopkinson [2] and later 
expanded by Benson and Brandham [3]. According to this assumption, neither exhaust gas nor residual 
air are retained into the cylinder from the previous cycle, i.e. . It results that the air charge 
completely fills the available volume and, consequently, SE is almost equal to 1. The exceeding air 
charge  is short-circuited in the tailpipe, i.e. . The analytical model proposed in 
this paper is implemented assuming first a tentative value for E. can be then written as: 

              (3) 

where  is the experimental measured fuel mass flow. The mass flow at tailpipe, ,is equal to the 
mass flow exiting the cylinder, , plus : 

            (4) 

Once   has been calculated through eq. ( 3 ),  is calculated rearranging eq. ( 4 ):  

                (5) 

Then, always rearranging eq. ( 4 )  

                (6) 

The Ostwald combustion diagram plots the theoretical relationships among the concentration of 
combustion products and andthe air-fuel ratio for a given hydrocarbon fuel. Through this 
diagram it is possible to determine, for example,  and the air-fuel ratio when the values of  and 

 are known. The Ostwald combustion diagram for Diesel fuel is shown in figure 1(b) [4]. 
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 (a) (b) 

Figure 1 (a) Schematic model of the two-stroke scavenging process; (b) Ostwald combustion diagram for Diesel fuel. Note: excess 
of air coefficient is expressed as .  

The molal concentration, for example, of carbon dioxide measured at tail pipe can be written as: 

             (7) 

where  is the volumetric flow rate of carbon dioxide, and  are respectively the volumetric flow 
rate and the density attailpipe. Assuming a reasonable value for the exhaust gas density (

) and rearranging equation (7 ), can be calculated as: 

                (8) 

The assumed value for the exhaust gas density has a negligible influence on the final outcomes. In fact, 
for all the analyzed cases reported in the following, an error lower than 0.3% was estimated. In order to 
obtain the mass concentration of carbon dioxide, , to enter into the Ostwald combustion diagram, 

can be neglected since it does not derive from the combustion process. Then, the concentration of 
carbon dioxide, , to enter into the Ostwald diagram, can be calculated as: 

              (9) 

where  is the density of the combustion product gases only, fixed equal to the exhaust gas density. The 
same procedure can be followed in order to obtain the concentration of oxygen thus obtaining: 

            (10) 

The concentrations obtained through equations (9) and (10) are used to enter into the Ostwald 
combustion diagram and to obtain the related value of air excess E’. Iterating the procedure until E’=E, it 
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is possible to calculate the actual air excess E, the actual short-circuited mass flow msc , the actual exiting 
gas mass flow meg and the actual trapped air mass mtas. Consequently, the value of TE can be calculated 
through equation (1). 

2.3. Use case and results 

In order to assess the effectiveness of the model proposed in the previous section, a set of simulations 
has been performed. The term of comparison is provided by a model implemented in AVL BOOST 
v2011.2,representing a 2-stroke Diesel engine with Uniflow scavenging system. The scavenging model 
implemented in the software has been previously validated through extensive experimental activity on 
Uniflow scavenging systems [5]. 
 
 

 

 

Fig. 2 Engine model developed in AVL BOOST v2011.2 and used as term of comparison 

The engine model is shown in figure 2 and refers to a diesel two-stroke turbo-charged engine. The 
engine is also provided with an intercooler and an intake plenum. The performed simulations comply with 
a DOE of two variables, engine speed and injected fuel mass per cylinder. The engine speed was varied in 
the range 1200-2400 rpm with a step of 200 rpm. The injected fuel mass per cylinder was varied in the 
range 35-60 mg with a step of 5 mg. 
 
 

 

 

Fig. 3. Scatter plot of trapping efficiency error versus actual scavenging efficiency. 

(1 - compressor)

(5 - turbine) (3 - plenum)

(4 - cylinders)

(2 - aftercooler)
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In Figure 3, the error between TE predicted by the proposed model and BOOST software are plotted as 
a function of SE predicted by the software. As a general remark, the analytic model shows a good 
predictive capability with a maximum error of 11.6%. The strongest assumption of the model based on 
Ostwald diagram is that SE = 1. Thus, it is fairly reasonable that when actual SE is far from unity, the 
model shows greater error. In fact, as SE gets close to unity, the error dispersion has a mean value close to 
0.0% and an absolute error almost always lower than 5.5%. Instead, as SE becomes less than 85,0%, the 
error rises up. Interestingly, the error has linear drift to negative values, meaning that the analytical model 
tends to underestimate TE. 

3. Conclusion 

In this paper, a new method for quantifying the trapping efficiency for a two-stroke engine possibly 
operating in lean conditions is described and tested. The method is based on the measurement of the 
molal concentration of carbon dioxide and oxygen at the exhaust and of the intake air and fuel mass 
flows; moreover, the assumption of the validity of the Ostwald diagram related to the fuel used is 
required. The results obtained implementing this method have been compared with those obtained 
through the thermo-dynamic simulation of a two-stroke Diesel engine in which a model for the 
scavenging process suitable for Uniflow systems was applied. The difference between the two values is 
always lower than 11% and increasing as the scavenging efficiency decreases. This observation suggests 
an approach for further improvements of the method. On the other hands, its easiness makes it suitable 
whenever a quick estimation of the average – not cycle-to-cycle – trapping efficiency is required. 
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