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Abstract
Several data support a central role for angiogenesis in breast cancer growth and metastasis. Observational studies
have demonstrated that microvascular density (MVD) is a prognostic factor in invasive breast cancer, whereas
others reached the opposite conclusion. Vascular endothelial growth factor is the most important angiogenic
factor with proven significance in breast cancer, as it has been assessed in both experimental and clinical studies.
Triple-negative breast cancer (TNBC) is a type of breast cancer which lacks estrogen, progesterone, and HER-2/neu
receptors. MVD in both basal-like and TNBC is significantly higher than in non–basal-like and non-TNBC. In breast
cancer and other malignancies, the development of agents that inhibit tumor angiogenesis has been an active area of
investigation. In TNBC, clinical trials combining targeted agents and chemotherapy have failed to show substantial
survival improvement. There is evidence that patientswith TNBCmay have a greater probability of obtaining somekind
of clinical efficacy benefit from bevacizumab-based therapy.
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Angiogenesis in Breast Cancer
Breast carcinoma is a heterogeneous tumor made up of different cell
clones, with different growth rates and metastatic potentials. The
most important parameters which determine the prognosis of breast
carcinoma are thought to be tumor size and grade, presence of lymph
node metastasis, hormonal receptor status, and c-erb2 [1]. Breast
tumors have been classified based on their gene expression profile and
immunohistochemical expression of hormone receptors, HER2,
cytokeratin 5/6, epidermal growth factor receptor (EGFR), p53, and
BCL-2 [2].
Several data support a central role for angiogenesis in breast cancer

growth and metastasis. Observational studies have demonstrated that
microvascular density (MVD) is a prognostic factor in invasive breast
cancer, whereas others reached the opposite conclusion [3–5]. Breast
cancer with high MVD have been found to have significant
association with larger tumor size, high grade, lymph node metastasis,
and poor prognosis [6–9]. Gasparini et al. [10] found a significant
correlation between MVD and metastatic disease, recurrence-free
survival, and overall survival (OS) in early breast cancer patients
independent of their lymph node status. In a systematic review of the
literature and meta-analysis, Uzzan et al. [11] found a statistically
significant inverse relationship between angiogenesis, assessed by
MVD, and survival, confirming that human invasive breast cancer is
an angiogenesis-dependent malignancy.

Angiogenesis is important in the transformation of hyperplastic
in situ epithelium to invasive carcinoma. In 1970, Gullino's group
[12–15] observed that experimental breast cancer in rat and mouse
gave rise to marked breast angiogenic activity that was lacking in adult
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gland. Moreover, just like the hyperplastic and dysplastic breast
lesions more frequently subject to malignant change, premalignant
lesions also induce a strong vasoproliferative response long before any
morphological sign of malignant transformation can be observed.
Normal murine mammary tissues only rarely induce neovasculariza-
tion, whereas tissues from 30% of hyperplastic alveolar nodules and
from 90% of murine mammary tumors are strongly angiogenic [14].
Multiple angiogenic factors are commonly expressed by invasive
human breast cancers; at least six different proangiogenic factors,
including acidic and basic fibroblast growth factor (bFGF),
transforming growth factor beta-1 (TGFβ-1), platelet-derived
endothelial cell growth factor, placenta growth factor, and pleio-
trophin, have been identified, with the 121–amino acid isoform of
vascular endothelial growth factor (VEGF) predominating [16].

Among the inflammatory cells involved in breast cancer, mast cells
play a crucial role favoring angiogenesis and tumor progression. Mast
cells are attracted in the tumor microenvironment by stem cell factor
secreted by tumor cells and produce several angiogenic factors,
including VEGF, bFGF, interleukin-8, and TGFβ-1, as well as matrix
metalloproteinases, which promote tumor vascularization and
invasiveness, respectively [17]. Kankkunen et al. [18] observed that
significant increases in mast cell counts in breast carcinoma versus
benign lesions are due to tryptase-containing mast cells. Moreover,
tryptase-positive mast cells are significantly more numerous in the
zone of invasion than elsewhere in malignant lesions. Breast cancer
patients with metastases in the axillary nodes reveal greater numbers
of mast cells in all nodes examined compared with patients without
metastasis [19]. We have demonstrated that angiogenesis increases in
parallel with the number of tryptase-positive mast cells and that their
values are significantly higher in sentinel lymph nodes with
micrometastases compared with those without [20].

VEGF in Breast Carcinoma
VEGF is the most important angiogenic factor with proven
significance in breast cancer, as it has been assessed in both
experimental and clinical studies. VEGF mRNA and/or protein
expression has been detected at low level in normal human mammary
gland [21]. VEGF induces tumor cell proliferation in mice models of
breast cancer, and increased tumor proliferation is observed in
transgenic mice with VEGF165 targeted to mammary epithelial cells
under the control of mouse mammary tumor virus promoter 23 or in
xenograft mice model generated by the injection of mammary tumor
cells transfected with a VEGF165 or VEGF189 plasmid [22]. VEGF
has been measured in sera and was detected at higher levels in sera of
patients with stage III breast cancer as compared with stage I or II
breast cancer and in healthy subjects [23,24]. Several studies have
found an inverse correlation between VEGF expression and overall
survival in both node-positive and node-negative cancer [10,25].
Moreover, increased VEGF expression has been associated with
impaired response to tamoxifen or chemotherapy in patients with
advanced breast cancer [26]. In fact, the two antiestrogens tamoxifen
and toremifene, which are both used in the treatment of breast cancer, did
not inhibit the estrogen-induced increase of VEGF mRNA expression.

An elevated number of VEGF receptor-3 (VEGFR-3)–positive
cells were found in invasive breast cancer, and the expression of
VEGFR-3 becomes upregulated in the endothelium of angiogenic
blood vessels (Figure 1) [27]. The HER2 subtype is one of the most
aggressive molecular variants of breast cancer, frequently associated
with lymph node metastasis and poor prognosis. The aggressive
behavior of these tumors may be explained in part by VEGF-C
expression in tumor cells (Figure 1) [28].

In human breast cancer, the expression of VEGF correlates with
mutant p53, and the combination of both mutated p53 and high
VEGF levels has been associated with poor outcome [29]. The role of
VEGF, hypoxia inducible factor-1 alpha (HIF-1α), and MVD in
BRCA-1-2 carrier and BRCAX breast cancer has been retrospectively
evaluated [30], and an increase of VEGF, HIF-1α expression, and
MVD (Figure 2) in BRCA-1-2 carrier and BRCAX compared with
the sporadic control group has been demonstrated. Other authors
have demonstrated a relationship between BRCA-1 mutation and
VEGF and HIF-1α expression in breast cancer patients [31,32] and
their prognostic significance [33,34]. Bos et al. [35] investigated the
correlation between the level of HIF-1α overexpression and VEGF,
MVD, estrogen receptor, and p53 expression and demonstrated that
the level of HIF-1α increases as the pathologic stage increases and is
higher in poorly differentiated and more aggressive lesions than in the
corresponding type of well-differentiated lesions. Increased levels of
HIF-1α are associated with increased proliferation and increased
expression of estrogen receptor and VEGF. Moreover, MVD and
HIF-1α phenotype have a prognostic value in lymph node–positive
and –negative breast cancer [36–38] and in invasive ductal carcinoma
of the breast [9,11].

Angiogenesis in Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC) is a type of breast cancer which
lacks estrogen, progesterone, and HER-2/neu receptors. Its features
include young age, advanced stage at presentation, unfavorable
histopathology, grade III, high proliferative index, lack of tubule
formation, and high rate of metastases to distant organs, including
lung and brain [39]. TNBC may be dissected into distinct subsets,
including the basal-like and claudin-low subtypes, both of which have
unique genetic characteristics and treatment responses. TNBC causes
mortality when it metastasizes, and the average survival of advanced
TNBC is 2 months, much shorter than the duration of survival
observed in other subtypes of advanced breast cancer. Therapeutic
treatment options for grade IV TNBC are very limited and often
unsuccessful.

MVD in both basal-like and TNBC is significantly higher than in
non–basal-like and non-TNBC [40]. Both basal-like and TNBC are
no different in terms of the initial route of dissemination from non–
basal-like and non-TNBC in that such dissemination occurs through
lymph vessels [38]. Patients with operable TNBC show significantly
higher levels of VEGF and shorter survival times [41]. Compared
with non-TNBC, patients with TNBC had significantly higher
intratumoral VEGF levels and significantly shorter recurrence-free
survival and OS with a shorter time from diagnosis to relapse and
from relapse to death [41]. Levels of VEGF correlated with poor
outcome irrespective of tumor size, nodal status, histologic grade, age
of patient, or type of relapse. Ray et al. [42] showed that VEGF
induction in TN MDA-MB-231 breast cancer is regulated by serum
amyloid A activating factor 1 transcription factor. Finally, it has been
shown that TNBC correlates with higher lymphatic MVD and
expression of VEGF-C and -D [43].

Antiangiogenesis in Breast Cancer
In advanced breast cancer, bevacizumab improved response rate but
not progression-free survival (PFS) or OS when added to second-line
capecitabine [44]. However, another phase III study demonstrated



Figure 1. Immunohistochemical expression of VEGF-C (A), and VEGFR-3 (B) in bioptic samples of human breast cancer (courtesy of
Prof. Anca Maria Cimpean).
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that the addition of bevacizumab to paclitaxel resulted in extension of
PFS, but not OS, in metastatic breast cancer [45].
Three further phase III trials of bevacizumab in combination with

chemotherapy in HER-2–negative metastatic breast cancer demon-
strated an extension of PFS, but no effect on OS, when compared
with chemotherapy alone [46–49]. The Ribbon 2 trial investigated
the combination of bevacizumab with the physician's choice of
capecitabine, a taxane (paclitaxel, nab-paclitaxel, or docetaxel),
gemcitabine, or vinorelbine as second-line treatment for metastatic
HER2 breast cancer [46]. As consequence of these disappointing
results, the Food and Drug Administration withdrew its approval for
bevacizumab in this indication. The efficacy of bevacizumab plus
chemotherapy as neoadjuvant therapy for primary breast cancer
compared with neoadjuvant chemotherapy alone has been reported [50].
In all studies of VEGFR tyrosine kinase inhibitors (TKIs), no OS

benefit and no PFS effect have been seen, and adjuvant therapy was
not beneficial. Sunitinib had shown single-agent activity in the
treatment of metastatic breast cancer [51], and three phase III studies
examining the addition of sunitinib to chemotherapy and one
comparing single agent sunitinib to chemotherapy all failed to
demonstrate improvement in PFS or OS [48,49,52–54].
In neoadjuvant trials, a 5% improvement in pathological complete

response has been described when bevacizumab was combined with
chemotherapy [55,56]. Axitinib has significant benefits only in
patients who have previously received paclitaxel [57]. The pazopanib
Figure 2. Immunohistochemical expression of VEGF (A), HIF-1α
plus paclitaxel group has a significantly longer PFS than the
paclitaxel-only group [58].

Antiangiogenesis in TNBC
Potential approaches in TNBC disease have included targeting
VEGF, EGFR tyrosine kinases, and poly(ADP-ribose) polymerase 1.
In the subgroup analysis, patients with TNBC had considerable
improvement in overall response rate (ORR) and in the E2100 and the
Avado trials [46,50], but no significant improvement was observed in
the Ribbon 1 trial [49,50]. Ameta-analysis was performed that included
621 patients with TNBC enrolled in these three trials. A significant
improvement was observed in PFS and ORR with the combination
therapy; however, no OS benefit was observed [59]. In the Ribbon 2
trial, in the subgroup analysis of 159 patients with TNBC, compared
with chemotherapy alone, the addition of bevacizumab significantly
improved ORR and PFS. There was a trend toward improved OS [60].

In the neoadjuvant setting, randomized studies of bevacizumab in
combination with chemotherapy have yielded conflicting results. In the
GeparQuinto trial, the rate of pathological complete response (pCR) was
significantly higher with the addition of bevacizumab to the epirubicin plus
cyclophosphamide followed by docetaxel regimen [61]. The benefit was
restricted to the TNBC subpopulation, compared with a pathological
complete response (pCR) rate of 7.7% and 7.8% with and without the
addition of bevacizumab, respectively, among 1262 patients with HRþ
tumors. However, these findings were not reproduced in theNSABP B-40
(B), and CD31 (C) in bioptic samples of human breast cancer.
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trial [51]. In patients withmetastatic TNBC, single-agent sunitinib led to a
worse PFS than standard care in a phase II study [61].

Concluding Remarks
In breast cancer and other malignancies, the development of agents
that inhibit tumor angiogenesis has been an active area of
investigation. Strategies to inhibit tumor vessel growth include the
use of bevacizumab, a monoclonal antibody targeting VEGF-A, and
small-molecule TKIs. These targeted agents have been studied in
combination both as monotherapies and in combination with
cytotoxic chemotherapy. Combination of angiogenesis inhibitors
with standard chemotherapy regimens in metastatic breast cancer so
far has resulted in modest clinical efficacy, and TKIs have not shown
efficacy in breast cancer treatment until today.

As TNBC cannot be treated with either hormonal therapy or
anti-HER2 agents, standard chemotherapy is based on anthracycline
and taxane combinations for the first line of treatment, followed by
capecitabine at the time of progression [62]. In TNBC, clinical trials
combining targeted agents and chemotherapy have failed to show
substantial survival improvement. However, with chemotherapy alone,
the residual disease risk in the breast and lymph nodes remains
substantially higher, between 30% and 40% [63]. There is evidence that
patients with TNBC may have a greater probability of obtaining some
kind of clinical efficacy benefit from bevacizumab-based therapy [51,60].

Future antiangiogenesis trials should be more regimen, dose, and
patient specific because these treatments act like targeted therapies in
breast cancer and need to be more individualized. In this context, in
order to provide a truly targeted therapy, it is vital to identify subsets
of patients who display predictive markers for response and select
these patients for treatment accordingly.
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