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Reduced lateral mobility of a fluorescent lipid analog in cell 
membranes of rat fibroblasts transformed by simian virus 40 
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In order to study the difference between normal and transformed cells, lateral motion of fluorescent molecules embedded 
into cell membranes of rat clonal fibroblasts and its SV40-transformed derivative cells was measured by the FPR techni- 
que. The lateral diffusion coefficient of a fluorescent fatty acid analog, F 18, was smaller in transformed cells than normal 
cells. This indicates that the lipid phase of membranes from transformed cells is less fluid than that from normal cells. 
On the other hand, the lateral diffusion coefficient of S-F-concanavalin A was identical in both cells. These results suggest 

that the mobility of different molecules on the membranes is controlled by different mechanisms. 

Virus-induced transformation; Fluorescence photobleaching recovery; Lateral motion; (Fibroblast) 

1. INTRODUCTION 

Transformation of  cells by virus induces many 
changes such as altered morphology and cyto- 
skeleton, reduced fibronectin synthesis, altered 
structure of  glycolipids and glycoproteins, and 
release from contact inhibition. In the mechanisms 
of  these phenomena, it is plausible that the 
dynamic properties of  cell membranes such as 
membrane fluidity and mobility of  molecules may 
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play important roles. Take contact inhibition for 
example, fluid membranes are energetically stable 
for close contact. Indeed, the mobility of  lipophilic 
fluorescent molecules in the membranes of  virus- 
transformed fibroblasts is lower than that of  nor- 
mal cells [1,2]. On the other hand, the mobility of  
concanavalin A bound to surface membranes of 
fibroblasts is higher in transformed cells [3]. How- 
ever, most of  these data are based on the 
measurements of  rotational mobili t~ Rotational 
mobility is composed of  the over-all rotation of  
molecules as well as side chain rotation. Also, wob- 
bling, twisting and bending motion influence the 
measurement of  rotational mobility. On the other 
hand, lateral mobility is composed of  only over-all 
motion. In order to obtain more clear information 
on the dynamic properties of  cell membranes, com- 
bination of  the data of  rotational and lateral 
mobility is required. The lateral mobility of FI8 
and S-F-concanavalin A is very sensitive to the 
structural changes of  cell membranes from 
neuronal cells [4-6] and muscle cells [7]. Here we 
report that the lateral mobility of  fluorescent 
molecules on cell membranes measured by the FPR 
technique is different depending on probes used: 

: the lateral mobility of  fluorescent fatty acid analog 
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was lower in t ransformed fibroblasts, whereas, the 
lateral mobility of  S-F-concanavalin A remained 
unchanged. 

2. M A T E R I A L S  AND M E T H O D S  

2.1. Cell lines and cell culture 
The 3Y 1-B clone 1-6, a cell line of  Fisher rat embryonic fibro- 

blasts, and a derivative line W-3Y-23, t ransformed by SV40, 
were kindly provided by Dr Yamaguchi ,  Institute of  Medical 
Science, University of  Tokyo [8]. The cells were grown on cover- 
slips in plastic dishes in Eagle 's  min imum essential medium con- 
taining I0o70 new born calf serum and antibiotics (I00 U 
penicillin, i00 ,ug streptomycin and 60/~g kanamycin per ml of  
medium).  The culture was performed in a humidified at- 
mosphere of  95% air and 5°70 CO2 at 37°C. 

2.2. Fluorescent probes 
A fluorescent analog of fatty acid, F 18, was synthesized as in 

[9]. The preparation of S-F-concanavalin A was described in [7]. 

2.3. Labelling o f  cells 
Ceils grown on coverslips for 2 days were washed twice with 

Hanks '  buffer.  The washed cells were incubated in Hanks '  buf- 
fer containing 10/zM F18 for 2 rain at 37°C or in Hanks '  buffer  
containing 200/zg/ml of S-F-concanavalin A for 15 rain at 
37°C. Then the coverslips were washed 4 times with Hanks '  buf-  
fer. They were set in a temperature-controlled quartz container 
and were placed on the stage of  a microscope. 

2.4. Measurements 
The lateral mobility of  fluorescent molecules was measured 

by FPR.  Instrumental  description and analysis are given in [4]. 
The diameter of  the bleached area was 3.8/zm using a 100 × ob- 
jective lens and a pinhole. In order to reduce the effect of  rota- 
tional motion,  a polarizer and a 1/4 wavelength phase plate 
were inserted along the path of  exciting light as described in [4]. 
Only the uniformly labelled regions of cell surfaces were selec- 
tively measured in order to reduce the effect of  aggregation and 
internalization of  the probes. Recovery fraction, f ,  and lateral 
diffusion coefficient, D, were determined using following equa- 
tions: 

f = ( I inf  - -  I b l ) / ( l i n i  - -  lb l )  

D = 0.22wE/tl/2 

li,i, Ib~ and li,f are fluorescence intensities before bleaching, just  
after bleaching and a long time after bleaching when recovery is 
saturated,  respectively; w is the radius of  bleached area and tl/2 
is the recovery half-time. 

3. RESULTS 

Table 1 shows the lateral diffusion coefficients 
of  F18 embedded into cell membranes of  normal 
and SV40-transformed fibroblasts. These values 
were close to those of membrane lipids [10,11] and 
were almost identical to those obtained in other 

Table 1 

Lateral diffusion coefficient and recovery fraction of F18 la- 
belled rat clonal fibroblasts, 3Y1-B, and SV40-transformed 

cells, W-3Y-23 

D25 (cm2/s) f Number  of  cells 
measured 

3Y1-B 
(normal) (2.1 +0.3)  × 10 -9 0.98 + 0.03 9 

W-3Y-23 
(transformed) (1.4 + 0.4) × 10 -9 0.96 ± 0.05 14 

D25 is the lateral diffusion coefficient at 25°C. All measure- 
ments  were completed within 40 min after labelling. The dif- 

ference in D25 is significant by P < 0 . 0 1  

cells [4-7]. Therefore,  the motion of F18 may re- 
present that of  membrane  lipids and the membrane  
fluidity, as described by the lateral mobility of  F18, 
was similar in various cell types. It is clear that the 
lateral diffusion coefficient of  FI8 was smaller in 
t ransformed cells. On the other hand, recovery 
fraction, f ,  was almost 100o70 with no difference 
between normal and SV40-transformed cells. This 
means that all FI8  molecules are mobile and only 
their lateral mobility is reduced in t ransformed 
cells. 

Table 2 shows the lateral diffusion coefficients 
of  S-F-concanavalin A labelled cell membranes  of  
normal  and SV40-transformed ceils. According to 
table 2, the mobility was about  10 times less than 
that of  FI8.  This suggests that the motion of S-F- 
concanavalin A represents that of  membrane  pro- 
teins rather than membrane  lipids. In contrast to 
F18, the lateral mobility of  S-F-concanavalin A 
showed no difference between normal and trans- 
formed cells. It should be noted that despite the 

Table 2 

Lateral diffusion coefficient and recovery fraction of  S-F- 
concanavalin A labelled rat clonal fibroblasts, 3YI-B, and 

SV40-transformed cells, W-3Y-23 

D25 (cm2/s) f Number  of cells 
measured 

3Y1-B 
(normal) (1.3 _+ 0.4) × 10- ~0 0.50 _+ 0.11 10 

W-3Y-23 
(transformed) (1.2 +__ 0.6) × 10-10 0.52 + 0.12 11 

D2s is the lateral diffusion coefficient at 25°C. All measure- 
ments were completed within 40 min after labelling 
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fact that visible patches on the cell surface were 
avoided in measurements, only half of the S-F- 
concanavalin A was mobile. 

4. DISCUSSION 

Here, the lateral mobility of  fluorescent probes 
embedded in cell membranes of  normal and SV40- 
transformed fibroblasts has been compared. If  the 
probes are freely moving in the membrane, its 
mobility is determined by the fluidity around the 
probes, the volume of  the probes and temperature. 
In this case, both lateral and rotational measure- 
ments give similar tendencies. According to table 1, 
the lateral diffusion coefficient of  F18 was smaller 
in transformed cells than in normal cells. Previous 
studies showed that the rotational mobility of  lipo- 
philic fluorescent probes was reduced in trans- 
formed fibroblasts [1,2]. Since both the rotational 
and lateral mobility of lipophilic probes were 
reduced in transformed fibroblasts, it can be con- 
cluded that the lipid phase of  cell membranes from 
transformed fibroblasts has a lower fluidity. 

What is responsible for this lower membrane 
fluidity? In neuroblastoma cells [12] and in lym- 
phocytes [13], parallel correlation between reduced 
mobility of  fluorescent probes and increased 
cholesterol content was reported. It is known that 
SV40-transformed fibroblasts contain more choles- 
terol than normal cells [2], therefore, the increased 
cholesterol content may be one reason for reduced 
membrane fluidity in transformed fibroblasts. 

The lateral motion of  S-F-concanavalin A did 
not differ between normal and transformed fibro- 
blasts in the present experiment. On the other 
hand, Inbar [3] reported that rotational motion of  
F-concanavalin A was faster in SV40-transformed 
fibroblasts. The apparent inconsistency from our 
result can be explained as follows. (i) For the 
measurements of  rotational motion of  F- 
concanavalin A, the fluorescence anisotropy tech- 
nique was used. Due to the short fluorescence life 
time of fluorescein (less than 5 ns), only side chain 
motion of  F-concanavalin A was measured in their 
experiments. For translational motion, however, 
the entire surface of  S-F-concanavalin A is in- 
volved. Therefore,  friction in a limited region 
around concanavalin A may be reduced in trans- 
formed fibroblasts, and this reduction will not in- 
fluence greatly the over-all motion of  concanavalin 

A. (ii) It is known that cell structure is dependent 
on whether cells are attached or not to the 
substrate. In Inbar's experiment, the cells were 
dissociated from substrate by EDTA or trypsin, 
while in the present experiment, the measurements 
were performed in attached state. This difference 
may be reflected in the motion of  S-F-concanavalin 
A. (iii) Both concanavalin A and succinyl con- 
canavalin A are easily aggregated when they are 
bound to cell membranes. In the present experi- 
ment, visible aggregates of S-F-concanavalin A 
were observed at cell surfaces and around nuclei. 
These large aggregated regions were avoided and 
uniformly labelled regions were selectively 
measured. In Inbar's experiment, however, this 
discrimination was not performed. Therefore, not 
only the side chain motion of  freely mobile F- 
concanavalin A, but also the motion within the ag- 
gregated region contributed to the averaged rota- 
tional mobility. The mobility and /or  the relative 
fluorescence intensity in the aggregated region may 
change upon transformation. This may be the third 
reason. 

Nicolson [14] reported that the lateral mobility 
of  F-concanavalin A is increased on SV40-trans- 
formed fibroblast cell membranes. His conclusion 
is also inconsistent with the present result. He 
measured the lateral mobility by observing patch 
formation. This method is indirect and the results 
are not necessarily explained only by lateral mobili- 
ty. The concentration of  concanavalin A receptors 
and the ability of  concanavalin A and receptor 
complexes to aggregate also contribute to patch 
formation. In our cell lines, a significant difference 
in patch formation between normal and transform- 
ed cells was not observed. 

In the present experiment, lateral motion of  FI8 
showed the reduced mobility in transformed cells. 
On the other hand, that of  S-F-concanavalin A 
showed no difference. How can these results be ex- 
plained? Unfortunately, we do not have any clear 
reasons at this stage. However, the following can 
be speculated. According to Koppel et al. [15], 
lateral motion of  membrane proteins is controlled 
by matrix structures just beneath cell membranes 
(may be membrane undercoat or cytoskeletal struc- 
tures). If this is true, fluidity of  membranes may 
decrease upon transformation but not the fluidity 
of  the matrix structures. 

The cells, which exhibit contact inhibition, are 
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usually tightly adhered to one another. In this case, 
fluid membranes may be energetically more 
favourable than the hard membrane.  This may be 
one of  the biological reasons why normal fibro- 
blasts have more fluid membranes than transform- 
ed ones. Indeed, in myogenic cells, the mobility of  
the molecules in the cell membranes increased prior 
to cell fusion when the cells were in close contact 
[7]. 
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