
DISCRETE 
MATHEMATICS 

ELSEVIER Discrete Mathematics 140 (1995) 167-183 

The 24 symmetry pairings of self-dual maps on the sphere 

Brigit te Servat ius* 'a '  1, H e r m a n  Servat ius  b 

a Mathematical Sciences, WP1 Worcester MA 01609, USA 
b Applied Mathematics Division, M1T Cambridge MA 02139, USA 

Received 19 November 1991; revised 10 August 1994 

Abstract 

Given a self-dual map on the sphere, the collection of its self-dual permutations generates 
a transformation group in which the map automorphism group appears as a subgroup of index 
two. A careful examination of this pairing yields direct constructions of self-dual maps and 
provides a classification of self-dual maps. 

1. Introduction 

The concept of duality is essential to the study of a variety of finite combinatorial 
objects, e.g. planar graphs, polyhedra, simplicial complexes and matroids. It is natural 
to consider those objects which are self-dual, that is, isomorphic to their duals. The 
existence of several classes of self-dual graphs, for instance wheels and hyperwheels, 
see Figs. 23 and 16, was known to Kirkman [9], and in [11] it was shown that large 
self-dual graphs could be constructed by patching together a planar graph and its 
dual. Recent interest in this topic was sparked by questions of Griinbaum and 
Shephard [6], the examination of which led to several methods for the construction of 
self-dual polyhedra [1], and, more generally, self-dual graphs [12]. All of these 
constructions involve a sequence of moves which simultaneously modify the object 
and the dual object so as to preserve an isomorphism between them. An examination 
of self-dual tilings in the plane is contained in [2]. 

Grfinbaum and Shephard's question involved the self-dual permutat ion,  which is the 
permutation on the components of the self-dual object defined by composing the 
isomorphism onto the dual with the dual correspondence. Since the self-dual permu- 
tation reverses the dimension of the elements, it does not define an automorphism, 
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however, its square is an automorphism, and a common mistake has been to suppose 
that the square is in fact the identity. Grfinbaum and Shephard defined the rank of 
a self-dual object to be the smallest order of any of its self-dual permutations, and 
asked if the rank of a self-dual polyhedron could be greater than 2. An affirmative 
answer was given by Jendroi" IT], who also identified which symmetries could be 
exhibited by self-dual polyhedra [8]. 

In this paper we study the self-dual permutations directly in the form of the self-dual 
pairing. As a result, not only can questions of rank and symmetry be unified, but 
a complete classification is possible, yielding direct, non-recursive constructions. 

As in [12], the objects will be spherical maps, although the results apply to 
polyhedra as well. Let F=(V,E)  be a finite connected planar graph, and let p be 
a tame embedding of F into the sphere, S 2. Two such embeddings, p and p' are 
regarded as equivalent if p' =fp for some homeomorphism f of S 2. If F is a simple 
3-connected graph, then all embeddings of F are equivalent. S 2 - p ( F )  consists of 
a disjoint union of open cells whose closures in S 2 are the faces of a realization of S 2 as 
a finite CW-complex called a map. An isomorphism of maps will be understood to be 
an isomorphism of cell complexes and we note that the CW-complex arising from an 
embedded graph will not in general be regular. It is well known that a graph is 
3-connected if and only if the complex can be realized as a polyhedron [3], however 
we make no connectivity assumptions. We will use the following lemma, which seems 
to be well known though nowhere explicitly stated. 

Lemma 1 (Straightening lemma). I f  Aut(G) is the group of map automorphisms of the 
map G, then the map can be redrawn so that Aut(G) acts as a group of isometries on S 2. 

Proof. If a map is subdivided by adding a new vertex in the interior of each edge and 
face, and adding radial arcs from each new face vertex to each vertex on the boundary 
of that face - -  analogous to the barycentric subdivision of simplicial complexes 
- -  then the same group acts on the subdivided complex, and we may thus assume 
without loss of generality that every fixed point of the action lies on an edge or vertex 
of the map. 

Aut(G) is a finite group acting on the sphere, so, see [5, p. 273], there is a Cayley 
graph for Aut(G) cellularly embedded in S 2 so that the action is induced by the regular 
action of Aut(G) on its Cayley graph. We may assume, by subdivision, that this Cayley 
graph is a subcomplex of G. By [5, Theorems 6.3.1 and 6.3.2] we see in fact that it must 
be the Cayley graph of one of the finite spherical isometry groups with generating set 
chosen such that the Cayley graph is either 3-connected, or a single cycle, and for 
which there is an embedding so that the action on the Cayley graph is by isometries, 
see [4, Sections 4.2 and 4.3]. We thus straighten the original map so that the Cayley 
graph conforms to this embedding. Consider one of the cells defined by the Cayley 
graph. Its boundary is a regular n-gon and the action on this boundary determines the 
isotropy subgroup of this cell. The action on the boundary is by rotations and 
reflections, and hence the map within this cell may be straightened so that the isotropy 
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group acts isometrically on this face, and straightening the translates of this cell 
compatibly, and doing the same with the other cells, we may straighten the whole 
map. 

All the edges in the embedding given from Lemma 1 need not be geodesics, for 
example if there are loops or parallel edges. 

2. Self-dual pairings 

Any map G determines a dual map, G*, obtained by placing a vertex f*  in the 
interior of each facefand, if two facesfandf '  meet along an edge e, then an edge e* is 
drawn connctingf* and f ' *  such that e* intersects G only once transversely in the 
interior of the edge e. A map G is said to be self-dual if G and G* are map isomorphic. 
It follows that if a map G is self-dual, then its graph is self-dual, that is, the two 
skeletons of G and G* are isomorphic, however not all self-dual graphs arise in this 
manner [13]. 

Given a map G=(V,E,F), we can perform the dual construction and regard the 
superposition of the dual map with the original map as a single map, G2, whose vertex 
set consists of V u F* u (E c~ E*), so the edges of G2 are the "half-edges" of G and 
G*, and every face of G2 is a quadrilateral. We will color the half-edges in 
G2 originating from G and G* differently, say red and blue respectively. The following 
is clear. 

Proposition 1. Every map isomorphism tS from G to G* induces a unique color reversing 
automorphism 62 of G 2 and conversely. 

Given a self-dual map G, we define Dual(G) to be the group of all color preserving 
and color reversing map automorphisms of G2. If G is a self-dual map, then the 
subgroup Aut(G) of all color preserving map automorphisms of G2, which is equiva- 
lent to the group of map automorphisms of G, has index 2 in Dual(G). The other coset 
of Aut(G) in Dual(G) comprises the set of self-dualities of G and we call the inclusion 
Dual(G)t>Aut(G) the self-dual pairing of G. By Lemma 1, both Dual(G) and Aut(G) 
belong to the collection of finite groups ofisometries of S 2. These are listed in Fig. 1 by 
their symbol, see [4], together with a schematic for their fundamental regions, in 
which each rotation is indicated by a small circle at a pole, a rotatory reflection is 
indicated by an arrow on the edge opposite to the small circle, and all unmarked edges 
indicate reflections. The value at each vertex indicates the number of regions which 
meet there in the spherical tessellation. Jendrol [8] enumerated the possible symmet- 
ries of self-dual polyhedra, that is, identified all possibilities for Aut(G). We will see, 
however, that there are examples of self-dual polyhedra which have isomorphic 
symmetry groups, but which have different self-dual pairings, e.g., the groups Dual(G) 
are not isomorphic. By the same token, there are self-dual polyhedra for which 
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Fig. 1. The finite groups of the sphere. The number below the group symbol is the order of the group, and 
the illustration on the right of the first seven panels indicates how the fundamental region, in which is drawn 
a 'p', is transformed by the group. 

Dual(G) - Dual(G') but Aut(G) ~ Aut(G'). For a complete structure classification, 
therefore, it is necessary to consider the entire pairing. 

The remainder of this section is devoted to a proof of Theorem 1, which enumerates 
the possible pairings Dual(G)~Aut(G), and we will show how each pairing may be 
conveniently denoted by marking the schematic for the fundamental region with 
double circles, lines and arrows if the corresponding rotation, reflection or flip 
rotation is a self-duality. 

Theorem 1. Every self-dual pairing belongs to one of  the 5 families [2, q] t>[q], 
[2, q] + t>[q] +, [2 +, 2q] ~[2q] ,  [2, q + ] c>[q] + or I-2 +, 2q + ] t>[2q] +; or is one o f  the 19 

pairings [2] t>1-1]; [2] ~ [2 ]  +, 1-4] ~[2] ,  [2] + ~--[1] +, [4] + t>[2] +, ['2, 2] t>1-2, 2] +, 
E2,43>[2+,4],  [2, 23 c>[2, 2+], [2,43t>[2,2], [-2, 43 + ~-[2, 23 +, [-2+,4]t>[2,23 +, 
1-2+,43t>[2+,4+3, [2,4+3t>[-2+,4+3, [,-2,2+3~[-2+,2+3, [-2,4+]t>r2,2+], r2 ,2+]t> 
[1], [3, 43 t>[3, 33, [3, 43 + ~-[3, 33 +, or [3 +, 43 t>[3, 33 +. 

Lemma 2. Suppose Dual(G) contains two reflections, at least one of  which is a self- 
duality. The dihedral pairing they generate is either 
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1. [2] t>[1], where exactly one of the two reflections is a self-duality, their fixed sets 
intersecting in two points lying in the interior of two quadrilaterals; or 

2. [2] c>[2] +, where both reflections are self-dualities and their fixed sets intersect at 

two vertices of the form e n e*; or 

3. [4] t>[2], where two of the four reflections are self-dualities, the fixed sets intersect- 
ing at two vertices of the form e n e*. 

ProoL If a reflection is a self-duality, then the equator cannot cross any edge of G2, 
and may only pass through vertices of the form e ~ e*, so the fixed cells of the 
reflections appear as illustrated in Fig. 2. If there is a second self-duality reflection, its 
equator must cross the first at two vertices of the form e u e*, as in Fig. 3. If there are 
also color preserving reflections, they must have fixed sets bisecting the fixed sets of 
the self-dualities, so Dual(G) is either [4] or [2]. Thus if there are no color preserving 
reflections there can be only two color reversing reflections meeting at right angles, 
their product is a color reversing rotation of order 2 and the pairing is [2] t>[2] +, as in 
Fig. 3(b). If there are color preserving reflections, the pairing is either [21 t>[1], as in 
Fig. 3(a), or [4] t>[2] as in Fig. 3(c). [] 

Lemma 3. Suppose Dual(G) contains a cyclic group generated by a color reversing 

rotation. The cyclic sub-pairing is either 
1. [2] + t>[1] +, a color reversing rotation of order 2 whose poles are in the interior of 

quadrilaterals; or 

2. [4] + t>l'2] +, generated by a color reversing rotation of order four with poles on 
vertices in E c~ E*. 

Fig. 2. The equator of a reflection. 

a) 

[21 ~> [11 

b) 

[21 [21 + [41 [21 

Fig. 3. Dual(G) = [q]. 
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Proof. Given a color reversing rotation of G2, the only pairs of points which are 
candidates for poles are either in the interior of quadrilatrals, so that the rotation must 
be of order 2, or vertices of the form e n e*, so that the rotation must be of order four, 
as in Fig. 4. M. 

Lemma 4. The groups [3, 3], [3, 3] +, [3, 5], and [3, 5] + do not occur as Dual(G) in any 

self-duality pairing. Conversely, the remainder of the groups listed in Fig. 1 do occur. 

Proof. [3, 3] is generated by two dihedral subgroups of order six, and [3, 5] is 
generated by dihedral subgroups of order six and ten, all of which must be color 
preserving by Lemma 2. [3, 3] ÷ is generated by cyclic rotation subgroups of order 
three, and [3, 5] + is generated by cyclic rotation subgroups of order three and five, all 
of which must be color preserving by Lemma 3. Thus every element of Dual(G) is 
color preserving. 

To see that the other groups all occur, consult the list of figures in the 
appendix. [] 

Lemma 5. The self-dual pairings with Dual(G) = [2, q] are [2, q] t>[q], [2, 2] c>[2, 2] +, 
[2, 4] ~ [2  +, 4], [2, 2] ~[2, 2 +], and [2, 4] c>[2, 2]. 

Proof. If [q] is made up of only color preserving transformations, the equatorial 
reflection must be color reversing, and the pairing is [2, q] t>[q]. On the other hand if 
at least one of the reflections in [q] is color reversing, then by Lemma 2 the angles 
between the fixed sets must be either n/2 or It/4. If the angle is rt/2, then the pairing is 
generated by the reflections in the sides of a spherical triangle with three right angles. 
The case where one side only is color reversing has been enumerated as [2, 2] ~-[2] 
above. The cases where two or all three are color reversing are [2, 2] t>[2, 2] ÷ and 
[2,2] t>[2,2 +] respectively, indicated in Fig. 5(b) and (d). If the angle is 7t/4, then 
depending on whether the equatorial reflection is color reversing or not, we have 
[2, 4] t>[2 +, 4] or [2, 4] t>[2, 2], indicated in Fig. 5(c) and (e). [] 

Note that the pairings [2,2]t>[2,2] +, [2,2]t>[2,2+], and [2,2]t>[2] are all 
distinct, even though they all have the same group for Dual(G). 

[2] + t> [1] + [4] + t> [2] + 

Fig. 4. Dual(G)=[ql +. 
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Lemma 6. The self-dual pairings with Dual(G)= [2, q] + are [2, q]+t>[q-] + and 

[2, 4] + ~[2 ,  2] +. 

Proof. If the transformations in [q] + are all color preserving, the q equatorial 
rotations of order two must be color reversing, and the pairing is [2, q] + c>[q] +. The 
fundamental region is indicated in Fig. 6(a). If the rotational subgroup [q] is gener- 
ated by a color reversing rotation, it must be of order two or four, by Lemma 3. If it is 
of order two, then Dual(G) consists of the identity together with three order two 
rotations about the coordinate axes, and it is impossible to tell the 'north' pole from 
the others, and since one order two rotation is color preserving, this situation is in fact 
the same as the previous case, [2, 2-] t>[2] +. If, however, the generating color reversing 
rotation of [q] + is of order four with poles on a vertex in E n E*, half of the order two 
equatorial rotations will be color preserving and half color reversing, the pairing is 
[2, 4] + ~>[2, 2] + and we can indicate the fundamental region as Fig. 6(b). [] 

Lenuna 7. The self-dual pairings with Dual (G)=[2+ ,2q]  are [2+,2q]~>[2q], 
[2 +, 4] ~,-[2, 2] + and [2 +, 4] t>[2 + 4 + ]. 

Proof. [2 +, 2q] is of order 4q consisting of q reflections about circles equally inclined 
about the poles, q rotations about those poles, q order two rotations whose poles lie 

[2, q] t> [ql 

[2, 21 t> [2, 2+1 

[2, 21 ~ [2, 21 + [2, 41 ~ [2+, 41 

[2, 41 ~ 12, 21 

Fig. 5. Dual(G)=[2,q]. 

[2, q] + I> [q]+ [2, 41 + t> [2, 21 + 

Fig. 6. Dual(G) = [2, q] +. 
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equally about the equator, and q flip rotations about that equator. The group is 
generated by one of the reflections in [2q] and one of the order two rotations on the 
equator, the other reflections in [2q] being conjugate to the generating reflection. If all 
reflections in [2q] are color preserving, then the pairing is [2 +, 2q] ~-[2q] and the 
fundamental region is indicated in Fig. 7(a). If the reflections in [2q] are all color 
reversing, hence generating the dihedral group [4] with poles on vertices ofE n E* as 
in Lemma 2, then the pairing is [2 +, 4] ~[2,  2] + or [2 +, 4] ~-[2 +, 4 + ] depending on 
whether the equatorial rotations are color preserving or reversing, and the funda- 
mental regions are indicated in Figs. (Tb) and (c) respectively. [] 

Lemma 8. The self-dual pairings with Dual(G)=[2,q  +] are [2,q+]t:>[q]+; 
[2,4+]t:>[2+,4+]; [2,2+]t:>[2+,2+]; [2,4+]t:>[2,2+]; and [2,2+]t>[1] (Fig. 8). 

Proof. [2, q+] is of order 2q, containing q rotations and q flip rotations, generated by 
one rotation and the equatorial reflection. If the rotation generating [q] + is color 
preserving, then the equatorial reflection is color reversing, and the pairing is 
[2, q + ] ~ [ q ]  +. If the rotation is color reversing, hence of order two or four with poles 
in the interior of a quadrilateral or at vertices of E n E* respectively, the equatorial 
reflection may or may not be color reversing. If the equatorial reflection is color 

[2 +, 2q] t> 12q] [2 +, 4] I> 12, 2] + [2 +, 4] I:> [2 + , 4 + ] 

Fig. 7. Dual(G)=[2+,2q]. 

[2, q +] t~ [q]+ 

[2, 4 +] ~, [2, 2+1 

[2, 4+l t> [2 +, 4+1 [2, 2 +] e> [2 +, 2+1 

[2, 2+] t> 11] 

Fig. 8. Dual(G)=[2,q+]. 
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reversing, then the color preserving transformations are q/2 rotations and q/2 flip 
rotations, with no equatorial reflection, so the pairing is [2,4+]t>[2+,4+ 1 or 
[2,2+1 ~-[2 +, 2+1. If the equatorial reflection is color preserving, then the color 
preserving transformations are q/2 rotations and q/2 flip rotations, one of them being 
an equatorial reflection, so the pairing is [2, 4 +] ~-[2, 2+1 or [2, 2 +] t>[1]. [] 

Lemma 9. The self-dual pairing with Dual(G) = [2 +, 2q + ] is [2 +, 2q + ] t>[2ql +. 

Proof. Since Dual(G) is cyclic, the generator must be color reversing, and so the 
pairing is [2 +, 2q] t>[2q] and the fundamental region is indicated in Fig. 9. [] 

Lemma 10. The self-dual pairings with Dual(G) one of [3, 4], [3, 4] + and [3 +, 4] are 
[3, 4] t:>[3, 3]; (3, 41 + t:>[3, 3] +; and [3 +, 41 t>[3, 3] + (Fig. 10). 

Proof. The symmetry group of the cube, [3, 4], is generated by the reflections in the 
sides of a spherical triangle with angles n/2, rt/3 and 7t/4. Two reflections whose 
equators meet at angle n/3 must both be color preserving by Lemma 2, so the 
reflection in the opposite side must be color reversing and the pairing is [3, 4] t--J3, 3]. 
The rotational group of the cube [3,4] + is generated by a rotation of order three 
about two opposite corners and a rotation of order four about the centers of two 
opposite faces. The rotation of order three is color preserving by Lemma 3, so the 
rotation of order four must be color reversing, and the pairing is [3, 4] + t>[3, 3] +. The 
group [3 +, 4] is generated by reflections in the x = 0, y = 0 and x = 0 planes, together 
with rotations of order three with poles (+1, +1, +1). The fundamental region is 
a spherical triangle with angles lr/4, ~/4, and 2rt/3, with [3 +, 4] generated by a rotation 
of order three about the vertex with angle 21t/3, which by Lemma 3 is color preserving, 
and the reflection in the opposite side, which therefore must be color reversing. 
The color preserving transformations are generated by the order three rotations 
which generate the rotational group of the tetrahedron, and the pairing is 
[3+,4]t>[3,3]  +. [] 

Note that the pairings [3, 4] + t>[3, 3] + and [3 +, 4] ~[3,  3] + describe two distinct 
self-dual pairings corresponding to maps with isomorphic automorphism groups. 

[2 +, 2q +] t> [2q] + [3, 41 L> [3, 31 [3, 41 + ~> [3, 31 + [3 +, 41 r> [3, 3] ~ 

Fig. 9. Dual(G)= [2 +, 2q+]. Fig. 10. Pairings with Dual(G) acting on the cube. 
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Using the marked diagrams, it is straightforward to construct all self-dual maps 
with a given pairing. The diagram represents one region of a spherical tessellation, 
inside of which one may place any planar graph, and then place copies of the graph 
and the dual graph in the other regions according to the action of the group. If the 
graph in the marked diagram itself has some symmetry, the resulting self-dual map 
may have a larger pairing. The only difficulty is to determine the boundary conditions, 
which vary from pairing to pairing. The constructions of [11] were of this type for the 
pairing [2+,2q +] t>[1] + under different boundary conditions, and this method was 
used to construct the maps in the appendix. 

3. The rank of self-dual pairings 

We can now easily compute the ranks of self-dual maps and polyhedra, which 
clearly depend only on the pairing. 

Theorem 2. The rank of a self-dual map whose pairing is either [41 + t~-[21 + or 
[2, 4 +1 t>[2, 2 +] is four. I f  the pairing is [2 +, 2q +] ~[q]  + then the rank is 2q/s, where 
s is the largest odd divisor of q. For any other pairing, the rank is 2. 

Proof. A brief inspection of the marked diagrams for the pairings not specifically 
mentioned in the theorem reveals that each has either a color reversing reflection, or 
a color reversing rotation of order two. [4] + t:,-[21 + is generated by a color reversing 
rotation ct of order four, so the color reversing map automorphisms are 0t and 0t 3. For 
[2,4+1=,-[2,2+ 1, there is a color reversing rotation ~t of order four and the color 
preserving equatorial reflection gives additionally rotatory reflections of the same 
orders. If the pairing is [2+,2q+]t~-[q] +, then [2+,2q+ 1 is a cyclic group whose 
generator 0t is color reversing. If 0d is an odd power then the order of ~d is 
2q/gcd(q,j ). [] 

Appendix 

In the appendix we give maps which illustrate each of the 24 self-dual pairings 
(Figs. 11-34). The maps are drawn on unfolded cubes and hexagonal bipyramids, 
with each fold line indicated by a dashed line. The vertices of the map and dual map 
are distinguished by solid and hollow vertices. We note that these maps are vertex 
minimal except for Figs. 16, 21 and 26, where slightly larger maps are drawn for 
convenience. 

Polyhedral examples of each pairing may be obtained similarly, and can be found in 
[101. It is not clear whether or not each pairing has a harmonious polyhedral 
realization, i.e., such that the polyhedron is congruent to its polar with respect to 
a suitable sphere. 
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Fig. 15. E4]+t>[2] +. Fig. 16. E2,6]c>E6 ]. 

Fig. 17. [2,2]t>[2,2] ÷. Fig. 18. [2,4]t>[2+,4]. 
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Fig. 23. E2 +, 12]t::--[12]. 
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Fig.  27. 1 2 , 4 + ] t > [ 2 + , 4 * ] .  Fig. 28. [ 2 , 2 + ] ~ [ 2 + , 2 + ] .  
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Fig. 29. [ 2 , 4 + ] t > [ 2 , 2 + ] .  Fig.  30. [ 2 , 2 + ] t > [ 1 ] .  
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Fig. 31. [2+ ,12+] t>[12]  +. 
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Fig. 32. [3, 4] t>[3, 3]. 

Fig. 33. [3, 4] + t>[3, 3] +. Fig. 34. [3 +, 4] ~ [ 3 ,  3] +. 
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