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The quantization dimension function for a probability measure induced by a set of
infinite contractive similarity mappings and a given probability vector is determined.
A relationship between the quantization dimension function and the temperature function
of the thermodynamic formalism arising in multifractal analysis is established. The result in
this paper is an infinite extension of Graf and Luschgy [S. Graf, H. Luschgy, The quantization
dimension of self-similar probabilities, Math. Nachr. 241 (2002) 103–109].
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1. Introduction

The term ‘quantization’ in the title originates in the theory of signal processing and denotes a process of discretizing
signals. As a mathematical theory quantization concerns the best approximation of probabilities by discrete probabilities
with a given number of points in their support. A detailed account of this theory can be found in [3]. Given a Borel
probability measure μ on R

d , a number r ∈ (0,+∞) and a natural number n ∈ N, the nth quantization error of order r for μ
is defined by

Vn,r(μ) := inf

{∫
d(x,α)r dμ(x): α ⊂ R

d, card(α) � n

}
,

where d(x,α) denotes the distance from the point x to the set α with respect to a given norm ‖ · ‖ on R
d . We note that if∫ ‖x‖r dμ(x) < ∞ then there is some set α for which the infimum is achieved (cf. [3]). The set α for which the infimum is

achieved is called the optimal set of n-means or n-optimal set of order r for 0 < r < +∞. The upper and lower quantization
dimension of order r for μ is defined to be

Dr(μ) := lim sup
n→∞

r logn

− log Vn,r(μ)
; Dr(μ) := lim inf

n→∞
r log n

− log Vn,r(μ)
.

If Dr(μ) and Dr(μ) coincide, we call the common value the quantization dimension of order r for the probability measure μ,
and is denoted by Dr := Dr(μ). One sees that the quantization dimension is actually a function r �→ Dr which measures the
asymptotic rate at which Vn,r goes to zero. If Dr exists, then one can write

log Vn,r ∼ log

(
1

n

)r/Dr

.
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Let S1, S2, . . . , SN be a set of contractive similarity mappings on R
d with the similarity ratios respectively s1, s2, . . . , sN

for N � 2. Then for a given probability vector (p1, p2, . . . , pN ) there exists a unique Borel probability measure μ (cf. [5])
satisfying the condition

μ =
N∑

j=1

p jμ ◦ S−1
j .

Let the iterated function system {S1, S2, . . . , SN } satisfy the open set condition: there exists a bounded nonempty open set
U ⊂ R

d such that
⋃N

j=1 S j(U ) ⊂ U and Si(U )∩ S j(U ) = ∅ for 1 � i �= j � N . The iterated function system satisfies the strong
open set condition if U can be chosen such that U ∩ J �= ∅, where J is the limit set of the iterated function system. Under
the open set condition, Graf and Luschgy showed that the quantization dimension function Dr := Dr(μ) for the probability
measure μ exists, and satisfies the following relation (cf. [3,4]):

N∑
j=1

(
p j s

r
j

) Dr
r+Dr = 1.

Note that from the above relation it is clear that the quantization dimension function for a self-similar probability has
a relationship with the temperature function of the thermodynamic formalism arising in multifractal analysis. Lindsay
and Mauldin extended the above result to the F -conformal measure with finitely many conformal mappings (cf. [6]). The
quantization dimension and its relationship with the temperature function for some other probability measures were also
investigated, for example one could see [9–11,13]. But in each case, the number of mappings considered was finite. De-
termination of the quantization dimension for a probability measure generated by an infinite iterated function system
associated with a probability vector is a long-time open problem. The work in this paper is the first advance in this di-
rection. The probability measure μ considered here is induced by a set of infinite contractive similarity mappings (Sn)n�1
satisfying the strong open set condition with the similarity ratios respectively (sn)n�1, and associated with a probability
vector (p1, p2, . . .), that is, the probability measure μ satisfies

μ =
∞∑
j=1

p jμ ◦ S−1
j .

We have shown that for such a probability measure μ if the quantization dimension Dr := Dr(μ) exists, it satisfies the
following relation:

∞∑
j=1

(
p j s

r
j

) Dr
r+Dr = 1. (1)

Riedi and Mandelbrot showed that the multifractal formalism for a self-similar measure does indeed hold in the infinite case
(cf. [12]). In particular, the singularity exponent β(q) (also known as the temperature function) satisfies the usual equation

∞∑
j=1

pq
j s

β(q)

j = 1, (2)

and that the spectrum f (α) is the Legendre transform of β(q). Comparing (1) and (2), we see that if qr = Dr
r+Dr

, then
β(qr) = rqr , that is, the quantization dimension function for an infinite self-similar probability has a relationship with
the temperature function of the thermodynamic formalism arising in multifractal analysis (for thermodynamic formalism,
multifractal analysis and Legendre transform one could see [2]). The result in this paper is an infinite extension of Graf and
Luschgy (cf. [4]).

2. Basic definitions and results

In this paper, R
d denotes the d-dimensional Euclidean space equipped with a metric d, and R+ represents the set of all

nonnegative real numbers. Let us write,

Vn,r = Vn,r(μ) := inf

{∫
d(x,α)r dμ(x): α ⊂ R

d, card(α) � n

}
.

A set α ⊂ R
d with card(α) � n is called an n-optimal set of centers for μ of order r or Vn,r(μ)-optimal set if

Vn,r(μ) =
∫

d(x,α)r dμ(x).

As stated before, n-optimal sets exist when
∫ ‖x‖r dμ(x) < ∞.
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Let X be a nonempty compact subset of R
d with X = cl(int X). We call f : X → R

d a Lipschitz function if there exists a
number c such that

d
(

f (x), f (y)
)
� cd(x, y) for all x, y ∈ X .

The infimum value of c for which such an inequality holds is called the Lipschitz constant of f , written as Lip f . A Lipschitz
function f : X → R

d is called a contractive mapping if 0 < Lip f < 1. Let (Sn)n�1 be an infinite set of contractive similarity
mappings on X whose contraction ratios are respectively (sn)n�1, i.e., d(Sn(x), Sn(y)) = snd(x, y) for all x, y ∈ X , 0 < sn < 1,
n � 1. Moreover, supn sn < 1. Let K(X) denote the class of all nonempty compact subsets of X . If we define a function
h : K(X) × K(X) → R+ by

h(A, B) = max
{

D(A, B), D(B, A)
}
,

where

D(A, B) = sup
x∈A

(
inf
y∈B

d(x, y)
)

for all A, B ∈ K(X),

we obtain a metric, namely the Hausdorff metric. If (X,d) is a complete metric space, then K(X) is a complete metric space
with respect to the metric h. Also (K(X),h) is a compact metric space provided that (X,d) is compact (cf. [1]). Let us now
define a set function S : K(X) → K(X), by

S(E) =
⋃
n�1

Sn(E),

where A of a set A represents the closure of the set A. Then for any two sets E, F ∈ K(X), we have

h
(

S(E), S(F )
) = h

( ⋃
n�1

Sn(E),
⋃
n�1

Sn(F )

)
= h

( ⋃
n�1

Sn(E),
⋃
n�1

Sn(F )

)
,

which implies

h
(

S(E), S(F )
)
� sup

n�1
h
(

Sn(E), Sn(F )
) =

(
sup
n�1

sn

)
h(E, F ),

i.e., S is a contractive mapping on (K(X),h) with contraction ratio s � supn�1 sn . Hence by the contraction mapping theo-
rem, there exists a unique nonempty compact set J ⊂ X , which is known as the attractor or the invariant set of the family
(Sn)n�1, i.e., J satisfies

J = S( J ) =
⋃
n�1

Sn( J ).

The set J is called the infinite self-similar set corresponding to the infinite iterated function system (Sn)n�1 considered in
this paper. Let (p1, p2, . . .) be a probability vector with pn > 0 for all n � 1. Then there exists a unique Borel probability
measure μ on R

d such that

μ =
∞∑

n=1

pnμ ◦ S−1
n ,

which has the support the compact set J (cf. [8]). We call μ the infinite self-similar probability or the infinite self-similar
measure induced by the similarity mappings (Sn)n�1 and the probability vector (p1, p2, . . .). The iterated function system
(Sn)n�1 is said to satisfy the open set condition (OSC) if there exists a bounded nonempty open set U ⊂ X (in the topology
of X ) such that S j(U ) ⊂ U and Si(U )∩ S j(U ) = ∅ for all i �= j, i, j � 1, and the strong open set condition (SOSC) if, in addition,
U can be chosen such that U ∩ J �= ∅. In the paper, we assume that the set of infinite similarity mappings satisfies the strong
open set condition.

Let us now consider the auxiliary function:

P (q, t) = log
∞∑
j=1

pq
j s

t
j (3)

for q, t ∈ R. For a given q ∈ R, let θ(q) = inf{t ∈ R: P (q, t) < ∞}. Then θ(q) � −∞. For a given q ∈ R the function P (q, t) is
strictly decreasing, convex and hence continuous in (θ(q),+∞). Its value ranges from −∞ (when t → +∞) to +∞ (when
t → θ(q)). Therefore, by the intermediate value theorem there is a real number t such that P (q, t) = 0. The solution t is
unique as P (q, ·) is strictly decreasing in t . This defines t implicitly as a function of q: for each q there is a unique t = β(q)

such that P (q, β(q)) = 0. P (q, t) is called the topological pressure corresponding to the given infinite iterated function system.
The function β(q) is sometimes denoted by T (q), and called the temperature function.
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Fig. 1. To determine Dr first find the point of intersection of y = β(q) and the line y = rq. Then Dr is the y-intercept of the line through this point and the
point (1,0).

Note 2.1. If q = 0 then from (3), we have
∞∑
j=1

sβ(0)

j = 1,

i.e., β(0) gives the Hausdorff dimension dimH( J ) of the infinite self-similar set J (cf. [7]). Moreover, P (1,0) = 0, which gives
β(1) = 0 (see Fig. 1).

3. Main result

The relationship between the quantization dimension function and the temperature function β(q) for the probability
measure μ, where the temperature function is the Legendre transform of the f (α) curve (the definitions of the f (α) and
the Legendre transform are given in [2]) is given by the following theorem. For a graphical description see Fig. 1.

Theorem 3.1. Let μ be the infinite self-similar probability induced by the infinite iterated function system (Sn)n�1 satisfying the
strong open set condition, and associated with the probability vector (p1, p2, . . .). Let β = β(q) be the temperature function of the
thermodynamic formalism. For each r ∈ (0,+∞) choose qr such that β(qr) = rqr . Then the quantization dimension for the probability
measure μ is given by

Dr = β(qr)

1 − qr
.

Lemma 3.2. Let 0 < r < +∞. Then there exists exactly one number κr ∈ (0,+∞) such that
∞∑
j=1

(
p j s

r
j

) κr
r+κr = 1.

Proof. The function P (t, rt) := log
∑∞

j=1(p j sr
j)

t is strictly decreasing, convex and hence continuous in the interval (0,+∞).

Moreover, P (0,0) = ∞ and P (1, r1) = log
∑∞

j=1 p j sr
j < log

∑∞
j=1 p j = 0. Therefore, by the intermediate value theorem, there

exists a unique t which lies between 0 and 1, such that P (t, rt) = 0. Take κr = rt
1−t , and then log

∑∞
j=1(p j sr

j)
κr

r+κr = 0, which

implies
∑∞

j=1(p j sr
j)

κr
r+κr = 1, and thus the lemma is obtained. �

For every M � 2, let us consider the partial iterated function system (Sn)M
n=1 defined on X associated with the probability

vector (p̂1, p̂2, . . . , p̂M), where p̂ j = p j for 1 � j � M − 1 and p̂M = ∑∞
j=M p j . Then for every M � 2, there exists a unique

Borel probability measure μM (cf. [5]) on X with the support J M such that

J M =
M⋃

j=1

S j( J M) and μM =
M∑

j=1

p̂ jμM ◦ S−1
j .

Let us now state the following lemma.

Lemma 3.3. (Cf. [3, Lemma 14.4].) Let 0 < r < +∞ and M is as before. Then there exists exactly one number κ
(M)
r ∈ (0,+∞) with

M∑(
p̂ j s

r
j

) κ
(M)
r

r+κ
(M)
r = 1.
j=1
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The above κ
(M)
r is the quantization dimension for the probability measure μM generated by the set of self-similar

mappings S1, S2, . . . , SM associated with the probability vector (p̂1, p̂2, . . . , p̂M) (cf. [3,4]).
Let us now prove the following lemma.

Lemma 3.4. Let 0 < r < +∞, and let κ
(M)
r be as in Lemma 3.3. Then κ

(M)
r → κr as M → ∞, where κr is as in Lemma 3.2.

Proof. Let q(M)
r = κ

(M)
r

r+κ
(M)
r

and qr = κr
r+κr

. First we prove q(M)
r → qr as M → ∞. If possible, let limM→∞ q(M)

r > qr . Then

there exist γ > 0 and a sequence of positive integers {Mn}n�1 such that q(Mn)
r � qr + γ > qr for all n. Using the fact that

limn→∞
∑∞

j=Mn
p j = limn→∞(1 − ∑Mn−1

j=1 p j) = 1 − ∑∞
j=1 p j = 1 − 1 = 0, Lemmas 3.2 and 3.3, we have

1 = lim
n→∞

[
Mn−1∑

j=1

(
p j s

r
j

)q(Mn)
r +

(( ∞∑
j=Mn

p j

)
sr

Mn

)q(Mn)
r

]

� lim
n→∞

[
Mn−1∑

j=1

(
p j s

r
j

)qr+γ +
(( ∞∑

j=Mn

p j

)
sr

Mn

)qr+γ ]

� lim
n→∞

[
Mn−1∑

j=1

(
p j s

r
j

)qr+γ +
( ∞∑

j=Mn

p j

)qr+γ ]

�
∞∑
j=1

(
p j s

r
j

)qr+γ
<

∞∑
j=1

(
p j s

r
j

)qr = 1,

which gives a contradiction. Hence, limM→∞ q(M)
r � qr . Similarly if we take limM→∞ q(M)

r < qr , a contradiction will arise.

Hence, q(M)
r → qr as M → ∞, and then κ

(M)
r = rq(M)

r

1−q(M)
r

→ rqr
1−qr

= κr as M → ∞, which yields the lemma. �
Let M denote the set of all normalized Borel measures on X . The map dH : M × M → R such that

dH (μ,ν) = sup

{∣∣∣∣
∫
X

g dμ −
∫
X

g dν

∣∣∣∣: Lip g � 1

}

for all μ,ν ∈ M, is a metric, namely the Hutchinson metric. (M,dH ) is a compact metric space (cf. [1]). With respect to the
Hutchinson metric dH , it is known that {μM}M�2 tends to the probability measure μ as M → ∞ (cf. [8, Theorem 3]). Again
we know that in the weak topology on M,

μM → μ ⇔
∫
X

f dμM −
∫
X

f dμ → 0 for all f ∈ C(X),

where C(X) := { f : X → R: f is continuous}. Clearly, X being compact all measures in M have a compact support. It is
a standard fact that dH topology and the weak topology coincide on the space of Borel normalized measures with compact
support. Using this fact, let us prove the following lemma.

Lemma 3.5. Let 0 < r < +∞, and μM → μ with respect to the Hutchinson metric dH . Then

lim
M→∞ Vn,r(μM) = Vn,r(μ)

for every n � 1.

Proof. By our assumption,
∫ ‖x‖r dμ(x) < ∞. Since the function f : X → R defined by f (x) = ‖x‖r is continuous, we have

limM→∞
∫ ‖x‖r dμM(x) = ∫ ‖x‖r dμ(x), which yields that there exists a positive integer M0 � 2 such that for all M � M0,∫ ‖x‖r dμM(x) < ∞. Take M � M0. Then n-optimal sets for both Vn,r(μM) and Vn,r(μ) exist. Let αn be a Vn,r(μM)-optimal

set and βn be a Vn,r(μ)-optimal set for n � 1. As μM → μ (weakly), and for every α ⊂ R
d the function f : X → R defined

by f (x) = d(x,α)r is continuous, for every n � 1 we have

lim
M→∞ Vn,r(μM) = lim

M→∞

∫
d(x,αn)r dμM(x) =

∫
d(x,αn)r dμ(x) � Vn,r(μ) and

lim Vn,r(μM) � lim
∫

d(x, βn)
r dμM(x) =

∫
d(x, βn)

r dμ(x) = Vn,r(μ),

M→∞ M→∞
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and thus

lim
M→∞ Vn,r(μM) = Vn,r(μ),

which yields the lemma. �
Proof of Theorem 3.1. To prove the theorem let us first prove

κr � lim inf
n

r log n

− log Vn,r(μ)
� lim sup

n

r logn

− log Vn,r(μ)
� κr . (4)

If possible, let lim infn
r logn

− log Vn,r(μ)
< κr . Then there exists a subsequence (

r lognk− log Vnk ,r(μ)
)k�1 of the sequence (

r logn
− log Vn,r(μ)

)n�1

such that limk→∞ r lognk− log Vnk ,r(μ)
< κr , which implies that there exists a positive integer K0 such that r lognk− log Vnk ,r(μ)

< κr for all

k � K0. Thus for k � K0, using Lemmas 3.4 and 3.5, we obtain

lim
M→∞

r lognk

− log Vnk,r(μM)
= r log nk

− log Vnk,r(μ)
< κr = lim

M→∞κ
(M)
r ,

and so there exists a positive integer M ′ such that r lognk− log Vnk ,r(μM )
< κ

(M)
r for all M � M ′ and for all k � K0. In particular, for

all k � K0 we have

r lognk

− log Vnk,r(μM ′)
< κ

(M ′)
r . (5)

Note that Vnk,r(μM′ ) → 0 as k → ∞, and Vnk,r(μM′ ) � Vnk+1,r(μM′ ) > 0 for all k � 1, and thus there exists a positive
integer K ′

0 such that for all k � K ′
0,

1 > Vnk,r(μM ′) � Vnk+1,r(μM ′) > 0.

Hence for all k � K ′
0, we have

r lognk

− log Vnk,r(μM ′)
� r log nk+1

− log Vnk+1,r(μM ′)
, (6)

i.e., (
r lognk− log Vnk ,r(μM′ ) )k�K ′

0
is a decreasing sequence of real numbers. Then by (5) and (6), we deduce

lim
k→∞

r lognk

− log Vnk,r(μM ′)
< κ

(M ′)
r , i.e., lim inf

n

r logn

− log Vn,r(μM ′)
� lim

k→∞
r log nk

− log Vnk,r(μM ′)
< κ

(M ′)
r .

κ
(M′)
r is the quantization dimension for the probability measure μM′ , and so by the preceding inequality, we obtain

κ
(M ′)
r = lim

n→∞
r logn

− log Vn,r(μM ′)
= lim inf

n

r logn

− log Vn,r(μM ′)
< κ

(M ′)
r ,

which is a contradiction. Hence

κr � lim inf
n

r log n

− log Vn,r(μ)
, and similarly, lim sup

n

r logn

− log Vn,r(μ)
� κr .

Therefore, the inequalities in (4) are proved, and thus limn→∞ r logn
− log Vn,r(μ)

exists and equals κr , i.e.,

Dr(μ) = lim
n→∞

r logn

− log Vn,r(μ)
= κr .

Note that if qr = κr
r+κr

, by Lemma 3.2, we have β(qr) = rqr , and then Dr = β(qr )
1−qr

. Thus the proof of the theorem is com-
plete. �
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