
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 56, 61-83 (1976) 

The X-Ray Transform* 

DONALD C. SOLMON 

Department of Mathematics, State University of New York-Buffalo, 
Amherst, New York 14226 

Submitted by Peter D. Lax 

The purpose of this paper is to study k-plane integral transformations 
on the spaces Ll(R”) and L2(li”). Such transformations arise naturally in 
electron microscopy [5, 71, (crystallography [2], biochemistry [12], molecular 
biology [23]), aerodynamics [22], radio astronomy [3, 301, radiography [4, 161, 
and in various areas of pure mathematics such as partial differential equations 
[18], and integral geometry [9]. Particularly significant advances have been 
made in radiography in developing new methods for detecting brain tumors 
[lo, 151. Of practical importance is the problem of reconstructing a three- 
dimensional object from certain projections. The three-dimensional recon- 
struction problem can be formulated as follows. 

An object in three-dimensional space is determined by a density functionf 
on the space R3, f(x) being the density at the point x. An X-ray picture taken 
in the direction 0 provides a function Lof on the plane orthogonal to 0 whose 
value at a point x on this plane is the total mass along the line through x in the 
direction 0; 

Lf (4 = j-m f (x + to) & --m 
x E 81. 

The reconstruction problem is to recover f from a finite number of the X rays 
Lof. (Technically speaking Lof is the radiograph off. Radiologists refer to the 
photon beam as the X ray and the picture as the radiograph. However, we 
shall not make this distinction.) See [28] f or some of the results that have 
been obtained on phantoms and on actual brain tumor patients. Reference [8] 
contains a discussion of the many algorithms currently in use. 

* This research was partially supported by National Science Foundation Grant 
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More generally, let r be a k-dimensional subspace of R”. The X ray of a 
function f on R” in the direction n at the point x” in & is defined by 

L, f (x”) = Lf(n, x”) = s 
f(x’, x”) dx’, 

T 

provided that the integral exists in the Lebesgue sense. Here, and in general, 
once a subspace 7r is fixed we write x = (x’, x”) where x’ and x” are the 
orthogonal projections of x on 7r and &, respectively. The k-dimensional 
subspaces of R* form the Grassmann manifold G,,, . The X ray off is a 
function Lf(r, x”) on a fiber bundle T(G,,&) with base space G,,, and fibers 
isomorphic to Rn-“. When k = 1, or k = n - I, G,,, = P-l. The purpose 
of this paper is to discuss the transformations L and L-l. 

The topics discussed are given in the following table of contents. 

1. The determination of an integrable function by X rays. 

2. Lower dimensional integrability of L2 functions. 

3. The X ray transform as an unbounded operator on L2. 

4. Inversion formulas. 

5. The supports off and Lf. 

6. The range of the X ray transform. 

7. An iterative scheme and some comments on the three-dimensional 
reconstruction problem. 

These topics have received a great deal of study in the case K = 1z - 1. 
In this case, the X-ray transform is the same as the Radon transform. Indeed, 
the Radon transform is defined by 

Ref (4 s,. 8)=t f(x) %z-,(x), 

where 6 is a direction on the unit sphere P-l, t E R1, and 01,-r is the (n - l)- 
dimensional surface area measure in R”. So L,f = Rof with ?T = F. Radon 
[25] and John [17] proved that a differentiable function with compact 
support in Rn is uniquely determined by means of its integrals over the 
hyperplanes in the space. Radon and John also give inversion formulas. 
Ludwig [20], characterized the range of the Radon transform on various 
function spaces and spaces of distributions. The lower dimensional cases, 
k < n - 2, have received less attention. However, Helgason [13] has given 
inversion formulas for the space of infinitely differentiable functions with 
compact support when k is even, and for a special subspace of the Schwartz 
space of rapidly decreasing functions for all k [14]. 
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As one might expect, the results depend on the value of k. However, often 
there is a critical value of k at which results either become false, or become 
much more difficult to prove. For example, a square integrable function on P 
is actually integrable on almost every translate of almost every k-dimensional 
subspace when k < n/2 [26]. Th’ f ‘1 IS ai s when k > 42. Also, the X-ray 
transform with domain Corn(@), the infinitely differentiable functions with 
compact support, has a closure in all dimensions, but the closure is given by 
the defining integral only when k < n/2. In studying the supports of f 
and Lf, it was discovered that when R < n - 2, f has compact support if and 
only if Lf has compact support. Moreover, if k < n - 2, it is possible, in 
some cases, to get inside the convex hull of the support off from a knowledge 
of the support of Lf. 

A few remarks on notation are needed before beginning. The symbol L, 
will be used when a subspace 7~ is fixed. In the case k = 1, L, will sometimes 
be written L, with 0 E 3-l the direction of V, and L,f = L,f will be referred 
to as the ordinary X ray off. Functions on the fiber bundle T(G,J will be 
denoted g(z-, x”) or g,,(x”). The latter notation will be used when looking at g 
as a function on the fiber over a fixed k-space r. Finally, all inner products 
will be designated by (,). 

The work in this paper stems from joint research on the practical and 
mathematical aspects of the three-dimensional reconstruction problem with 
Guenther, Smith, and Wagner [lo, 281. Th e author is especially indebted 
to Smith for many helpful suggestions in both the research and writing of this 
paper. 

1. THE DETERMINATION OF AN INTEGRABLE FUNCTION BY X RAYS 

In this section the X-ray transform is defined and a few simple, but useful, 
formulas are developed. These lead to two interesting results concerning the 
determination of a compactly supported integrable function by ordinary 
X rays. First, such a function is uniquely determined by any infinite set of 
ordinary X rays. Second, finitely many ordinary X rays tell nothing about the 
function in the interior of the support. 

If rr is a k-dimensional subspace of R”, the X ray of the function f in the 
direction rr at the point xn in n-L is defined by 

L, f (x”) = Lf (v, x”) = 
s 

f (x’, x”) dx’, (1.1) 
li 

provided that the integral exists in the Lebesgue sense. Here, and in general, 
once a subspace rr is fixed we write x = (x’, x”) where x’ and x” are the 
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orthogonal projections of s on 7~ and OTT, respectively. The h-dimensional 
subspaces of R” form the Grassmann manifold G,,, . The X ray off is a 
function Lf(r, x”) on a fiber bundle T(G,,,) with base space G,,, and fibers 
isomorphic to Rnpk. When k = I, or k = ?z - 1, then G,,{: = S-l. 

LEMJIA 1.2. If p is a locally integrable function of one variable and for 
fixed y” E TG, p((x”, y”)) L, 1 f / (x”) is integrable on rmL, then 

s,L p((x”, y”)) L,f (x”) dx” z J’ p((x, y”)) f (x) dx. (l-3) 
Rn 

Proof. Fubini’s theorem gives that 

IL p((x”, y”)) L, f (x”) dx” 2 1-1 p((x, y”)) f (x’, x”) dx’ dx” 
n 

= 
s P((x, r”>)f (4 dx. 

Rn 

The Fourier transform of an integrable function on Rn is given by 

f’(t) = (2~)-~/~ j ecice-“f(x) dx. 
R” 

Thus if 71 is a k-space and g ELM, it is natural to define 

J(,$“) = (2,)Mzl/2 1 e-iW’,S”)g(X”) dx”, E” E +. 

wl 

Lemma 1.2 leads immediately to a relationship between the Fourier 
transform off and the Fourier transform of L,f. 

LEMMA 1.4. For each k-space TT and integrable function f, 

(L,f)^ (6”) = (27pf2(5”) .for p E d. 

Proof. The proof is immediate if one takes p(t) = e6 in Lemma 1.2. 
If D = (a/ax, ,..., a/ax,) and Q is a polynomial in n variables, it follows 

immediately that 

&(Q(D)f)Y (6") = P-Y2Q2(%")f(En) for r E 7~~. (1.5) 

If I’ is a (k + I)-dimensional subspace of Rn and [ is an arbitrary point in 
R”, then [ E V~ for some k-space rr contained in V. Lemma 1.4 tells how to 
compute j (5) from L, f. Since an integrable function f is uniquely determined 
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by its Fourier transform, f is uniquely determined by the X rays in the 
directions n C I/. This establishes the following result, G,,,(V) being the 
submanifold of G,,, consisting of the K-spaces contained in I/. 

COROLLARY 1.6. An integrable function on R” is uniquely determined by 
the X rays in the directions n E Gn,k( V) f or any (k + 1)-dimensional subspace V 
of R”. 

Note that if k = 1, then G&V) is a great circle on the sphere P-l. 
Much more can be said in the case of ordinary X rays when f is assumed to 

have compact support. 

THEOREM 1.7. If f E L1(Rn) has compact support, then f is uniquely deter- 
mined by any injkite set of ordinary X rays. 

Proof. Suppose that Lejf == 0 for an infinite set of directions 0,) 
j- 1,2 ,.... Lemma 1.4 implies that f^ vanishes identically on the hyperplanes 
Bjl for all j. Since f has compact support, f^ is an analytic function on R” and 
thus cannot vanish identically on infinitely many hyperplanes through the 
origin unless f is identically zero. Thus f = 0 almost everywhere. 

In the practical reconstruction problem the functions do have compact 
support but only a finite number of X rays can be taken. Thus, it is useful 
to know the amount of information given by finitely many ordinary X rays. 
The following, which is a joint result with Smith and was announced in 
[lo, 271, gives a rather pessimistic answer to this question. 

THEOREM 1.8. Let f0 E Com(Rn), A be any compact set in the interior of the 
support off,, , and 8, ,..., ON be a finite set of directions. Then there is a new 
infinitely diflerentiable function f with the same shape, the same ordinary X rays 
in the given directions, and completely arbitrary on A. 

Proof. Let Q be a polynomial such that Q(iE) vanishes identically on the 
hyperplanes e,l,..., BN1, and fi E Cm(Rn) be arbitrary. The theorem of 
Malgrange on the existence of solutions to constant coefficient partial differ- 
ential equations [21], guarantees the existence of functions u,, and ui in 
C%(R”) such that 

QP) ui =fi , i = 0, 1. (1.9) 

Choose v E C,“(Rn) such that v _I- 1 in a neighborhood of A and vanishes 
outside the support of fO. Now, let 

% = QP) k%) (1.10) 
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and 

z'l = O(D) (vd* (1.11) 

Now, (1.9) and (1.10) show that a,, -: f, in a neighborhood of A, while (I .9) 
and (1 .I 1) show that or =fr in a neighborhood of A. Moreover z’,, and z’r 
vanish outside the support of f0 . Also, (1.5) shows that for each Bj , 
j = I,..., N, 

(LBjvo)A (6”) = (27yQ(ip7 (po)h (E”) == 0, 

since Q(iQ vanishes identically on ejL. Thus 

L,,ql = 0, j = l,..., N. (1.12) 

Similarly 

L”31J1 = 0, j .: 1 ,..., N. (1.13) 

Finally, definef =fO - z+, + z1r . In a neighborhood of A, f = fr , and more- 
over 

49,f = Lo,fo > j=l I..., N, 

from (1.12) and (1.13). 
This theorem has very practical consequences which are discussed in 

Section 7 and in [28]. 

2. LOWER DIMENSIONAL INTEGRABILITY OF L” FUNCTIONS 

In this section a formula relating integrals over R” with integrals over the 
fiber bundle T(G,,J is used to find an isometry from L2(Rn) into the square 
integrable functions on this fiber bundle. Also a theorem on the lower 
dimensional integrability of L2 functions is stated. This theorem gives the 
first example of a critical value of k at which results become false. 

The symbol L2( T) will be used to designate the measurable functions on 
the fiber bundle T(G,,J which satisfy 

where p is the finite measure on G,,k invariant under orthogonal transforma- 
tions [24], and normalized so that 

p(GnJ = 1 P-l l/i S9r-fc-1 j , 

the bars denoting the appropriate area measures on the spheres. 
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LEMMA 2.1. Ifg is nonnegative and measurable on the sphere Sri-l, then 

s s 
g(w) dw dp = 1 g(0) d0. 

G, k S”-h+ &p-l 

Proof. The integral on the left defines a continuous linear form on the 
space C(S+l) (hence a measure on 9-l). This form is obviously finite and 
rotation invariant and there is only one such up to a constant factor, namely 
the integral on the right. The normalization of p is chosen to make the 
constant 1. Once the formula is established for continuous functions it 
extends immediately to nonnegative functions by the standard arguments of 
measure theory. 

LEMMA 2.2. If g is nonnegative and measurable on Rn, then 

s i 
G .nLIx”I”g(x”)dxYd~=J 

n,b 
R”&) dx. 

Proof. Write the integral over rr 1 in polar coordinates and use Lemma 
2.1. 

In terms of Fourier transforms the operator A is defined by 

(Af )^ (E) = I 5 l3CO (2.3) 

To avoid cumbersome notation, the same symbol is used irrespective of the 
space Ii”, or subspace of R*, in which A acts. 

THEOREM 2.4. The map (2n)-“i2 (Aki2L) extends to an isometry V from 
L2(R”) into La(T). 

Proof. It suffices to show that (27~)-“/~ (Alc-i2L) maps COm(R”) isometrically 
into L2(T). If f E Com(Rn), the definition of A, the Parseval equality in T&, 
Lemmas 1.4 and 2.2 show that 

s s 
1 Akj2L,f (x”)12 dx” dp 

G n,k I+ 

= (274” j j I t" Ik I&?')l" df" 6 = CWk llf II&, . 
%,r ,+ 

The next theorem, which is a rather surprising one, is proved in a recent 
paper [26]. 

THEOREM 2.5. For k < n/2 there a’s a constant c (depending on k and n) such 
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that if f E L2(Rn), then for almost every r E G,,, , f is integrable on almost ever\’ 
k-plane parallel to r and 

Remark 2.6. The function 

f(x) = j x I-@ (log 1 x 1)-l, lxI>Z 

= 0, otherwise 

is square integrable on R”, but is not integrable over any plane of dimension 
>n/2. 

3. THE X-RAY TRANSFORM AS AN UNBOUNDED OPERATOR ON L2 

Now the X-ray transform is considered as an unbounded operator from 
L2(R”) into L2(T). There are two seemingly natural choices for the domain. 
The most direct is 

However, the Fourier transform relationship of Lemma 1.4 and the integra- 
tion formula of Lemma 2.2 suggest the indirect definition 

D, = {f E L2(R”): 1 5 l-k.12f’~ L2(R”)}. 

It is shown that D, = L?, if and only if k < n/2. Moreover the X-ray 
transform with domain COG has a closure with domain D, for all k. (It 
is not known whether the operator is even closable with domain D, when 
k > n/2.) 

LEMMA 3.1. If f 6 L1(Rn) n L2(Rn) then f E D, and 

II Lf ll;q,, G Gw” (I 9-l I Ilf II;* + !Ifll$). (3.2) 

Proof. Since f EL1 n L2, it follows that j 5 j-kJ2{~ La(p) and an easy 
calculation shows that 

II I 5 I-klfJZll$ < I F-l I Ii.& + l1411”,2. (3.3) 
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But Parseval’s relation on zJ, Lemmas 1.4 and 2.2 give that 

IILfll;2,*, = cw” II I 5 l-k’2311;2 * 

The result follows from (3.3) Parseval’s relation on R”, and the fact that 
Il3llP d Il.& * 

THEOREM 3.4. Let k < n/2. Then D, = B, and iff E D, , then for almost 
every k-space r 

(Lnf)h = (27r)“i2j a.e. on mrl. (3.5) 

If k > n/2, then D, # & . 

Proof. Let 0 < k < n and assume that f E D, . Choose fn E Com(Rn) 
such thatfn +f^in L2 and / 5 Iek123,, -+ [ 5 l-k/sfin L2. Let fn be the inverse 
Fourier transform of j6* . Lemmas 1.4 and 2.2 show that 

(Lmfn)” -+ (2q+f^ in L2(+ for a.e. r. 

Choosing a suitable subsequence if necessary, we obtain for almost every r 

(Lnfn) +g, a.e. on +, (3.6) 

where g, is defined by 

gn = p-y+f on nI. (3.7) 

However, when k < n/2, Theorem 2.5 shows that for almost every m, and 
again a suitable subsequence 

Lxfn ---f L,f a.e. in 37-L. 

Thus for almost every rr 

g, = L,f a.e. on rrL. (34 

Hence f E D, . Moreover (3.7) and (3.8) show that (3.5) is valid. 
Conversely, suppose f E D, , k < n/2, and define f,(x) = e-p213o1y Lemma 

2.2 implies (for a suitable sequence of p’s) that 

!zj” It”Ikl.f&12dE”=0 for a.e. 97, (3.9) 
ns 

and Theorem 2.5 gives (for a suitable sequence of p’s) that 

L,f, + L,f in L*(d) for a.e. n, 
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Lf, - Lf in Y’(d) for a.e. 57, (3.10) 

where Y’(d) denotes the tempered distributions in rri. Since the Fourier 
transform is a topological isomorphism on Y’, and f, EU, Lemma 1.4 and 
3.10 show that 

(2i~)!+/~f~ + (L,f)- in Y’(d) for a.e. 7r. (3.11) 

Now it follows from (3.9) that 

(Lnf)h = (2~)~/~f a.e. on & 

for any n for which (3.9) and (3.11) hold. Since f E D, , Lemma 2.2 shows 
that 1 f j--k/2f~L2, and the theorem is proved for the case k < n/2. 

To prove the second part of the theorem, we construct a functiong E La(P) 
such that 1 f I--k/at ELM but g is not Lebesgue integrable over any plane of 
dimension K 3 n/2. Letf be the function in Remark 2.6. Define ga by 

go@> = f (4,2mj G x5 < 2mj + 1, j = l,..., n, 

zzz 0, otherwise 

where the mj’s run through the integers. (For example, on the line, g,, = 0 
on alternate intervals between integers.) Let e, ,..., e, be the unit vectors 
along the axes, and put 

&(4 = g& + 4 - &lW. 

One can easily check that g, is not Lebesgue integrable over any plane of 
dimension &z/2. But 

Jn(() = (e’ l - 1) *** (ei** - l)g,(t), 

which gives the desired result since 

(e% - 1) .a- (eiEn - 1) 1 5 Jvn 

is bounded. 

THEOREM 3.12. The X-ray transform with domain C,,*(R”) admits a 
closure E with domain fJ, (= D, for k < n/2 and #D, for k > n/2). 

Proof. Assume that fm E COm(Rn), f,,, + f in L2(Rn), and that Lfw, +g 
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in L2( T). Lemma 2.2 and Parseval’s relation on & show that for almost every 
n (and an appropriate subsequence if necessary), 

(27r)k/24,-+gr a.e. in 7rl. 

Also, for an appropriate sequence of m 

fm -3 a.e. in Rn. 

It follows that 

,& = p-y23 a.e. on 7r1 for a.e. r. (3.13) 

In particular, if g = 0, then f =I 0, so z exists. Moreover, since g EL~( T), it 
follows from Lemma 2.2 and 3.13 that ) 5 j-7c/23~L2(Rn). Thus f E I&. 

Finally suppose that f E D, . The proof of Theorem 3.4 (up to (3.7) which 
is valid for all K) shows that there is a sequence fm in the Schwartz space Y(R”) 
such that fm -+ f in L2(Rn) and Lf,,, converges in L2(T). Thus it suffices to 
show that Y(Rn) is in the domain ofE. But this is immediate from (3.2). 

Note that if K < n/2, then the closure of the X-ray transform is defined by 
the integral (1.1) f or almost every r. However, when k 3 n/2, the integral 
may not exist and in this case Lf = g, whereg is defined by (3.13). From now 
on the same symbol L wil be used to denote both the X-ray transform and its 
closure. 

The Sobolev spaces H”(T) on the fiber bundle T(G,,J consist of the 
measurable functions g which satisfy 

COROLLARY 3.14. If f E 14, , k > n/2, then for almost every k-space 7r, 
L,f is continuous on ~4 (after being altered on a set of measure zero). 

Proof. Lemmas 1.4 and 2.2 and Theorem 3.12 show that Lf is in Hk12( T), 
and thus is in HKi2(n-‘-) for almost every n. Since K > n/2, it follows that 
k/2 > (n - K)/2 and the theorem of Sobolev [29] shows that&f can be made 
continuous by a change on a set of measure zero for such r. 

4. INVERSION FORMULAS 

In Theorem 2.4 it was shown that the extension V of (2~‘)-~/~ (Akj2L) is an 
isometry from Lz(Rn) into L2(T). It is well known that for any isometry 
V*V = 1. Thus if Lf = g, then 

f = (27r-k (A”/“L)* A”/“g. 
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Formally the operators L and /l commute. The purpose of this section is to 
show that for a proper permutation of the operators L* and /l the domains 
are correct and meaningful inversion formulas can be given for all f~ D, . 
An inversion formula was given by Helgason [13] for fE Coa(ljn) when K is 
even. Also, in the proof of [14, Theorem 8.21, Helgason derived an inversion 
formula which is valid in all dimensions for a special subspace of 9’(P). 

Suppose that f~ L02(R”), g E L2( T) are nonnegative functions and that 
P,l is the projection on &. Then Fubini’s theorem gives that 

(Lf, g> = -r, [:L,f (x”) g(n, x”) dx” dr-L 
n.b 

where 

The following result has been established. 

LEMMA 4.1. For every g E L2( T), L#g is defined almost everywhere and is 
locally square integrable. Moreover, g is in the domain of the aa!joint of the X-ray 
transform L* if and only if L#g is globally square integrable, in which case 
L*g = L#g. 

It is worth noting that the domain of L* is rather peculiar, especially when 
K 3 n/2. Indeed, if g is a nontrivial nonnegative function and K > n/2, then 
there exists a nonnegative f E L2(Rn) which is not integrable over any k-plane 
(Remark 2.6). Choose a sequence of nonnegative functions fn EL,“(R”) 
such that fn ,P f. Then 

Thus L#g cannot be globally square integrable. Hence the condition that 
L#g be square integrable depends entirely on cancellation. On the other 
hand, if K < n/2, then it follows from Theorem 2.5 that any g ELM with 
compact support is in the domain of L*. 

THEOREM 4.2. If f E & and Lf = g, then 

@n--k fl”12L*AkPg zzz f, 
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(Note that the /ljc12 on the left acts in R* while the one on the right acts 
on each fiber in T(G,,,).) 

Proof. First it is necessary to show that A”12g is in the domain of L*. Let 
h E Com(R”). Parseval’s relation, Theorem 3.4, and Lemma 2.2 give that 

<LA, ~k’2g:)Lz,~, = (24” oh I cc” Ik/2f)Le(T) 

= (277)” (4 I E I-k’2f^)Lz(R”) = p-y 0% U&p) > 

where 

G = I 6 I--k/q (4.3) 

Note that the last equality holds by Parseval’s relation on Rn and the fact 
that f E l?,& . Thus Akj2g is in the domain of L* and 

L*Awg = (27T)” u. 

The theorem follows from the definition of .4 and (4.3). 
Actually there are several variations of the inversion formula given above 

depending on the regularity off. Let us define 

SBs = {f EL2(Rn): / c$ I”j%L2(Rn)}. 

Notice that %-k,2 = Dk . For s 3 0, B8 is simply the Sobolev space Hs, 
but for s < 0 this is not so. In general Bs is a strictly decreasing function of 
1 s 1 . The following can be established by the methods used in proving 
Theorem 4.2. 

THEOREM 4.4. If f E 9(s-k)pP n g--k12 for s 3 k, or f E ~(slz)-k for s < k, 
and Lf = g, then 

(24-k A~~-~PL*A~Pg = f. (4.5) 

Setting s/2 = k = n - 1 in (4.5) gives the classical inversion formula for 
the Radon transform. 

5. THE SUPPORT OF f AND Lf 

Another critical value of k appears in the relationship between the supports 
off and Lf. When k < 71 - 2 and f is integrable, then f has compact support 
if and only if Lf has compact support. Moreover, in this case one can some- 
times get inside the convex hull of the support off from a knowledge of the 
support of Lf. 
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Until further notice K will designate an n-dimensional compact, convex 
subset of R”. 

THEOREM 5.1. Let f E L1(Rn) and k C< n - 2. Then f has support in K 
if and only if L, f (x”) = 0 whenever x” + n does not intersect K. The result 
fails when k = n - 1 unless f is assumed a priori to have compact support. 

Proof. Assuming that L,f(x”) = 0 for almost every x” E & such that 
x” + = does not intersect K and that k < n - 2, we shall conclude that f 
has support in K (the converse being obvious). Let H be any half-space not 
meeting K and let V be the subspace parallel to the boundary. Since K is 
convex it is sufficient to show that 

h(x) = f (x) if XEH, 

zzz 0 otherwise 

is identically 0; and for this it is sufficient, according to Corollary 1.6, to 
show that L,h = 0 for all v C V. Now, if X” $ H then X” + r does not meet 
H, so L,h(x”) = 0, while if x” E H, then X” + v C H, so L,h(x”) = 
L,f(x”) = 0. 

Now assume that k = n - 1. Choose an integrable Cm function f, without 
compact support and with Of = 0 for / x / > 1, (e.g., f(x) = a3 1 x [2-n/8~,3 
for 1 x 1 > 1, n > 2). Let rr be an arbitrary (n - I)-dimensional subspace. We 
will show that L, f (x”) = 0 if 1 X” I > I. If t is the coordinate on the line 
orthogonal to r, it follows from (1.5) that 

d2L,fldt2 = L,(Af) = 0 forItj>l. 

But, since L,f is an integrable function of t, it cannot be a nonzero linear 
function of t on t > 1, and t < - 1. Thus 

&f(t) = 0, ltl >I, 

and the theorem is proved, except for the final case where k = n - 1 and f 
is assumed a priori to have compact support. This is covered in Corollary 
5.5 below. 

The idea for the proof of the next theorem comes from [20, Lemma 3.11. 

THEOREM 5.2. Let r,, be a k-space, 0 < k < n - 1, and V be an open, 
connected, unbounded subset of r,,l. If f ELM has compact support and Lf 
vanishes in a nezghborhood of (rO, V) = {(z-,, , x”) E T(G,,J: x” E V} then f 
vanishes on r0 + V. 

Note that when k = n - I, no1 is one-dimensional. Thus V is a half-line, 
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T,, + V is a half-space, and R”\(r,, + V) is convex. However, when 
k<n-2, noA has dimension ,>2 and V can be more interesting. In partic- 
ular, Rn\(7r0 + V) need not be convex. Thus, when k < n - 2, it is possible, 
in some cases, to get inside the convex hull of the support off. 

Proof. First assume that f E Corn(@). Without loss of generality, assume 
that m,, = [er ,..., ed, the k-space spanned by e, ,..., ek . Choose neighborhoods 
N 1 ,..., N, of e, ,..., e,$ such that whenever w = (wl ,..., w,J E N1 x ... x Nk , 
then nm = [wi ,..., wk] is a subspace of dimension k. For y E R” define 

Note that 

Cf(Y) = , w1 , .!. , wlc 1 L?hf(y”) 

and Lxf vanishes in a neighborhood of each point (y, w1 ,..., wk) with 
y~z-s+ V and wi=b,eiENi. If wi=(wil,...,win)ENi and y~rrs+ V 
is fixed, then 

where 

Letting y vary in n0 + I’ we see that for each i 

aiei cc 
4 s 

m 
ayp --30 .** 

q . . . tFf(y + t,e, + *** + t,e,) dt, *** dtx = 0. --co 

Thus 

pa(y) = 1-1 a-- j-1 tf’ +-a tzf (y + t,e, + **a + t,e,) dt, **a dt, (5.3) 

is a polynomial of degree less than 1 01 / in y in the domain no + V. Since f 
has compact support Pa(y) = 0 for sufficiently large y E n,, + V. Since 
wc, + I’ is connected P vanishes identically on r,, + T/. But then (5.3) shows 
that for all y E V, the function f (y + t,e, + ... + t,e,) is orthogonal to all 
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polynomials in the variables t i ,..., t, . Since f has compact support f \ anishes 
on no + l-;. 

To pass from f~ C,“(F) to ~ELI(R?~), note that 

Uf * 12) = (LTf) * v+rh) (5.4) 

where * denotes convolution, and use standard regularization techniques. 

COROLLARY 5.5. If f is an integrable function with compact support and for 
each (n - I)-dimensional subspace T, L, f (x”) ==~ 0 whenever x” 1 r does not 
intersect K, then f has support in K. 

Proof. If R =s n ~ 1 in Theorem 5.2, then V is a half-line and n,, + I/ 
is a half-space. Theorem 5.2 implies that f vanishes on each half-space not 
intersecting K. Since K is convex f has support in K. 

6. THE RANGE OF L 

Ludwig [20] and Lax and Phillips [19] d erived necessary and sufficient 
conditions that a measurable function g(0, t), 0 E Sn--l, t E Iii, be the Radon 
transform of a square integrable function with support in an n-dimensional 
compact, convex set. The same is done here for the X-ray transform. As 
might be expected from Theorem 5.1, the theorem of Ludwig, k = n - 1, 
is more subtle than that of the lower dimensions. The proof given here is 
valid only for k < n - I. 

LEMMA 6.1. If f E Ll(R’“) has compact support and 

P,.&“) = s,L (C’, x”>“Lf(x”) dx”, (” E T&, (6.2) 

then for each nonnegative integer m there is a homogeneous polynomial P,,, of 
degree m on Rn such that 

p&3 = Pn,m(O1 for E E 7+. 

Proof. Letting p(t) = tm in Lemma 1.2, it follows that the polynomial 

P,(5) = P&f> 5) = s (~9 Wf(x) dx 
Rn 

(6.3) 

does the job. 
Note that the polynomials (6.3) can also be defined for 5 E Cc’” simply by 
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replacing 5‘ by 5 in the formula. The following result shows the relationship 
between the Fourier transform off and the polynomials P, . 

LEMMA 6.4. If f ELM has compact support, then the Fourier transform 
off extends to a complex analytic function on 63 with the expansion 

m 

j(l;) = (2n)-“12 2 (i-“P&)/m!). 
??L=O 

(6.5) 

Proof. The extension of the Fourier transform is given by the Laplace 
transform 

f(c) = (237-“i2 S,. e-i(2*C>f (x) dx. 

The integral converges absolutely for every 5 E C=” even after differentiating 
under the integral sign and does determine an entire function on Cc”. 

On the other hand. 

e-i(xJ> = $, (i-“(x, <)m/m!), 

and term-by-term integration gives the right-hand side of (6.5). 
In proving the theorem characterizing the range of L for dimensions 

R < n - 1, the classical Paley-Wiener theorem [29] will be used. An 
improved version of the Paley-Wiener theorem has been established by 
Smith [28], which allows the omission of condition (iv) in Theorem 6.6. 

THEOREM 6.6. Let g(r, x”) be a measurable function on T(G,,J. There 
exists a square integrable function f with support in K such that Lf = g if and 
only if 

(i) g E Hkj2( T); 

(ii) (compatibility conditions) f or each nonnegative integer m there exists a 
homogeneous polynomial P,,, of degree m on R” such that Pm(t”) = Pr,m(5N) for 
each v E G,,,C and 5” E ~9, where P,,, is defined as in (6.2) with L,f replaced 

by g,; 
(iii) g(n, x”) = 0 whenever x” + x does not meet K; 

(iv) there exists a constant c > 0 such that 11 g,,(x”)ljLl(sL) < c for all 
T E G,,k . 

Proof. When k = n - 1, this is the theorem of Ludwig and the proof 
given here fails. The necessity of the conditions follows from Theorem 2.4, 
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Lemma 6.1, Theorem 5.1, and Fubini’s theorem. It remains to establish the 
sufficiency. Assume that k < n - 2. 

Condition (iii) and Lemma 6.4 show thatg, is given by the series (6.5) with 

P,, replaced by Pm,, and the constant (2~r-~~/~ replaced by (2.rr)(“~~)!~. Using 
the polynomials P, provided by (ii), define j on Rn by the series (6.5). The 
relationship between P,, and P,,,rL guarantees that the series defining f^ 
converges absolutely for every 5 E R" and that 

(6.7) 

Condition (i) and Lemma 2.2 show that f is square integrable and that the 
inverse Fourier transform, f, is in & . Thus 

(LJJh = (2"r)"12f^ = & a.e. on nxI for a.e. i7. (6.8) 

Thus Lf = g. It remains to show that f has support in K. It has already been 
established thatf’is square integrable and analytic on R". In order to apply the 
classical Paley-Wiener theorem, it is necessary to check the growth of the 
entire extension of f^ to C”. (It is here that the proof fails when k =: n - 1.) 

Conditions (iii), (iv), and the Paley-Wiener theorem show that for each r, 
& has an entire extension to 

such that 

I d(n, 01 d ce+l, (6.9) 

where r is chosen so that K is contained in the ball B(0, r). But, by (6.7) the 
analytic extension of 3 to @” must agree with that of (2,)-k/2& on rrci. 
However, when K < n- 2, each 5 E Cn is in ~~cl for some r. Thus the analytic 
extension of f^ to @” satisfies the inequality (6.9) and the classical Paley- 
Wiener theorem implies that f has support in the ball B(0, Y). Kow, f has 
support in K by Theorem 5.1. 

7. AN ITERATIVE SCHEME AND SOME COMMENTS ON THE 
THREE-DIMENSIONAL RECONSTRUCTION PROBLEM 

The research in this paper was inspired by the work in [lo, 281, on the 
detection of brain tumors with ordinary hospital equipment, and without 
the introduction of contrast material. This section deals with an iterative 
scheme for solving the n-dimensional reconstruction problem. In addition 
some practical comments on the brain tumor work and the three-dimensional 
reconstruction problem in general are made. 
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Let K be a fixed compact subset of Rn. (We no longer assume that K is 
convex.) The square integrable functions on R” which vanish outside K 
will be denoted by L,2(K). Now, we consider L, as an operator on L,2(K). 

THEOREM 7.1. The null space & of L, is a closed subspace of L,,2(K) whose 
orthogonal complement consists of the functions that are constant on k-planes 
parallel to rr. 

Proof. It can easily be checked that L, is continuous on Lo2(K) and so 
Jlr, is closed. A function h is constant on k-planes parallel to n if and only if h 
is a function of X” alone, where as usual x” is the projection of x on 4. 
Suppose that f = %h where 9Y is the characteristic function of K and h is a 
function of X” alone. If g E Xfl , then 

(g, f) = s,.g.%i dx = s,A h j g dx’ dx” = 0 
s7 

since the inner integral is L,g(x”) = 0. 
Suppose that f E Jv;,l. By the first half of the proof, it is sufficient to find a 

function h of x” alone such that 

L,f = L,Xh. 

To find h, note that L,f = L,,%h if and only if 

I f (x’, x”) dx’ = 
s 

.5%(x’, x”) h(x”) dx’ = 6(x”) h(x”) (7.2) 
n 77 

where 6(x”) = L,%(x”). Define h(x”) by the above formula. It remains to 
show that Xh ELM. Now 

jRe 1 Z”h I2 dx = j 8(x”) 1 h(x”)12 dx”. 
n 

But since Ef = f, (7.2) and the Cauchy-Schwarz inequality give that 

(S(X”))~ / h(x”)12 = 1 s, f (x’, x”) dx’ I2 < 6(x”) jW 1 f I2 dx’. 

It follows from (7.3) that I\SYh llfs < II f 1122 and the theorem is proved. 

(7.3) 

COROLLARY 7.2. Let f0 E Lo2(K). The orthogonal projection P, on the plane 
f0 + Jr/-, is given by the formula 

prrg = g + S(Lnf0 - L,g)ILS, 

where !Z is the characteristic function of K. 
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In practice one is given a finite number of X rays, L,,fu ,..., L,,fl , of an 
unknown objectf, , and one would like to findf,, , or at least an objectf with 
the correct X rays. The objects with the ith X ray correct are those in the 
planef, $ JPl , and the objects with all j X rays correct are those in the plane 
fs + x0, No =~ &, NZ . According to Corollary 7.2 the orthogonal 
projection Pi onfs + Nri’is computable, and there is the following theorem 
due to Kacmarz [6] in the finite-dimensional case and to Amemiya and 
Ando [I] in the infinite-dimensional case. 

THEOREM 7.3. Let Jv; ,..., Jv; be closed subspaces of a Hilbert space X 
with intersection MO . Let Pi be the orthogonal projection on the plane fu + Jlr, 
and let Q = PJ ‘. PI . For every g E 2, Q’“g --f POg. 

Thus Qnlg is a computable approximate solution to the problem of finding 
an object, POg, with the correct X rays. The initial guess g can be chosen 
arbitrarily, and poor choices of course provide poor solutions, far from the 
true solution f. . In specific practical problems criteria for choosing g are 
lacking. In the brain tumor problem the best results have been obtained with 
g = 0, which leads to the solution with minimum norm in L,2(K). 

There are many reasonable reconstruction techniques [8], any one of which 
picks out an object with the same, or nearly the same, X rays. However, 
Theorem 1.8 shows that such objects are arbitrary, at least in the interior. 
Thus, it seems that the reconstruction technique must be suited to the 
problem so that it picks out a solution close to the solution of nature. For 
example, the EM1 scanner initially used the technique of Theorem 7.3 with 
initial guess g = 0. The demonstrated effectiveness of the EM1 scanner in 
detecting brain tumors [15] suggests that this is a good method in the case of 
heads. However, this technique may not be successful in other reconstruction 
problems. 

The rate of convergence of the iterative scheme of projections in Theorem 
7.3 is of practical interest. When the angles between the subspaces are 
positive, the following theorem gives an upper bound for the rate of con- 
vergence. 

THEOREM 7.4. For each i let 01~ be the angle between &. and N,, 1 r\ 
.‘. n NJ. Then 

In practice the angles between the X rays are known and one would like 
to know the relationship between these angles and the angles between the 
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corresponding null spaces. When K is the unit disc in R2 the relationship 
between the angle between two X rays and the angle between the corre- 
sponding null spaces is given by the following theorem. 

THEOREM 7.5. Let K be the unit disc in R2. If the angle between the X rays 
LB1 and LB, is 0, then the angle 01 between the null spaces Jo, and Jo, in Lo2(K) 
is given by 

cos 01 = sup 
sin(n + 1) 0 

n>U (n + l)sine ’ (7.6) 

Note that if 0 = 7r/2, then cos a: = &. Moreover, the sup in (7.6) need only 
be taken over finitely many n. The proof of Theorem 7.4 is given in [28], 
while that of Theorem 7.5 and a formula for all the angles 01~ between the null 
spaces is given in [I I]. 

We conclude this paper with two short remarks concerning some practical 
applications of Theorem 6.6 to the reconstruction problem. 

A small, but useful, application of Theorem 6.6 arises in the problem of 
matching data from radiographs accurately. Consider the problem of recon- 
structing a cross section of a patient’s head from ordinary X-ray data. The 
head may be considered as a positive density function with support in a ball B. 
It is of evident importance to match the several X rays accurately. With due 
clinical level precautions, the patient’s head can still be expected to move 
around some, the films can be expected to vary in their cassettes, etc. Theo- 
rem 6.6 shows that the orthogonal projection of the center of gravity of the 
object f on the plane P is the center of gravity of the projection L,f. Thus, 
the center of gravity of each L,f can be shifted to the geometric center of the 
projection of B, and the effect will be to shift the center of gravity off to the 
geometric center of B. This technique of matching the X rays accurately was 
used in [IO, 281. 

The compatibility conditions of Theorem 6.6 may also be of practical 
use. Data from X rays are invariably noisy, and the compatibility conditions 
may be useful in measuring the extent of the noise. The functions in practice 
are positive, and the compatibility condition for m = 0 simply says that all 
the L, should have the same L1 norm. This can easily be checked. Alter- 
natively, one might normalize the data so that the 0th compatibility con- 
dition is satisfied. (This normalization has been done in some of the joint 
work on detecting brain tumors with Guenther and Smith, but more work is 
necessary to determine the effect on the reconstruction.) Similar steps might 
be taken for any finite number of the compatibility conditions. 
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