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Abstract

Asymptotic behaviour of solutions of first-order differential equation with two deviating argum
of the form

ẏ(t) = β(t)
[
y(t − δ) − y(t − τ)

]
is discussed fort → ∞. A criterion for representing solutions in exponential form is proved. As c
sequences, inequalities for such solutions are given. Connections with known results are discu
and a sufficient condition for existence of unbounded solutions, generalizing previous ones, is de
rived. An illustrative example is considered, too.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we discuss fort → ∞ asymptotic behaviour of solutions to a linear hom
geneous differential equation with two delayed terms containing discrete delays

ẏ(t) = β(t)
[
y(t − δ) − y(t − τ )

]
, (1)

where δ, τ ∈ R
+, R

+ := (0,+∞), τ > δ, β : I−1 → R
+ is a continuous function an

I−1 := [t0 − τ,∞), t0 ∈ R. The symbol “̇ ” or “ ′ ” denotes (at least) theright-handderiv-
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0022-247X/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2004.02.036
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ative. Similarly, if necessary, the value of a function at a point ofI−1 is understood (a
least) as value of the corresponding limitfrom the right. DenoteI := [t0,∞).

Problems of asymptotic behaviour of linear delayed functional differential equation
have been intensively studied recently due totheir numerous applications. In the pape
presented we are trying to represent solutions of Eq. (1) by means of exponent
functions

exp

[ t∫
t0−τ

ε̃(s)β(s) ds

]
(2)

with a continuous functioñε : I−1 \ {t0} → (0,1). We call representation (2)exponential
representation(being aware of that, e.g., for functionsε̃ close to 0, this form can give
different kind of a function than just exponential ones).

Let C := C([−τ,0],R) be Banach space of continuous functions mapping the inte
[−τ,0] into R equipped with the supremum norm.

A function y(t) is said to be asolution of Eq.(1) on [ν − τ, ν + A) with ν ∈ I and
A > 0, if y ∈ C([ν − τ, ν + A),R) ∩ C1([ν, ν + A),R), andy(t) satisfies the Eq. (1) fo
t ∈ [ν, ν + A).

For givenν ∈ I , ϕ ∈ C, we say thaty(ν,ϕ) is asolutionof Eq. (1)through(ν,ϕ) (or that
y(ν,ϕ) corresponds to the initial pointν), if there isA > 0 such thaty(ν,ϕ) is a solution
of Eq. (1) on[ν − τ, ν + A) andy(ν,ϕ)(ν + θ) = ϕ(θ) for θ ∈ [−τ,0].

Due to linearity of Eq. (1), the solutiony(ν,ϕ) is unique and is defined on[ν − τ,∞),
i.e., we can putA := ∞.

Let us note that close investigation of asymptotic behaviour of a solution of de
functional differential equations is performed, e.g., in the papers [1–21]. The st
Eq. (1) occurs, e.g., in number theory [20].

The paper is organized as follows. In Section 2 a basic auxiliary inequality is studie
the relationship of its solutions with solutions of Eq. (1) is established. Several nece
auxiliary lemmas are given in Section 3. Section 4 contains main results of the paper
as comparisons with the known results. An illustrative example is considered in Sec
and a still unsolved problem is formulated in Section 6.

2. An auxiliary inequality

The inequality

ω̇(t) � β(t)
[
ω(t − δ) − ω(t − τ )

]
, (3)

which formally copies Eq. (1), will play a basic role in our investigation. A functionω(t)

is said to be asolution of (3) on [ν − τ, ν + A) with ν ∈ I andA > 0, if ω ∈ C([ν − τ,

ν + A),R) ∩ C1([ν, ν + A),R), andω(t) satisfies the inequality (3) fort ∈ [ν, ν + A).

2.1. Relationship between solutions of Eq. (1) and inequality (3)

Below we will discuss relations between solutions of Eq. (1) and inequality (3).
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Theorem 1.

(a) Suppose thaty(t) is a solution of Eq.(1) on I−1. Then there exists a solutionω(t) of
inequality(3) on I−1 such that an inequality

y(t) > ω(t) (4)

holds onI−1.
(b) Suppose thatΩ(t) is a solution of inequality(3) on I−1. Then there exists a solutio

Y (t) of Eq.(1) on I−1 such that an inequality

Y (t) > Ω(t) (5)

holds onI−1.

Proof. (a) Proof of this part is trivial. Lety(t) be a solution of Eq. (1) onI−1. Let us put,
e.g.,ω(t) := y(t) − 1. Obviously,ω(t) solves the inequality (3) onI−1 and satisfies her
the inequality (4), too.

(b) Let Ω(t) be a solution of inequality (3) onI−1. DefineΦ ∈ C by means of the
relation

Φ(θ) := Ω(t0 + θ), θ ∈ [−τ,0]. (6)

Let us show that the corresponding solutiony(t) := Y1(t0,Φ)(t) of Eq. (1) satisfies in
equality

Y1(t0,Φ)(t) � Ω(t) (7)

on I−1. Suppose the contrary. Then there exists a pointt∗ ∈ (t0,∞) such thatY1(t
∗) <

Ω(t∗). We show that the last statement leads to the following conclusion: There
pointst1 ∈ I , t2 ∈ I , t0 � t1 < t2 < t∗ such that

Y1(t) = Ω(t), t ∈ [t0, t1], (8)

Y1(t) > Ω(t), t ∈ (t1, t2), (9)

Y1(t2) = Ω(t2). (10)

Define onI−1 a function

W(t) := Y1(t) − Ω(t).

Then due to inequality (3), we have onI ,

Ẇ (t) = Ẏ1(t) − Ω̇(t) � β(t)
[
Y1(t − δ) − Y1(t − τ )

] − β(t)
[
Ω(t − δ) − Ω(t − τ )

]
.

Moreover, due to initial data (6), we conclude that at least on an interval[t0, t0 + δ], the
inequality Ẇ (t) � 0 holds sinceY1(t − δ) ≡ Ω(t − δ) and Y1(t − τ ) ≡ Ω(t − τ ) for
t ∈ [t0, t0 + δ]. If Ẇ (t) = 0 on the interval[t0, t0 + δ] thenY1(t) ≡ Ω(t) on [t0 − τ, t0 + δ].
In this case we can identify a new point of the typet0 with the pointt0 + δ and repea
the previous reasoning. If our conclusions can be repeated step by step infinitely
times and remain the same, then the inequality (7) holds onI−1 and turns into an identity
Now, since we were supposing the contrary, we conclude thatẆ (t) �≡ 0 on I . Then the
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above indicated pointst1 andt2 exist and relations (8)–(10) hold. ThenW(t1) = W(t2) = 0.
In view of Rolle’s theorem there exists a pointt12 ∈ (t1, t2) such thatẆ (t12) = 0, i.e.,
Ẏ1(t12) = Ω̇(t12). Without loss of generality we can suppose thatẆ(t) > 0 on (t1, t12).
Moreover, due to (10) there exists a pointt122 ∈ [t12, t2) such thatẆ (t) � 0 on [t12, t122]
and

Ẇ (t) < 0 (11)

on (t122, t122 + ε) with sufficiently small positiveε. Supposeε < δ and chooset	 ∈
(t122, t122+ ε). Then with the aid of Lagrange’s theorem

Ẇ (t	) = Ẏ1(t
	) − Ω̇(t	)

� β(t	)
[
Y1(t

	 − δ) − Y1(t
	 − τ )

] − β(t	)
[
Ω(t	 − δ) − Ω(t	 − τ )

]
= β(t	)

[
W(t	 − δ) − W(t	 − τ )

] = β(t	)(τ − δ)Ẇ (c),

where c ∈ (t	 − τ, t	 − δ). Since Ẇ (t) � 0 on [t0 − τ, t122] and (t	 − τ, t	 − δ) ⊂
[t0 − τ, t122) we get

Ẇ (t	) � β(t	)(τ − δ)Ẇ (c) � 0.

This is a contradiction with (11). Consequently, the inequality (7) is valid onI−1. Now let
us put

Y (t) := Y1(t) + 1. (12)

This function is a solution of Eq. (1), satisfying the inequality (5) onI−1. �
The following corollary follows easily from the proof of Theorem 1.

Corollary 1. Let us suppose thatΩ(t) is a solution of inequality(3) onI−1. Then the solu
tion y = Y1(t0,Φ)(t) of Eq.(1) with initial data (6) satisfies the inequalityY1(t0,Φ)(t) �
Ω(t) on I−1.

2.2. A comparison lemma

Let us consider, together with the inequality (3), an inequality

ω̇∗(t) � β1(t)
[
ω∗(t − δ) − ω∗(t − τ )

]
, (13)

whereβ1 : I−1 → R
+ is a continuous function satisfying inequalityβ1(t) � β(t) on I−1.

The following comparison lemma will be used below.

Lemma 1. Let the inequality(13)have a nondecreasing solution onI−1. Then this solution
is a solution of the inequality(3) on I−1, too.

Proof. Let ω∗ := ϕ(t) be a nondecreasing solution of inequality (13) onI−1. Then

ϕ̇(t) � β1(t)
[
ϕ(t − δ) − ϕ(t − τ )

]
� β(t)

[
ϕ(t − δ) − ϕ(t − τ )

]
.

The last inequality means that the functionω := ϕ(t) solves the inequality (3), too.�
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2.3. A possible form of solution of the inequality (3)

Let us show that a solution of inequality (3) can be found in an exponential form.

Lemma 2. Suppose there exists a continuous functionε : I−1 \ {t0} → R with at most first-
order discontinuity at the pointt = t0 satisfying onI the inequality

ε(t) + exp

[ t∫
t−δ

ε(s)β(s) ds

]
� exp

[ t∫
t−τ

ε(s)β(s) ds

]
. (14)

Then onI−1, there exists a solutionω(t) = ωe(t) of inequality(3) having the form

ωe(t) := exp

[
−

t∫
t0−τ

ε(s)β(s) ds

]
. (15)

Proof. Inequality (14) follows immediately from inequality (3) if a possible solutionω(t)

is taken in the form (15). �

3. Auxiliary lemmas

In this part we prove auxiliary results concerning solutions of Eq. (1).

Lemma 3. Let ϕ ∈ C increases(decreases) on [−τ,0]. Then the corresponding solutio
y(ν,ϕ)(t) of Eq.(1) with ν ∈ I is increasing(decreasing) in [ν − τ,∞).

Proof. As follows from Eq. (1), sigṅy(ν,ϕ)(ν) = +1 in the case when the functionϕ
increases on[−τ,0] and sigṅy(ν,ϕ)(ν) = −1 in the case when the functionϕ decreases o
[−τ,0]. The casėy(ν,ϕ)(t∗) = 0 for t∗ ∈ (ν,∞) and simultaneously sigṅy(ν,ϕ)(t) �= 0
on intervalt ∈ (ν, t�) is impossible because, as follows from Eq. (1) and from the prope
of functionϕ, the inequalityy(t∗ − δ) �= y(t∗ − τ ) holds. �
Lemma 4. Let us suppose thatΩ(t) is a solution of inequality(3) on I−1, increasingon
[t0− τ, t0]. Then onI−1 there exists anincreasingsolutionY (t) of Eq.(1) onI−1 satisfying
the inequality(5). If, moreover,Ω(t) is continuously differentiable on[t0 − τ, t0], then the
solutionY (t) is continuously differentiable onI−1 \ {t0}.

Proof. The proof is based on the proof of Theorem 1. Since the solutiony(t) =
Y1(t0,Φ)(t) of Eq. (1) withΦ given by (6) is a function increasing on[t0 − τ, t0], then
(by Lemma 3) it is increasing on the whole intervalI−1. It is obvious that the solutio
Y (t) given by (12) has the same property. Similarly, continuous differentiability ofΩ(t)

on [t0 − τ, t0], leads to continuous differentiability ofY (t) on I−1 \ {t0}. �
Remark 1. Suppose that Lemma 2 holds with a functionε negativeon [t0 − τ, t0]. Then
on I−1, the solutionωe of inequality (3) satisfies all assumptions of Lemma 4 with resp
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to Ω(t), i.e., we can putΩ(t) := ωe(t). Moreover, the solutionY of Eq. (1) satisfying on
I−1 Lemma 4 is of the formY (t) := Y (t0,ωe)(t).

Lemma 5. Let y(t) be a nondecreasing positive(a nonincreasing negative) solution of
Eq. (1) on I−1. Then the expression

V (t) := exp

[
−

t∫
t0−τ

β(s) ds

]
· y(t)

is a decreasing(an increasing) function onI .

Proof. Let us investigate the sign of the derivativeV̇ (t) on I . We get

V̇ (t) = exp

[
−

t∫
t0−τ

β(s) ds

]
· [−β(t)y(t) + ẏ(t)

]

= exp

[
−

t∫
t0−τ

β(s) ds

]
· [−β(t)y(t) + β(t)y(t − δ) − β(t)y(t − τ )

]
.

Now it is clear that

signV̇ (t) = sign
[−y(t) + y(t − δ) − y(t − τ )

] = −1

in the case wheny(t) is a nondecreasing and positive solution of Eq. (1) and, simil
signV̇ (t) = 1 wheny(t) is a nonincreasing and negative solution of Eq. (1).�

4. Existence of a solution of Eq. (1) having an exponential form

In this part the main results are formulated and proved. We declare that the exi
of a solution of Eq. (1) having and exponential form is equivalent with the existence
solution of integral inequality (14). This affirmation is then modified—stronger conditio
permit to estimate such solution. Moreover, it is showed that results obtained se
a source for deriving sufficient conditions for the existence of unbounded solutio
Eq. (1). Connections with known results are discussed in Section 4.3.

4.1. Main result

Theorem 2 (Main result).The following two statements are equivalent:

(a) There exists solutiony = y(t) of Eq.(1), continuously increasing onI−1, continuously
differentiable onI−1 \ {t0} and representable in exponential form

y(t) = exp

[ t∫
ε̃(s)β(s) ds

]
(16)
t0−τ
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on the intervalI−1, whereε̃ : I−1 \ {t0} → (0,1) is a continuous function with at mo
first-order discontinuity att0.

(b) There exists a continuous functionε : I−1 \ {t0} → (−1,0) with at most first-order
discontinuity at the pointt = t0 satisfying integral inequality(14)on I .

Proof. (b) ⇒ (a) In this case there exists (by Lemma 2) a solution of inequality (3)ω(t) ≡
ωe(t) given by the formula (15). Moreover, in accordance with Corollary 1, there exists
solutiony(t) = Y (t0,ωe)(t) of Eq. (1) onI−1 satisfying the inequality

Y (t0,ωe)(t) � Ω(t) ≡ ωe(t) = exp

[
−

t∫
t0−τ

ε(s)β(s) ds

]
. (17)

Sinceε(t) < 0, ωe(t) is an increasing solution of inequality (3). Then we can, in ac
dance with Lemma 4 and Remark 1, improve the last statement with a statement t
solutionY (t0,ωe)(t) is increasingonI−1 andcontinuously differentiableonI−1 \{t0}, too.
SolutionY (t0,ωe)(t) is obviouslypositive. Therefore we can apply the auxiliary Lemma
in order to conclude that the corresponding expression

V (t) := exp

[
−

t∫
t0−τ

β(s) ds

]
· Y (t0,ωe)(t) (18)

is a decreasing (positive) function onI . Moreover, the expression (18) is a decreas
positive function on[t0 − τ, t0), too. Indeed, in this case

V̇ (t) = exp

[
−

t∫
t0−τ

β(s) ds

]
· [−β(t)ωe(t) − ε(t)β(t)ωe(t)

]

= β(t) · ωe(t) · [−1− ε(t)
] · exp

[
−

t∫
t0−τ

β(s) ds

]
< 0

sinceε(t) > −1. ObviouslyY (t0,ωe)(t0−τ ) = ωe(t0−τ ) = 1. ThenV (t) � V (t0−τ ) = 1
and

Y (t0,ωe)(t) � exp

[ t∫
t0−τ

β(s) ds

]
(19)

holds onI−1. Using inequalities (17) and (19), we conclude

exp

[
−

t∫
ε(s)β(s) ds

]
� Y (t0,ωe)(t) � exp

[ t∫
β(s) ds

]
. (20)
t0−τ t0−τ
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On the basis of (20), we can expect that it is possible to represent the solutionY (t0,ωe)(t)

on I−1 in the form

Y (t0,ωe)(t) = exp

[ t∫
t0−τ

ε̃(s)β(s) ds

]
(21)

with a functionε̃(t) continuous onI−1 \ {t0} and satisfying inequalities

0 < ε̃(t) < 1. (22)

Let us prove it. At first, define onI−1 \ {t0},

ε̃(t) := Ẏ (t0,ωe)(t)

β(t)Y (t0,ωe)(t)
. (23)

Then the representation (21) turns into an identity. Let us verify that inequalities (22)
too. Inequalities (22) are valid on interval[t0− τ, t0) since in this caseY (t0,ωe)(t) ≡ ωe(t)

andε̃(t) ≡ −ε(t). The left-hand side of inequality (22) is, on interval(t0,∞), an obvious
consequence of the relation (23) and properties ofY (t0,ωe). Let us verify on(t0,∞) the
right-hand side of (22). Using (21) and the statement that the expression (18) is a dec
function we have

0 > V̇ (t) =
(

exp

[
−

t∫
t0−τ

β(s) ds

]
· Y (t0,ωe)(t)

)′
= (

ε̃(t) − 1
) · V (t) · β(t),

i.e., ε̃(t) < 1 and the right-hand side of (22) holds. Finally, it is easy to show that the v
ε̃(t0 ± 0) exist and are finite. The part(b) ⇒ (a) is proved.

(a) ⇒ (b) Let y(t) be a solution of Eq. (1) onI−1 with properties indicated in th
part (a). Then onI−1 \ {t0},

ẏ(t) = ε̃(t)β(t) · exp

[ t∫
t0−τ

ε̃(s)β(s) ds

]
.

Let us put the solutiony(t) having the form (16) into Eq. (1). Then onI ,

ε̃(t) = exp

[
−

t∫
t−δ

ε̃(s)β(s) ds

]
− exp

[
−

t∫
t−τ

ε̃(s)β(s) ds

]
.

Let us define functionε : I−1 \ {t0} → (−1,0),

ε(t) := −ε̃(t). (24)

Then the last equality turns into

ε(t) + exp

[ t∫
t−δ

ε(s)β(s) ds

]
= exp

[ t∫
t−τ

ε(s)β(s) ds

]
,

i.e., the integral inequality (14) holds onI . This ends the proof. �
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4.2. Modifications of the main result

The main result, formulated above, gives an equivalence of an exponential behav
a solution of Eq. (1) with the existence of a solution of the integral inequality (14). S
functionε̃ : I−1 \ {t0} → (0,1), then as a consequence we get inequalities for such sol
y = y(t) on I−1 \ {t0},

1 � y(t) � exp

[ t∫
t0−τ

β(s) ds

]
. (25)

The left-hand side of the inequality (25) is obviously not satisfactory if it is necessary
more concrete qualitative information. A small modification of assumptions in Theor
leads to more exact left-hand side in (25). It is formulated in the following theorem
scheme of its proof copies exactly the proof of Theorem 2 and therefore is omitted, e
for the several modified points indicated.

Theorem 3. Letq be a constant,q ∈ (0,1). Then the following two statements are equi
lent:

(a) There exists a continuously increasing onI−1 and continuously differentiable o
I−1\{t0} solutiony = y(t) of Eq.(1) representable on the intervalI−1 in the form(16),
whereε̃ : I−1 \ {t0} → (1 − q,1) is a continuous function with at most first-order d
continuity at the pointt = t0, and satisfying, on the intervalI−1, the inequalities

exp

[
(1− q) ·

t∫
t0−τ

β(s) ds

]
� y(t) � exp

[ t∫
t0−τ

β(s) ds

]
. (26)

(b) There exists a continuous functionε : I−1 \ {t0} → (−1, q − 1) with at most first-order
discontinuity at the pointt = t0 satisfying the integral inequality(14)on I .

Proof. (b) ⇒ (a) Obviously, a solution, having the form (16) exists due to Theorem 2.
left-hand side of inequality (26) follows from the inequality (20), since

Y (t0,ωe)(t) � exp

[
−

t∫
t0−τ

ε(s)β(s) ds

]
� exp

[
(1− q) ·

t∫
t0−τ

β(s) ds

]
.

(a) ⇒ (b) Since, by (24),̃ε = −ε ∈ (1− q,1), we getε < q − 1. �
If the functionε is known then the following result which will be used in the pro

of Theorem 7 below, follows immediately from the proof of Theorem 2 (part(b) ⇒ (a),
inequalities (20)).

Theorem 4. Let a continuous functionε : I−1 \ {t0} → (−1,0) with at most first-order
discontinuity at the pointt = t0 satisfying the integral inequality(14)onI exist. Then there
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exists a solutiony = y(t) of Eq.(1), continuously increasing onI−1 and differentiable on
I−1 \ {t0}, such that

exp

[
−

t∫
t0−τ

ε(s)β(s) ds

]
� y(t) � exp

[ t∫
t0−τ

β(s) ds

]
. (27)

4.3. Sufficient conditions for existence of divergent unbounded solutions

In this part we give an easily verifiable sufficient condition for the existence of
bounded solutions. The proof is based on Theorem 4. Corresponding results imply th
Eq. (1) admits an unbounded solution with infinite limit. First let us discuss several
nections with the known results. Supposeδ = 0 in Eq. (1) and consider the equation

ẏ(t) = β(t)
[
y(t) − y(t − τ )

]
. (28)

In paper [22, Corollary 2 and Theorem 5] a criterion for convergence of all solutio
Eq. (28) and a point test of convergence are given. A partial case of this test is form
as the first statement of following theorem. The second part of it follows from results
in [3,6].

Theorem 5. Let for all t ∈ I−1 and a constantp > 1,

β(t) � 1

τ
− p

2t
. (29)

Then each solution of Eq.(28) corresponding to the initial pointt0 converges. Let for al
t ∈ I−1 exist a constantρ such that

β(t) � ρ <
1

τ − δ
. (30)

Then each solution of Eq.(1) corresponding to the initial pointt0 converges.

Therefore in constructing sufficient condition we can expect in some sense op
inequalities with respect to (29), (30). Moreover, in [11,21] the following result is g
for the case of Eq. (1) withβ(t) ≡ β = const.

Theorem 6. If

β >
1

τ − δ
, (31)

there are solutions of Eq.(1) which are unbounded ast → ∞.

Let us remark that the equality is admissible in the inequality (31), too since in
case Eq. (1) admits an unbounded solutiony(t) = t . Comparing inequalities (29)–(31) w
imagine conditions generalizing the last one. The following sufficient condition (T
rem 7 below) and corollary (Corollary 2 below) generalize the previous result for var
coefficientβ(t).
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(14)
Theorem 7. If on I−1 with sufficiently larget0 the inequality

β(t) � 1

τ − δ
+ 1

2t

(
−1+ ν

τ − δ

)
(32)

holds withν ∈ (0, τ − δ), then Eq.(1) admits an increasing unbounded ast → ∞ solution
y = y(t) satisfying inequalities

k(t) · tν/(τ−δ) � y(t) � exp

[ t∫
t0−τ

β(s) ds

]
(33)

on I , with a positive bounded functionk(t), k(∞) > 0, defined as

k(t) := (t0 − τ )−ν/(τ−δ) · exp

[
ν

2

(
1− ν

τ − δ

)(
1

t
− 1

t0 − δ

)]
.

Proof. In the proof we employ Theorem 4. Let us verify that the integral inequality
holds withε(t) := −a/t , 0< a � ν and

β(t) := 1

τ − δ
+ 1

2t

(
−1+ ν

τ − δ

)
. (34)

Then the left-hand side of (14) equals

L(t) ≡ ε(t) + exp

[ t∫
t−δ

ε(s)β(s) ds

]

= −a

t
+ exp

[
−

t∫
t−δ

a

s

[
1

τ − δ
+ 1

2s

(
−1+ ν

τ − δ

)]
ds

]

= −a

t
+

(
1− δ

t

)a/(τ−δ)

· exp

[ −aδ

t (t − δ)
· 1

2

(
−1+ ν

τ − δ

)]
.

Let us develop the asymptotic decomposition ofL(t) for t → ∞ with sufficient accuracy
for further application. We get

L(t) = −a

t
+

[
1− 1

τ − δ
· δa

t
+ δ2

2
· a

τ − δ
·
(

a

τ − δ
− 1

)
1

t2
+ O

(
1

t3

)]

×
[
1− δa

2
·
(

−1+ ν

τ − δ

)
1

t2 + O

(
1

t3

)]

= 1+
[
−a − δa

τ − δ

]
1

t
+

[
δ2

2
· a

τ − δ
·
(

a

τ − δ
− 1

)

− δa

2
·
(

−1+ ν

τ − δ

)]
1

t2
+ O

(
1

t3

)
,

whereO is the Landau order symbol. Similarly for the right-hand side of (14) we get
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R(t) ≡ exp

[ t∫
t−τ

ε(s)β(s) ds

]
= exp

[
−

t∫
t−τ

a

s

[
1

τ − δ
+ 1

2s

(
−1+ ν

τ − δ

)]
ds

]

=
(

1− τ

t

)a/(τ−δ)

· exp

[ −aτ

t (t − τ )
· 1

2

(
−1+ ν

τ − δ

)]

=
[
1− 1

τ − δ
· τa

t
+ τ2

2
· a

τ − δ
·
(

a

τ − δ
− 1

)
1

t2 + O

(
1

t3

)]

×
[
1− τa

2
·
(

−1+ ν

τ − δ

)
1

t2
+ O

(
1

t3

)]

= 1− τa

τ − δ
· 1

t
+

[
τ2

2
· a

τ − δ
·
(

a

τ − δ
− 1

)
− τa

2
·
(

−1+ ν

τ − δ

)]
1

t2

+ O

(
1

t3

)
.

Comparing the coefficients of identical functional terms ofL(t) andR(t), we see that fo
L(t) � R(t) it is sufficient to compare coefficients of the termst−2 since coefficients o
the termst0 andt−1 are equal. That is, we need

δ2a

2(τ − δ)
·
(

a

τ − δ
− 1

)
− δa

2
·
(

−1+ ν

τ − δ

)

>
τ2a

2(τ − δ)
·
(

a

τ − δ
− 1

)
− τa

2
·
(

−1+ ν

τ − δ

)

or, after simplifying,

τ (a − ν) + δ · (a + ν − 2(τ − δ)
)
< 0.

This inequality obviously holds, since 0< δ < τ , 0 < a � ν < τ − δ. So the integral in-
equality (14) fort → ∞ holds and, consequently, Theorem4 holds, too. The left-hand sid
of inequality (33) is a straightforward consequence of inequality (27). Really, comp
the left-hand side of (27) withε(t) as above and witha = ν leads to

exp

[
−

t∫
t0−τ

ε(s)β(s) ds

]
= exp

[ t∫
t0−τ

ν

s

[
1

τ − δ
+ 1

2s

(
−1+ ν

τ − δ

)]
ds

]

=
(

t

t0 − τ

)ν/(τ−δ)

· exp

[
ν

2
·
(

−1+ ν

τ − δ

)
·
(

−1

t
+ 1

t0 − δ

)]
= k(t) · tν/(τ−δ).

The above verification means that for thefixed functionβ given by relation (34), the left
hand side of inequality (33) holds. Let us show that it holds forevery functionβ satisfying
inequality (32). Put

β1(t) := 1 + 1
(

−1+ ν
)

τ − δ 2t τ − δ
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and supposeβ(t) � β1(t). It is easy to verify that inequality (13) has an increasing s
tion. This verification can be made with the aid of Lemma 2 since (as it was shown a
the integral inequality (14) holds withε(t) := −ν/t . Then by Comparison Lemma 1 th
inequality (3) has the same solution and the conclusion of Theorem 7 is now a straig
ward consequence of Theorem 1.�
Remark 2. Let us note that Theorem 7 improves (as it follows from inequality (32)) kn
results whenν < τ − δ. This is taken into account in the following corollary which refo
mulates the affirmation of Theorem 7 concerning the existence of increasing unbo
solution.

Corollary 2. Let for all t ∈ I−1 with sufficiently larget0 and for a constantp ∈ (0,1),

β(t) � 1

τ − δ
− p

2t
.

Then there exists an increasing and unbounded solution of Eq.(1) ast → ∞.

Remark 3. It is to be pointed out that Theorems 5–7 concern the so called “critical ” case,
since the valueβ(t) ≡ 1/(τ − δ) separates the case when all solutions of Eq. (1) conv
and the case when there are divergent solutions. Investigation of linear delay equatio
more that one argument in a different “critical ” state separating the case when all solutio
are oscillatory and the case when there exists a positive solution was started in [12]

5. Example

Let us consider the inequality of the type (3) withβ(t) := λ ·(1−1/t), λ = e2/(e−1)
.=

4.30,δ = 1 andτ = 2, i.e., the inequality

ω̇(t) � e2

e − 1

(
1− 1

t

)
· [ω(t − 1) − ω(t − 2)

]
. (35)

Let us putt0 = 10. Then it is easy to verify that the corresponding inequality (14) h
with ε(t) ≡ ε = const,ε = −1/λ since it turns into an inequality

1

e2 − 1

e
+ exp

[
−

t∫
t−1

(
1− 1

s

)
ds

]
� exp

[
−

t∫
t−2

(
1− 1

s

)
ds

]
(36)

or, after simplifying,

t � 2(e − 1)

e − 2
.= 4.78.

Then a solution of (35) is expressed onI−1 = [8,∞) in the form (15), i.e.,

ωe(t) = exp

[ t∫
ε(s)β(s) ds

]
= exp

[ t∫ (
1− 1

s

)
ds

]
= 8 · et

t · e8 . (37)
t0−τ 8
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Let us consider the equation of the type (1) withδ, τ , β andt0 as above, i.e., the equatio

ẏ(t) = e2

e − 1

(
1− 1

t

)
· [y(t − 1) − y(t − 2)

]
. (38)

Then the corresponding inequality (14) holds (withε indicated above), since it turns in
inequality (36). Therefore by Theorem 2 there exists a continuously increasing onI−1 and
continuously differentiable on[8,10) ∪ (10,∞) solutiony = y(t) such that onI−1,

y(t) = exp

[
λ

t∫
8

ε̃(s)

(
1− 1

s

)
ds

]
,

whereε̃ : I−1 \ {10} → (0,1) is a continuous function. Corollary 2 immediately gives
answer concerning the existence of a solution with infinite limit, since

1

τ − δ
− p

2t
� 1

τ − δ
= 1< 3 < λ ·

(
1− 1

t

)
= β(t).

More exact information concerning asymptotic behaviour of a solution of Eq. (38) c
obtained with the aid of Theorem 4. Since

exp

[ t∫
t0−τ

β(s) ds

]
=

[
8 · et

t · e8

]λ

,

then in view of (37) we conclude that there exists a solutiony = y(t) of Eq. (38) onI−1
satisfying the inequality

8 · et

t · e8
� y(t) �

[
8 · et

t · e8

]λ

.

6. Open problem

It is known, provided that there exists an increasing solutiony = Y (t) on I−1 of the
Eq. (1) with δ = 0 satisfyingY (+∞) = +∞, that the general structure of solutions c
be clarified. Namely, in accordance with [23, Theorem 4] (see investigations [8–10,17,
too) every solutiony = ỹ(t) of the equation

ẏ(t) = β(t)
[
y(t) − y(t − τ )

]
can be expressed by the formula

ỹ(t) = K · Y (t) + δ(t) (39)

on t ∈ I−1, whereK ∈ R is a constant, dependent onỹ(t), andδ(t) is a bounded solution
of Eq. (1) onI−1 dependent oñy(t). This representation is unique(with respect toK and
δ(t)). Let us formulate the corresponding problem with respect to Eq. (1).

Problem 1. Let y = Y (t) be an unbounded increasing solution of Eq. (1) withδ �= 0. Can
every solutiony = ỹ(t) of Eq. (1) be represented onI−1 by formula (39) with the above
indicated restrictions?
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