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Various means (over the unit sphere) of powers of the curvature function 
of a convex body arise in geometric convexity. For example, both the sur- 
face area and the affine surface area of sufficiently smooth bodies can be 
expressed as such means. The survey of Gruber [ 111 on approximation of 
convex bodies contains a number of examples of means of powers of the 
curvature function arising in approximation problems (see, pp. 137 141. 
143, and 1466148 of [ 11 I). These means arise, surprisingly, in questions 
related to approximating convex bodies by polytopes (see, e.g., McClure 
and Vitale [18], Schneider [24], and Schneider and Wieacker [27]). An 
interesting conjecture of Firey [9, p. S] (also [26, p. 2571). which was 
recently proved by Gage [lo] for plane convex bodies, is that a certain 
weighted mean of the curvature function lies between the arithmetic and 
harmonic means of the curvature function. 

It turns out that there is also a close connection between various means 
of the curvature function of a convex body and some mixed volumes 
involving the body. 

In this note we investigate means of the curvature function of a convex 
body which arise as coefficients in the expansion of the afftne surface area 
of outer and inner Blaschke parallel bodies. For a variety of reasons we will 
take a general approach to the study of these means, an approach similar 
to that taken in [14] (see also [4, pp. 164.-1671) in presenting dual mixed 
volumes. 

Let .X” denote the set of convex bodies (compact convex sets with 
interior points) in Euclidean n-space R”. We use h( K, .) to denote the 
support function of a convex body K; i.e.. 

h(K, ti)= Maxjx.c: .YE Kj, 

where .x. u is the usual inner product of x and t’ in R”. 
We will be concerned mainly with convex bodies that have positive con- 
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tinuous curvature functions. A convex body KE X” is said to have a 
positive continuous curvature function (see [3, p. 1151) 

f(K, .): S”-’ + (0, co), 

if for each LE Ix” the mixed volume V,(K, L) = V(K,..., K, L) has the 
integral representation: 

where the integration is over the unit sphere, S+‘, in R”, and dS(u) 
denotes the area element at u E S”- ‘. We note, as an aside, that if K is 
of class C2, and has everywhere positive Gaussian curvature, then the 
Gaussian curvature of K, when viewed as a function of the outer normals 
of K, is the reciprocal of the curvature function of K. 

A convex body can have only one curvature function associated with it 
(see [3, p. 1151). From the Minkowski mixed volume inequality it follows 
(see [3, p. 1151) that if two convex bodies have the same curvature 
function, then they must be translates of each other. 

The subset of Xx” consisting of bodies with positive continuous curvature 
functions will be denoted by 9”. Blaschke addition and scalar mul- 
tiplication (soon to be defined) provide a natural algebraic structure for 
5”. Blaschke addition of convex bodies has been considered recently by a 
number of investigators. (See the references in the survey of Schneider [23, 
p. 481, and also [ 12, 16, 191 which since have appeared.) 

We recall (see [3, p. 1153) that the curvature function f of a convex 
body in 9” satisfies 

Conversely, if f is a positive continuous function which satisfies (2), then 
there exists a convex body in Y”, unique up to translation, whose 
curvature function is f (see [ 3, p. 1211). 

To define Blaschke addition and scalar multiplication, we observe that 
for K, K’ E B” and positive scalars c(, a’, it follows from (2) that 

I u[a,f(K,u)+df(K',u)] dS(u)=O. &y" ~~ I 

Hence, there exists a convex body in F;“, which is unique up to translation, 
and which we denote by crK + a'K', such that 

f(crK+ cl'K';)= crf(K;)+ a'f(K';). (3) 
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Our notation for Blaschke addition and scalar multiplication is one com- 
monly used for Minkowski addition and scalar multiplication; however. 
since Minkowski addition and scalar multiplication will not be used in this 
note, no confusion should arise. 

It is obvious that p” is closed under Blaschke addition and (positive) 
scalar multiplication. It follows trivially (from the fact that a body in .f” 
has a unique curvature function associated with it) that Blaschke addition 
is both associative and commutative. 

It is easy to verify that, for K E 9” and i. > 0, the Blaschke scalar 
product LK is (up to translation) just a dilation of K by a factor i.’ “I ‘I. 
From this observation, and the fact that two convex bodies with the same 
curvature function must be translates of each other, we conclude that the 
curvature functions of a pair of convex bodies in .F” are proportional if 
and only if the bodies are homothetic. 

To denote the volume and surface area of a convex body K we use C’(K) 
and S(K), respectively. We shall use CO,, to denote the volume of the unit 
ball, B, in R”. 

Petty [22] has extended the definition of affine surface area to bodies in 
9”. For K E..F-“, the affine surface area of K. R(K). is defined by 

.Q( K) = 1 ,f’( K, u)” (” -I ’ ’ clS( u). (4) - ,yn I 

Petty [22] also shows that, with this extended definition. the aflinc 
isoperimetric inequality of afline differential geometry, along with the 
conditions for equality, continues to hold. Specifically, for K E T”, 

with equality if and only if K is an ellipsoid. 
We deline the mixed afline area of K, ,..,, K,, E 3”. Q(K, ,..., K,,), by 

Since the curvature function of a convex body is unaffected by trans- 
lations of the body, it follows that R(K, ,..., K,,) is invariant under 
translations of the Ki. Obviously, one also has 

Q( K,..., K) = Q(K). 

We will need a form of the Holder integral inequality [ 13, p. 1401 (see 
also [6, p. 881) which states that for positive continuous functions .f; ,.... .f; 
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on S”-’ and positive reals c(~,..., cx,, the sum of whose reciprocals is unity, 
one has 

is., f,(u). . ..fAu) Wu) G fj [ j,-, f?(u) ds(u)]i’~‘, (7) 
i== I 

with equality if and only if thef;~ are proportional to each.other. 
A general version of the Aleksandrov-Fenchel mixed volume inequality 

(see [ 1, p. 12201 or [.5, p. 501) can be written as 

,,I ~ I 

;Fo VK, ,...> K ~ m, K,, ; ,..., K,mmi) d P(K, ,..., K,). (8) 

The conditions for equality in this general inequality are unknown (see 
Schneider [25] for a discussion). However, the special case where m=n 
and K, = ... =K, ,, is the Minkowski mixed volume inequality, and here 
it is known that equality can occur if and only if the bodies (K, and K,) are 
homothetic (see [3, p. 911). 

For the mixed affine areas we have the complementary inequality: 

THEOREM 1. [f K, ,..., K,, E F” and 1 < m < n, then 

n WK,,..., K-e,, Kp, i,‘.., K,- i) > Qm(Kl T...> KJ 
i=O 

with equality if and only if K, ~ m + , ,..., K, are homothetic. 

To prove this we use the Holder integral inquality (7) with r = m, 
CC, = ... =a,,, =m, and 

f; = [f(K,, .)...f’(K,p,,,, .)]l’m(‘~+“f’(K,~,+,, .)licn+“. 

The equality conditions follow from the equality conditions of the Holder 
inequality, and the already noted observation that a pair of convex bodies 
have proportional curvature functions if and only if they are homothetic. 

The special case m = n of Theorem 1 is 

Q’YK, ,..., K,) < O( K,) *. . Q( K,), (9) 

with equality if and only if the Ki are homothetic. If we take m = n - 1 in 
the general Aleksandrov-Fenchel inequality (8), and then apply the 
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Minkowski mixed volume inequality (where the equality conditions are 
known), the result is 

V(K,)‘.. V(K,,)d V”(K I,..., K,,), (10) 

with equality if and only if the K, are homothetic. If (9), (lo), and the afline 
isoperimetric inequality (5) are combined the result is 

THEOREM 2. Jf K, ,..., K,, E .F”, then 

O(K ,,..., K,,)“+ ’ +z”+‘o$V(K ,,..., K,,)” ‘, 

b+‘ith equality fund onl~l if the K, are homothetic ellipsoids 

Naturally, the case of Theorem 2 where the K, are equal reduces to the 
affine isoperimetric inequality. 

If K, L E X”” and i is an integer such that 0 d i6 n, then, as usual, 
V,(K, L) denotes the mixed volume V(K ,..., K, L ,..., L), with n - i copies of 
K, and i copies of L. Similarly, if K, L E 9” and 0 <i< tz, we will use 
G?,( K, L) to denote the mixed afline area Q(K ,..., K, L ,..., L), with n - i 
copies of K, and i copies of L. This definition can easily be extended so that 
52,( K, L) is defined for all real i. Specifically, for ig R, R,(K, L) is given by 

B,(K,L)=i’ .f(K,u)‘” ‘)O1+“,f(l,,z~)““+“~~(~). (II) 
S” ’ 

Just as the ith projection measure (Quermassintegral) W,(K) can be 
defined as V;(K, B), we define the ith afline area of KE .B”, !2,( K), to be 
Q,(K, B). Sincef(B, .) = 1. one has 

Q,(K)= ?, , ,f(K, u)“’ 1”‘1 +“d.S(u), (12) 

for all i E R. Obviously, G?,(K) = 52(K), and n,,(K) = no,,, for all KE 3”. 
There are close connections between certain mixed affine areas and some 

mixed volumes (and dual mixed volumes). To see some of these connec- 
tions we recall some well-known results. 

For a body KE X”, containing the origin in its interior, let K* denote 
the polar body of K, with respect to the unit sphere centered at the origin 
(see [3] for definitions). For KE X” and x E [w”, let x + K denote the trans- 
late of K by X; i.e., x + K= (x + I’: YE K} (where the addition is ordinary 
vector addition). Associated with a convex body KE X” is its Santalb 
point, s =s(K), which can be defined (see [15] for a discussion) as the 
unique point s E int K such that 

uh( --.F + K, u) ‘“+“ds(24)=0. (13) 
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We shall use K” to denote the polar body of K with the Santa16 point of K 
taken as origin; i.e., K” = s + ( --s + K)*. 

The restricted (to s”- ‘) support function of a convex body, containing 
the origin in its interior, is a positive continuous function. From this, and 
(13), it follows that, associated with a convex body K E X”, there is a con- 
vex body AK E 8”, unique up to translation, such that 

,f‘(AK;)=h(-s+K;) -“‘+‘I). (14) 

It is easy to see that AB= B, up to translation. (The definition of AK is 
somewhat different than that given in [17].) 

From (l), (1 l), and the translation invariance of mixed volumes, it 
follows that for KE 9” and L E X”, 

R,(K, AL)=nV,(K, L). (15) 

Since S(K)=nW,(K)=nV,(K, B), it follows that for KEY”, 

i2 ,(K) = S(K). (15’) 

From ( 1 ), (11) and the translation invariance of mixed volumes, it also 
follows that for K E X’,, and L E F”, 

a,,, ,(AK, L) = nK ,(K L). (16) 

Since I/;lp,(K, B)= q, ,(K), we have for KEY”, 

Q,,+,(N=nM/;,+,(K). (16’) 

From (4), (14) and the polar coordinate formula for volume, we conclude 
that for KE Xx”, 

Q(AK)=nV(K’). (17) 

The general Aleksandrov-Fenchel inequality (8) tells us that for K, 
L E Xx” and integers i, j, k such that 0 d id j d k d n, 

I’,(K, L)kp’ V,(K, L)“< V;(K, L)k- ‘. 

A similar inequality can be obtained for mixed affine areas from 
Theorem 1; however, this inequality will hold even without the restriction 
that i, j, k must assume values between 0 and n. 

THEOREM 3. !f K, L E 9” and i, j, k E 02 such that i < j < k, then 

sL,(K, L)km ‘Q,(K,L)‘p’>,Qj(K, L)k ‘, 

with equality if and only if K and L are homothetic. 
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To prove this we use Holder integral inequality (7) with r = 2, sl, = 
(k - i)/(.j- i), ct2 = (k - i)/(k - j), 

,f, =,f(K,.)‘/ 1Nw k)(k 1Wl),f(L..)kI/ Wfk ooltl) 

and 

.f2 = .f(K .I (k /I111 f);(k !I(PI + I ) ,f(L, )dk /I IA IIO~ + i ,, 

The equality conditions follow, as before, from the equality conditions of 
the Holder inequality, and the fact that the curvature functions of a pair of 
bodies are proportional if and only if the bodies are homothetic. 

The special case of Theorem 3 with i= - l,.j= 0, k = II, and L = B, states 
that for K E 3”. 

Q(K)” ’ ’ d ncu,, A’( KY. 

with equality if and only if K is a ball. This is (an extension to <Y” of) 
Berwald’s generalization of an inequality of Winternitz [2. p. 2061 (see also 
Petty [21, p. 941). 

The special case of Theorem 3, with i = 0, .j = 11 k = n + 1, L = B and AK 
taken for K, states that for KE X”, 

UK’) 3 w;; + ’ W,, ,(K) ‘I, 

with equality if and only if K is a ball. This is the dual of the Urysohn 
Inequality obtained in [ 143. 

The KnesserrSiiss inequality [3, p. 1241 states that 1”” ‘I ‘I is concave 
with respect to Blaschke addition; i.e., 

From this and the affine isoperimetric inequality one might suspect that 
Sz’” ’ “,I is also concave with respect to Blaschke addition. This is the 
special case i = 0 of the following: 
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Theorem 4 is an immediate consequence of the Minkowski integral 
inequality, [ 13, pp. 1461. The conditions for equality follow from the 
equality conditions of the Minkowski integral inequality and the fact that 
the curvature functions of two bodies are proportional if and only if the 
bodies are homothetic. 

For the case where i= -1, Q-, is just ordinary surface area, which is 
linear with respect to Blaschke addition. For an application of the case 
i = 0 of Theorem 4, see Petty [20, p. 2401. 

From Theorem 2 we know that for K E F”, 

with equality if and only if K is a ball. Theorem 4 tells us that Sz;’ t is con- 
cave with respect to Blaschke addition. A still-unanswered question of 
Firey [7, p. 100, 1011 (see also [S]) asks about the behavior of W; ~ t with 
respect to Blaschke addition. 

For KE X”, we define q(K) by 

If i > - g(K), then ,f(K, ) + E, is a positive continuous function that 
satisfies (2). Hence, there exists a convex body, K,, which is unique up to 
translation, such that 

.f(K;., . ) = .f‘(K .I + 1.. (18) 

We call Kj. a Blaschke outer, or inner, parallel body of K, depending on 
whether 1 is positive or negative. The Blaschke outer parallel body Kj. is, of 
course, just K + 1B. See Firey [7] for a discussion of the analogy between 
Blaschke and Minkowski parallel bodies. 

Analogous to the Steiner polynomial for the volume of a Minkowski 
parallel body, we have the following: 

THEOREM 5. Z’ K E 9” and 111 < q(K), then 

Proof: From the definition of K,, (18), we have 

f(K,, u)~‘(‘+ ‘) = f(K, u)“‘(“+ “( 1 + lf(K, u) - l)n’(n+ I). 

The Taylor series expansion of (1 + x)~/(~+‘), for 1x1 < 1, is 

m nl(n + 1) - (1+x) - 
I( 

nl(n+l) xi 
i=O i > ’ 



MIXED AFFINE SURFACE AREA 359 

and, for any 6 > 0, the convergence is uniform when .Y is restricted to the 
closed interval [ - 1 + 6, 1 - d]. Since 1 I.,f(K, U) ’ 1 6 / 2 1 q(K) ’ < 1, for 
all u 12 s” ‘, we have 

,f( K,) up” + ’ ) = ,g,, .f;(u)t (19) 

where 

and the convergence in (19) is uniform on s” ‘. The desired expansion of 
Q(K,) is now obtained by integrating (19) over S” ‘. 

We note, as an aside, that if L E X”, and we take AL. for K in Theorem 
5. we obtain 

a(nl.+i.H)=~(nL)+~R,,. ,(AL)j.S “‘. 

The first two coefficients in this expansion have simple geometric inter- 
pretations. From ( 17) we have Q(n L) = n V( L‘). while from ( 16’) we know 
that Q,,, ,(AL)=HW,,~ ,(L). 

An expansion for Q,(K;.) also is obtained easily for all ,j E R. Specifically, 
for K E ,Y”, and 1 i / < q(K), one has 

(n-.~)~(~‘l)in,,~,,,.+ ,,(K)i.‘, 

for all real .j. 
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